用户名: 密码: 验证码:
近断层地震动对结构抗震设计的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地震是危害人类生命财产安全最严重的突发式自然灾害之一。尤其是近10年来几次主要大地震,造成的城市基础设施破坏、人员伤亡和财产损失令世人触目惊心。历经50余年的研究,各国学者已达成共识,一致认为近断层(也称近场或近源)地震动呈现了较一般远场地震动更复杂的特征是引起工程结构破坏的一个重要原因,并围绕近断层地震动,开展了大量研究,主要包括近断层地震动的模拟、近断层地震动参数衰减关系、近断层地震动对工程结构的破坏作用分析及针对近断层地震动的隔震与消能减震措施研究等。但迄今也没有形成系统的可供实际工程应用的考虑近断层地震动影响的结构设计或加固理论,尤其是我国。
     在工程设计或加固时,首先需要判断拟建或已建建筑是否位于近断层区域,其次需要确定采用哪种结构设计方案,最后需要确定采用哪种设计谱和符合哪些条件的输入地震动。为解决这些问题,本研究主要完成了以下几方面工作:划分了近断层区域;提出了我国抗震规范设计谱在考虑近断层地震动时的调整建议;给出了近断层脉冲型地震动的合成方法;分析了近断层脉冲型地震动各要素对结构破坏作用的影响;指出了考虑近断层脉冲地震动影响的结构设计方案,提出了近断层脉冲型地震动作为输入地震动的选择方法。研究的主要内容和结论如下:
     (1)提出了基于破坏势参数划分近断层区域的方法。在划分近断层区域时,提出了相对断层距的概念,即断层距和矩震级的比值(dr/Mw)。基于PEER数据库中的强震数据,充分分析了以往用于表征近断层地震动潜在破坏势参数随相对断层距的变化,并以其中适合划分近断层区域的破坏势参数划分了近断层区域。以体现方向性效应和上/下盘效应地震记录的分布范围旁证了划分结果的合理性。
     (2)比较了近断层脉冲型、近断层非脉冲型、远场脉冲型和远场非脉冲型四类地震动的弹性和非弹性反应谱,分析了其对我国抗震规范设计谱和非弹性位移计算的影响,结果表明:近断层脉冲型地震动对我国抗震规范设计谱的影响主要体现于动力系数谱的特征周期,对谱函数形式和最大值取值无明显影响;当考虑近断层脉冲型地震动影响时,我国抗震规范规定的非弹性位移简化计算方法偏于危险。给出了考虑近断层脉冲型地震动影响的动力系数谱调整建议,建议采用时程分析法补充计算我国抗震规范规定的可采用非弹性位移简化计算方法计算的结构。
     (3)分析了以往等效速度脉冲模型存在的不足之处,提出了新的等效速度脉冲模型;分析了已有脉冲周期和脉冲速度峰值识别方法的局限性,提出了首先采用汉宁窗平滑脉冲型地震记录,再通过平滑后的地震记录,识别脉冲周期和脉冲速度峰值的方法,并验证了识别方法的合理性;改进了近断层脉冲型地震动的合成方法。
     (4)系统深入的分析了近断层脉冲型地震动各要素对弹性、非弹性反应谱及框架和框架剪力墙结构破坏作用的影响,从本质上分析了前人提出的能量密度(Eρ)、最大增量速度(ΔVmax)、改进的有效峰值加速度(IEPA)、改进的有效峰值速度(IEPV)以及水平峰值速度和峰值加速度比值(PHV/PHA)这些破坏势参数,在表征近断层脉冲型地震破坏作用时的不足之处,指出不能单独以某个破坏势参数衡量近断层脉冲型地震动的破坏作用或作为输入地震动的选择标准,应综合考虑峰值加速度、脉冲速度峰值、脉冲周期与结构周期之间关系的影响。
     (5)比较了在近断层脉冲型和一般远场地震动作用下,混凝土框架和框架剪力墙结构的响应和破坏机理,依据比较结果提出了考虑近断层脉冲型地震动影响的结构设计方案。提出了在工程背景允许的情况下,应尽量避开受近断层脉冲型地震动影响区域的设计思想,并统计了近断层脉冲型地震动的数量随断层距的分布,为确定这一避让区域提供了依据。
     (6)分析了考虑近断层地震动影响的基于位移、基于能量和基于力的设计方法的实用性,指出目前在考虑近断层脉冲型地震动影响时,仅能采用基于力的设计方法。依据近断层脉冲型地震动对结构破坏作用的分析结果,给出了时程分析计算时,选择近断层脉冲型地震动的方法。
Earthquake is one of the most serious natural disasters to human lives and properties in sudden burst mode. Especially, in the past decade several large earthquakes caused infrastