账户: 密码:
经验格林函数方法模拟地震动研究
详细信息    本馆镜像全文|  推荐本文 | 收藏本文 |   获取CNKI官网全文
摘要
随着重大工程不断建设和大地震的频发,经验的地震动参数统计方法已经不能满足抗震设计要求。《建筑抗震设计规范》规定对重要建(构)筑物的抗震设计都必须进行地震反应时程分析。但建(构)筑物所在区域往往缺乏地震动记录,正是地震动记录的匮乏使得地震动模拟研究一直是地震工程领域重要的研究课题之一。目前模拟地震动常用的经验格林函数方法和随机方法都有各自的优缺点,为更好地模拟地震动,本文对上述两种模拟地震动方法进行了深入系统研究,提出了一些新的观点和改进,具体研究成果如下:
     经验格林函数方法是用大地震的前震或余震作为经验格林函数合成大地震的方法,目前的经验格林函数方法对大地震断层位错的不均匀考虑得不充分。但实际地震,特别是大地震断层面上的滑动速度和位错分布不可能是均匀的,而滑动分布的不均匀正是造成高频辐射的重要原因。本文从假定大小地震断层具有不同滑动速度入手,提出了改进的经验格林函数方法。该方法由于考虑了地震断层滑动的不均匀性,使得模拟结果与记录符合得比较好。
     经验格林函数方法中合成大地震用的小震数目是根据大小地震的长度、宽度和位错比值等决定的,这个比值一般不为整数。但小震数目必须为整数,所以,目前的经验格林函数方法不是高估就是低估了地震动。并且这个整数取值只能靠经验判断,经验判断有失经验格林函数方法的严密性。本文提出把长、宽和位错的比值—律向上取整,整数部分合成大地震时不改变小震地震动幅值,小数部分的小震地震动幅值根据小数部分数值适当减小,该方法使小震数目的确定有了统一标准。
     目前的经验格林函数方法大都认为大小地震应满足“相似条件”或“准相似条件”,这无疑限制了经验格林函数的适用范围。罗奇峰已经把经验格林函数方法推广到矩形走滑断层不满足相似条件的情况。本文在此基础上把经验格林函数方法推广到倾滑断层不满足相似条件和同时存在走滑和倾滑分量的断层不满足相似条件的情况,由于汶川地震断层同时存在倾滑和走滑部分,该推广对汶川地震的研究有重要意义。另外本文还从理论上把经验格林函数方法推广到已知大小地震断层长、宽比和应力降比,而未知位错比的情况。
     本文把Miyake提出的强震生成区概念引进经验格林函数方法中,只用一部分对地震动起主要作用的断层模拟地震动,解决了地震动幅值随震中距减小而无限增大的问题。本文采用这种方法对汶川地震近断层地震动场进行了模拟研究,验证了该方法的可行性,为近场地震动的模拟和预测提供了有效方法。
     本文用改进的经验格林函数方法模拟了唐山、卢龙和汶川地震。模拟结果表明:用改进的经验格林函数方法模拟的加速度反应谱与记录符合得比较好,从而验证了本文提出的改进方法的可行性。
     本文以唐山、卢龙和汶川等地震为例比较了用经验格林函数方法和随机方法模拟地震动效果。结果表明:用经验格林函数方法模拟地震动的反应谱与记录总体符合得很好,说明经验格林函数方法是有效的人工合成地震动方法。用随机方法模拟卢龙等中等强度地震动反应谱与记录差异不太大,所以用随机方法模拟中国大陆中等强度地震动是可以接受的。本文用随机方法合成都江堰地区小震时程,并利用汶川地震有限的流动台站余震记录,把这些小震时程作为经验格林函数给出该地区地震动场。有效解决了用经验格林函数方法模拟地震动缺乏小震记录问题,为都江堰地区建(构)筑物的抗震设防提供了基础资料。
With the continued construction of major projects and frequent large earthquakes, the experiential statistic mehod for setting sesmic parameters has been unable to satisfy the anti-sesmic design. Anti-sesmic design criterion of construction requires that important buildings must be analysed with the Time History Analysis method in anti-sesmic design, which can simulate the real sesmic affection. But there is always a lack of ethquake time-histories in the regions where buildings are constructed,which makes ground motion simulation is one of the most important problem in earthquake engineering domain. The most commonly used methods of ground motion simulation, the Empirical Green Function method and the Stochastic method, have their own advantages and disadvantages.This paper conducts systematic reserch on the two methods above, comes up with some new viewpoints, and obtains the achievements below:
     The Empirical Green Function method takes the foreshock or aftershock as empirical green functions to synthesize the main shock. At present, there is a lack of consideration about the dislocation's unevenness on large earthquake faults. Slip velocities and dislocations on earthquake faults, especially on large earthquake faults, are usually uneven, and the unevenness of slip distributions is an important reason for high frequency emission.This paper starts with assuming both large and small earthquakes have inequable slip velocities, then comes up with the Improved Empirical Green Function method. Because the formula has taken the unevenness of the fault slip into account, ground motion simulation with this method accords well with record.
     The number of small earthquakes that synthesize the big earthquake depends on the ratio of length, width and dislocation. The ratios is usually not integer, but the number of small earthquakes should be integer. So it is either overestimating or underestimating the ground motion. And the method to set the integer just depends on experience, which leads less rigorous of this method. This paper tends to round up the ratio of length, width and dislocation. The amplitude of small earthquakes of the integral part remain as it is when synthesizing big earthquake, while the amplitude of the decimal part decreases properly in accordance with the decimal value. This method makes an uniform standard for the confirmation of the small earthquake number.
     At present, many researchers think the Empirical Green Function method must satisfy "similarity conditions" and "quasi- similarity conditions", which limits the application ranges of this method. Luo Qifeng popularizes the Empirical Green Function method to the situation that rectangular slip fault doesn't satisfy similar conditions. On the basis of Luo's theory, this paper extends Empirical Green Function method to the situation that dip fault and dip fault with slip component don't satisfy similar conditions. Because there are both slip and dip components in wenchuan earthquake fault, the generalization has important meanings to the study of wenchuan earthquake.Futhermore, the paper theoretically generalizes the Empirical Green Function method to the situation that the ratio of length,width and stress drop about big and small earthquakes is known but the ratio of dislocation is unknown.
     The paper introduces the conception of "strong motion generation area"(by Miyake) into the Empirical Green Function method. Only part fault which is important to ground motion is used to simulate ground motion. This method solves the problem that the ground motion amplitude increases infinitely when the epicenter distance decreases. This paper has simulated the ground motion near Wenchuan fault with this method, and the efficiency of this method is proved.
     This paper has simulated Tangshan, Lulong and Wenchuan Earthquakes with the Improved Empirical Green Function method. The simulation results show that the response spectrums accord with the records very well, and the efficiency of this method is proved.
     This paper takes the examples of Tangshan Earthquake, Lulong Earthquake and Wenchuan Earthquake to compare the two methods of ground motion simulation--the Empirical Green Function method and the Stochastic method. The results show: When using the Empirical Green Function method to simulate ground motion, response spectrums accord with the records perfectly. It suggests that the Empirical Green Function method is the most effective way to simulate ground motion. When using the Stochastic method to simulate ground motion, the response spectrum of Lulong earthquake(as an example of middle intensity earthquake) does not accord with the record very well, yet the differences are not very big. Thus, it is acceptable to simulate middle intensity ground motion of Chinese mainland with the Stochastic method. Just because of that, this paper synthesizes small earthquake time-histories of Dujiangyan region with the Stochastic method. Together with the finite records of ambulatory stations, this paper set the small earthquake time-histories as Empirical green functions to simulate the main shock time-history. The work above provides basic information to the construction's anti-seismic design in Dujiangyan.
引文
[l]陈颙.地壳岩石的力学性能[M].北京:地震出版社,1988:54-57.
    [2]陈运泰,许立生,张勇,杜海林等.初步研究及考察成果(一)2008年5月12日汶川特大地震震源特性分析报告,2008.
    [3]国家地震局(一九七六年唐山地震)编辑部.一九七六年唐山地震[M].北京:地震出版社:1982.
    [4]郭祥云,陈学忠,李艳娥,郑秀芬.2008年5月12日四川汶川8.0级地震与部分余震的震源机制解,www.cea_igp.ac.cn,2010.
    [5]李勇,周荣军等.汶川地震的地表破裂与逆冲走滑作用[J]成都理工大学学报(自然科学版),2008,35(4):404-413.
    [6]梁兴文,董振平,王应生,邓明科.汶川地震离震中较远地区的高层建筑的震害[J]地震工程与工程震动,2009,29(1):24-31.
    [7]廖振鹏,魏颖.设计地震加速度的合成[J]地震工程与工程振动,1988,8(1):12-31.
    [8]罗奇峰.博士研究生学位论文,近场加速度的半经验合成[D].哈尔滨:国家地震局工程力学研究所,1989.
    [9]罗奇峰,胡聿贤.改进的经验格林函数法和卢龙近场加速度合成[J]地震工程与工程振动,1990,10(3):1-13.
    [10]罗奇峰,胡聿贤.合成近场地震图的经验格林函数法评介[J]世界地震工程,1988,4(4):1-6.
    [11]金星.硕士学位论文,从震源非均匀性考虑合成设计加速度时程[D].哈尔滨:国家地震局工程力学研究所,1989.
    [12]金星.工学博士学位论文,重大工程场地设计地震动与地震动场的研究[D].哈尔滨:国家地震局工程力学研究所,1992.
    [13]景立平,陈国兴,李永强,汤皓.汶川8.0级地震水坝震害调查[J]地震工程与工程震动,2009,29(1):15-23.
    [14]刘启方.博士研究生学位论文,基于运动学和动力学震源模型的近断层地震动研究
    [D].哈尔滨:中国地震局工程力学研究所,2005.
    [15]钱钢.唐山大地震[M].香港:香港中华书局,1997,ISBN 962-231-872-X.
    [16]任俊杰,张世民,马保起,田勤俭.龙门山断裂带大震复发特征与复发间隔估计,汶川8.0级地震地球动力学研究专辑,地震出版社,2009,48-60.
    [17]石耀霖.关于应力触发和应力影概念在地震预报中应用的一些思考[J]地震,2001,21(3):1-7.
    [18]孙付平,赵铭.现代板块运动的测量和研究[J]地球物理学报,1998,13(1):1-16.
    [19]孙景江,马强,石宏彬等.汶川地震高烈度区城镇房屋震害简介[J]地震工程与工程震动,2008,28(3):7-15.
    [20]陶夏新,刘海明,孙晓丹,刘陶钧,李萍,周正华.根据有限断层混合震源模型预测汶川大地震的峰值加速度分布,2009(待发表).
    [2l]唐文清,刘宇平,陈智梁,张清志,赵济湘.龙门山断裂构造带[J]大地测量与地球动力学,2004,24(3):57-59.
    [22]图吧:http://map.mapbar.com/a_chengdu_dujiangyan_map/,2010.
    [23]吴迪.工学博士学位论文,基于凸凹体模型的地震动半经验合成研究[D].上海:同济大学,2008.
    [24]王海云.博士研究生学位论文,近场强地震动预测的有限断层震源模型[D].哈尔滨:中国地震局工程力学研究所,2004.
    [25]王卫民,赵连锋,李 娟,姚振兴.1999年台湾集集地震破裂过程[J]地球物理学报,2005,48(1):132-147.
    [26]王卫民,赵连锋,李 娟,姚振兴.四川汶川8.0级地震震源过程[J]地球物理学报,2008,51(5):1403-1410.
    [27]新华网:http://www.xinhuanet.com/xhwenchuan/index.htm,2008.
    [28]谢富仁,张永庆,张效亮,张红艳.汶川8.0级地震发震构造大震复发间隔估算,汶川8.0级地震地壳动力学研究专辑,中国地震局地壳应力研究所,地震出版社,2009,145-153.
    [29]谢小碧.博士学位论文,理论地震图方法及其在研究震源过程方面的应用[D].北京:中国科学院地球物理研究所,1988.
    [30]熊永清,朱文耀,张强.ITRF96参考架中的全球板块运动[J]测绘学报,2000,29(2):102—108.
    [3l]徐锡伟,闻学泽,叶建青等,2008汶川MS=8.0地震地表破裂带及其发震构造[J]地震地质,2008,30(3):597-629.
    [32]徐锡伟,张培震,闻学泽,秦尊丽,陈桂华,朱艾斓.川西及其邻近地区活动构造基本特征与强震复发模型[J]地震地质,2005,27(3):446-461.
    [33]尹祥础.固体力学[M].北京:地震出版社,1985:56-58.
    [34]于海英,王栋,杨永强,解全才,江汶乡,周宝峰.汶川8.0级地震强震动加速度记录的初步分析[J]地震工程与工程振动,2009,29(1):1-13.
    [35]宇津德治.地震事典[M].北京:北京大学出版社.1990.
    [36]张敏政.工学博士学位论文,近场强地震动工程参数的估计[D].哈尔滨:国家地震局工程力学研究所,1986.
    [37]张敏政.汶川地震中都江堰市的房屋震害[J]地震工程与工程震动,2008,28(3):1-6.
    [38]张培震,徐锡伟,闻学泽等.2008年汶川8.0级地震发震断裂的滑动速率、复发周期和构造成因[J]地球物理学报,2008,51(4):1066-1073.
    [39]张勇,冯万鹏,许力生,周成虎,陈运泰.2008年汶川大地震的时空破裂过程[J]中国科学D辑:地球科学,2008,38(10):1186-1198.
    [40]张有兵,章文波.用经验格林函数方法模拟2008年日本岩手-宫城地震的强地面运动[J]国际地震动态,2008,11:88.
    [4l]赵大咏,刘石年,吴奇良.地震研究新方法——洋壳流理论简介[J]华南地震,2007,27(2):62—67.
    [42]周惠兰.浅源走滑大震震源过程的某些特征[J]地球物理学报,1985,28(6):579-587.
    [43]周荣军,李勇,Densmore A L.Ellis M A,1可玉林,王凤林,黎刚.青藏高原东缘活动构造[J]矿物岩石,2006,26(2):40-51.
    [44]朱传镇.唐山及其邻区的地震活动.刘恢先主编,唐山大地震震害(第一卷)[M].北京:地震出版社,1985,1-16.
    [45]张之立,李钦祖,谷继成等.唐山地震的破裂过程及其力学分析[J]地震学报,1980,2(2):111-129.
    [46]金森博雄.地震活动と地震予知,地震予知研究,1980,163-164.
    [47]Aki.K.Scaling law of seismic spectrum[J]J.Geophys.Res.,1967,72:1217-1231.
    [48]Aki.K.Seismic Displacements near a fault[J]J.Geophys.Res.,1968,73:5359-5376.
    [49]Aki K, Richards P G Quantitative Seismology:Theory and Methods[M].New York:W H Freeman& Co Ltd,1980.
    [50]Alekseev A S and Mikhailenko B GNumerical Modeling of transient wave fields in seismology and seismic prospecting[J]Siberian branch of academy of sciences of the USSR, Novosibirsk,1979.
    [51]Anderson J G and Richards P G. Comparision of strong ground motion from several dislocation model[J]Phys.J.R. Astro.Soc,1975,42(2):347-373.
    [52]Atkinson G M and Boore D M. Evaluation of Models for Earthquake Source Spectra in Eastern North America[J]BSSA,1998,88:917-934.
    [53]Atkinson G M, Boore D M. Ground motion relations for eastern north America [J]BSSA,1995,85(1):17-30.
    [54]Atkinson G M,Assatourians K, Boore D M, Campbell K and Motazedian D. A guide to differences between stochastic point-source and stochastic finite-fault simulations[J]BSSA, 2009,99(6):3192-3201.
    [55]Berenev I.Atkinson G. Stochastic finite-fault modeling of ground motions from the 1994 Northridge,California earthquake.I. validation on rock sites[J]BSSA,1998b,88(6):1392-1401.
    [56]Berenev I,Atkinson G Subevent structure of large earthquakes-a ground- motion perspective[J]Geophys. Res. L.,2001,28(1):53-56.
    [57]Beresnev I, Atkinson G FINSIM:A FORTRAN program for simulating stochastic acceleration time histories from finite faults[J]Seismological Research Letters,1998,69:27-32.
    [58]Bernard P, Herrero A, Berge C. Modeling directivity of heterogeneous earthquake rupture[J]BSSA,1996,86(4):1149-1160.
    [59]Beroza G C and Spudich P. Linearized inversion for fault rupture behavior: application to the 1984 Morgan Hill, California, earthquake[J]J.Geophys. Res.,1988,93(B6):6275-6296.
    [60]Boatwright J. A dynamic model for far-field acceleration[J]BSSA,1982,72(4):1049-1068.
    [61]Boore D M. and Boatwright J. Average body-wave radiation coefficients[J]BSSA,1984, 74(5):1615-1621.
    [62]Boore D M. Simulation of ground motion using the stochastic method[J]Pure Appl. Geophys,2003,160(3-4):635-676.
    [63]Bouchon M.Discrete Wave Number Representation of Elastic Wave Fields in Three-Space Dimensions[J] J.Geophys.Res.,1979,84(B7):3609-3614.
    [64]Bouchon M, Sekiguchi H, Irikura K and Iwata T. Some characteristics of the stress field of the 1995 Hyogo-ken Nanbu(Kobe) earthquake[J]J.Geophys. Res.,1998,103 (B10):24271-24282.
    [65]Brune J N. Tectonic Stress and the Spectra of Seismic Shear Waves from Earthquakes[J] J.Geophys.Res.,1970,75(26):4997-5009.
    [66]Brune J N. Correction[J]J.Geophys. Res.,1971,76(20):5002.
    [67]Chen X F.Seismograms synthesis in multi-layered half-space media.I. Theoretical formulations[J]Earthquake Research in China,1999,13(2):149-174.
    [68]Cohee B P,Beroza G C. Slip distribution of the 1992 Landers earthquake and its implications for earthquake source mechanics[J]BSSA,1994,84(3):692-712.
    [69]Dalguer, L. A., Miyake H. and Irikura K. Characterization of dynamic asperity source models for simulating strong ground motion[C]//Proceedings of the 13th World Conference on Earthquake Engineering (13WCEE) Vancouver, C, Canada,1-6 August 2004.Paper No.3286.
    [70]Dalguer L A, Miyake H, Day S M, and Irikura K. Surface Rupturing and Buried Dynamic-Rupture Models Calibrated with Statistical Observations of Past Earthquakes[J] BSSA,2008,98(3):1147-1161.
    [71]Dan K, Tanaka T, Wtanabe T. Simulation and prediction of strong ground motion in epicentral region of the 1979 Imperial Valley earthquake by semi-empirical method[J]Journal of Structural and Construction Engineering (Transactions of AIJ),1987,52(373):50-62.
    [72]Dan K, Watanabe T and Tanaka T. A semi-empirical method to synthesize earthquake ground motions based on approximate far-field shear-wave displacement[J]Journal of structural and construction Engineering (Transactions of AIJ),1989,396:27-36.
    [73]Das S, Aki K. Fault plane with barriers:A versatile earthquake model[J]J.Geophys. Res.,1977,82,5648-5670.
    [74]Das S and Kostrov B V. Breaking of a single asperity, rupture process and seismic radiation[J]J.GR,1983,Vol.88(B5):4277-4288.
    [75]Fukuyama E. and Irikura K.. Rupture process of the 1983 Japan Sea (Akita-Oki) earthquake using waveform inversion method[J]BSSA,1986,76 (6):1623-1640.
    [76]Geller R J. Scaling relations for earthquake source parameters and magnitudes[J] BSSA, 1976,66:1501-1523.
    [77]Hadley D.M, Helmberger D V. Simulation of strong ground motions[J] BSSA,1980,70 (2):617-630.
    [78]Hanks T C. B value ω-r seismic source models: implication for tectonic stress variations along active crustal fault zones and the estimation of high frequency strong ground motion[J]J.Geophys.Res.,1979,84(B5):2235-2242.
    [79]Hanks T C, Bakun W H. A bilinear source-scaling model for M-log A observations of continental earthquakes[J]BSSA,2002,92(5):1841-1846.
    [80]Hanks T C and Kanamori H. A moment magnitude scale[J]J.Geophys. Res.,1979,84 (B5):2348-2350.
    [81]Hanks T C, McGuire R. The character of high-frequency strong ground motion [J]BSSA, 1981,71:2071-2095.
    [82]Harzell S H. Earthquake aftershock as Green's function[J]Geophys. R E. let,1978,5 (1): 1-4.
    [83]Hartzell S H. Simulation of ground accelerations for the May 1980 Mammoth Lakes, California,earthquakes[J]BSSA,1982,72 (6A):2381-2387.
    [84]Hartzell S. Comparison of seismic waveform inversion results for the rupture history of a finite fault: appliction to the 1986 North Palm Springs, California, earthquake[J]J.Geophys. Res.,1989,94(B6):7515-7534.
    [85]Hartzell S, Harmsen S, FrankelA, et al. Calculation of broad band time histories of ground motion:Comparison of methods and validation using strong-ground motion from the 1994 northridge earthquake[J]BSSA,1999,89(6):1484-1504.
    [86]Hartzell S H, Heaton T H. Rupture history of the 1984 Morgan Hill, California earthquake from the inversion of strong motion records[J]BSSA,1986,76(3):649-674.
    [87]Hartzell. S, Helmberger D V. Strong-motion modeling of the Imperial valley earthquake of 1979[J]BSSA,1982,72(2):571-596.
    [88]Haskell N A. Radiation pattern of surface waves from point source in a multi-layered medium[J]BSSA,1964,54(1):377-393.
    [89]Haskell N A. Elastic displacements in the near-field of propagating fault[J]BSSA, 1969,59:865-908.
    [90]Heaton T H. Evidence for and implications of self-healing pulses of slip in earthquake rupture[J]phys. Earth planet. Interiors,1990,64 (1):1-20.
    [91]Heat T H, Hartzell S H. Estimation of strong ground motions from hypothetical earthquakes on cascadia subduction zone Pacific Northwest[M].US:U.S.G.S,1986:86-328.
    [92]Heaton T H, Helmberger D V.Generalized Ray Models of the San Fernando Earthquakes[J]BSSA,1979,69 (5):1311-1341.
    [93]Herrero A, Bernard P A. kinematic self-similar rupture process for earthquakes[J]BSSA, 1994,84(4):1216-1228.
    [94]Hisada Y. A theoretical omega-squared model considering the spatial variation in slip and rupture velocity[J]BSSA,2000a,90:387-400.
    [95]Hisada Y. A theoretical omega-squared model considering the spatial variation in slip and rupture velocity. Part 2:Case for a two-dimensional source model[J]BSSA,2001,91: 651-666.
    [96]Houston H, Kanamori H. Source spectra of great earthquakes: teleseismic constraints on rupture process and strong motion[J]BSSA,1986,76:19-42.
    [97]Imagawa K and Mikumo T.Near-field seimic waveforms from major earthquakes and consideration on the rupture process on fault, Jishin,1982,35:575-590(in Japanese).
    [98]Irikura K. Semi-empirical estimation of strong ground motions during large earthquakes [J]Bulletin of Disaster Prevention Research Institute, Kyoto Univ.,1983,33 (2):63-104.
    [99]Irikura K. Prediction of strong acceleration motion using empirical Green's function[C] //proc.7th Japan Earthquake Symp.Japan:Japan,1986.151-156.
    [100]Irikura K. Prodiction of strong ground motion using empirical Green's function-some problems of synthetic procedure of ground motion[J]Disas. Prev. Res. Inst Annuals, Kyoto Univ.,1989,32(B-1):41-52.
    [101]Irikura K. Prediction of strong motions from future earthquake caused by active fault-case of the Osaka base[C]//Proceedings 12th World conference On Earthquake Engineering. New Zealand:New Zealand,2000.
    [102]Irikura K. Recipe for predicting strong ground motions from future large earthquakes [J]Disaster Prevention Research Institute Annuals, Kyoto University,2004,47(A):25-45.
    [103]Irikura K, Kamae K. Estimation of strong ground motion in broad-frequency band based on a seismic source scaling model and an empirical Green's function technique [J]ANNALI DI GEOFISICA,6 December 1994, VOL. Ⅹ Ⅹ Ⅹ Ⅶ, N:1721-1743.
    [104]Irikura K, Miyake H, Iwata T, Kamae K, Kawabe H and Dalguer L A. Recipe for predicting strong ground motions from future large earthquakes [C]// Vancouver, B.C., Canada: 13th world conference on earthquake engineering. Canada: Canada,2004.August 1-6, paper No.1371.
    [105]Irikura K.Predicting Strong Ground Motions with a "recipe"[J]Bull.Earthq. Res. Inst. Univ.Tokyo,2006,81:341-352.
    [106]James M. Earthquake Source Studies Related to Strong Ground Motion Estimates.日本文部科学省(大都市大震灾轻简化特别工程)的报告,2002,664-670.
    [107]Kagawa T, Irikura K and Somerville P. Differences in ground motion and fault rupture process between surface and buried rupture earthquakes[J]Earth Planets Space,2004,56:3-14.
    [108]Kamae K, Irikura K and pitarka A. A technique simulating strong ground motion using hybrid Green's function[J] BSSA,1998,88 (2):357-367.
    [109]Kamae K and Kawabe H. Source model composed of asperities for the 2003 Tokachioki, Japan,earthquake(MJMA=8.0)estimated by the empirical Green's function method[J]Earth Planets Space,2004,56(3):323-327.
    [110]Kanamori H. A semi-empirical approach to prediction of long-period ground motions from great earthquake[J]BSSA,1979,69 (6):1654-1670.
    [111]Kanamori H and Anderson D L. Theoretical basis of some empirical relations in seismology[J]BSSA,1975,65(5):1073-1095.
    [112]Kawasaki I,Suzuki Y,and Sato R. Seismic waves due to a shear fault in a semi-infinite medium[J]J.Phys. Earth,1973,21(1-4):251-284.
    [113]Madariaga R. High-frequency radiation from crack(stress drop) Models of earthquake faulting[J]Geophys.J.R.Astro.Soc.,1977,51(3):625-651.
    [114]Madariaga R. On the relation between seismic moment and stress drop in the presence of stress and strength heterogeneity[J]J.Geophys.Res.,1979,84 (B5):2243-2250.
    [115]McGuire R K, Hanks T C. RMS accelerations and spectral amplitudes of strong Ground motion during the San Fernando.California earthquake[J]BSSA,1980,70(5): 1907-1919.
    [116]Mikumo T, miyatake T. Dynamical rupture process on a three-dimensional fault with non-uniform frictions and near-field seismic waves[J]J.geophys. Res,1978,54:417-438.
    [117]Miyake H, Iwata T, Irikura K. Source characterization for broadband ground motion simulation kinematic heterogeneous source model and strong motion generation area[J]BSSA,2003,93(6):2531-2545.
    [118]Miyake H, Tanaka Y, Sakaue M, Koketsui K and Ishigaki Y. Empirical Green's function simulation of broadband ground motions on Genkai Island during the 2005 West Off
    [119]Fukuoka Prefecture earthquake[J]Earth Planets Space,2006,58:1637-1642.
    [119]Miyakoshi K. Source characterization for heterogeneous source model [J] Chikyu Monthly,2002, extra 37:42-47.
    [120]Motazedian and Atkinson. Stochastic finite-fault modeling based on a dynamic comer frequency[J]BSSA,2005,95 (3):995-1010.
    [121]Munguia L, Brune J.Simulation of strong ground motion for earthquakes in the Mexicali-Imperial Valley region[J]Geophys.J. Royal Astro. Soc.,1984,79(3):747-771.
    [122]Nakata T, Shimazaki K, Suzuki Y and Tsukuda E. Fault branching and directivity of rupture propagation[J]J.Geography,1998,107:512-528(in Japanese).
    [123]Nieson S B, Olsen K B. Constrains on stress and friction from dynamic models of 1994 Northridge, California, earthquake[J]Pure Appl Geophys,2000,157(11-12):2029-2046.
    [124]Olson K B, Madariaga R, and Archuleta R J. Three-dimensional dynamic simulation of the 1992 Landers earthquake, Sciencs,1997,278(5339):834-838.
    [125]Pacheco J F,Scholz C H, and Sykes L R. Changes in frequency-size relationship from small to large earthquakes[J]Science,1992,355(6355):71-73.
    [126]Paoageorgiou,A.S.and Aki K. A specific barrier model for the quantitative description of inhomogeneous faulting and the prediction of strong ground motion, Ⅰ and Ⅱ, in proceedings of workshop XVI-The dynamic characteristics of faulting inferred from recordings of strong ground motion, vol.1, J.Boatingwright, Editor,U.S.Geol.Surv.,Open-File Rept.82-591,1982, pp.311-504.
    [127]Pitarka A, Somerville P G, Fukushima Y, Uetake T and Irikura K. Simulation of near fault-strong ground motion using hybrid Green's function[J] BSSA.2000,90(3):566-586.
    [128]Sato, R. Long-Period Surface Velocities and Accelerations Due to a Dislocation Source Model in a Medium with Spherical Multi-Layers[J]Part II J.Phys.Earth,1978,26(1):17-37.
    [129]Sato R. and Hirata N. One Method to Compute Theoretical Seismogram in a Layered Medium[J]J.Phys.Earth,1980,28:145-168.
    [130]Savage J G Radiation from a realistic model of faulting[J]BSSA,1966,56(2):577-592.
    [131]Somerville P G, Smith N F, Graves R W and Abrahamson N A. Modification of empirical strong ground motion attenuation relations to include the amplitude and duration effects of rupture directivity[J]Seism. Res. Lett.,1997,68(1):199-222.
    [132]Somerville P G.Emerging art:earthquake ground motion. geotechnical earthquake engineering and soil dynamics Ⅲ,Proceedings of a Specialty Conference held in Seattle,Washington,August 3-6,1998.Geotechnical special publication 75:1-38.
    [133]Somerville P G, Irikura K, Graves R, Sawada S, Wald D, Abrahamson N,Iwasaki Y, Kagawa T, Smith N and Kowada A.Characterizing earthquake slip models for the prediction of strong ground motion[J]seism.Res.lett.,1999,70(1):59-80.
    [134]Somerville P. GMagnitude scaling of the near fault rupture directivity pulse[J] Phys.Earth Planet.Interiors,2003,137:201-212.
    [135]Toshiaki Yokoi and Irikura K. Meaning of source controlled Fmax in the empirical Green's function technique based on ω-2 -scaling law Annuals, Disas. Prev. Res.Inst,Kyoto Univ.,1991,34(B-1):177-189.
    [136]Tsuboi C. Earthquake energy, Earthquake volume,aftershock area and strength of the Earth's crust[J]J.phys.Earth,1956,4:63-66.
    [137]Wald D J and Heaton T H. Spatial and temporal distribution of slip for the 1992 Landers,California,earthquake[J]BSSA,1994,84(3):668-691.
    [138]Wald D J, Heaton T H and Hudnut K W. The slip history of the 1994 Northridge, California, earthquake determined from strong motion, teleseismic, GPS, and leveling data[J] BSSA,1996,86(1B):S49-S70.
    [139]Wald D J, Helmberger D V and Heaton T H. Rupture model of 1989 Loma Prieta earthquake from the inversion of strong motion and broadband teleseismic data[J]BSSA,1991, 81(5):1540-1572.
    [140]Wang Guoxin and Tao Xiaxin. Strong ground motion of the 1994 M6.7 Northridge Earthquake simulated by stochastic approach[C]//Proc. Of IASPEI Assembly, Honei.2001.
    [141]Wells D, Coppersmith K. New empirical relationships among magnitude, rupture length,rupture width, rupture area and surface displacement[J]BSSA,1994,84 (4):974-1002.
    [142]XiaoBi Xie and ZhenXing Yao. The faulting process of Tangshan earthquake inverted simultaneously from the teleseismic waveforms and geodesic deformation data[J]Physics of the Earth and Planetary Interiors,1991,66:265-277.
    [143]Yamashita T. High-frequency acceleration radiated by unsteadily propagation cracks and its near source geometrical attenuation[J]J.phys.Earth,1983,31:1-32.
    [144]Zhang W B,Iwata T ,Irikura K. Heterogeneous distribution of the dynamic source parameters of the 1999 Chi-Chi, Taiwan,earthquake[J]J. Geophys. Res.,2003,108(B5): 2232-2246.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅:66554900、66554949;咨询服务:66554800;科技查新:66554700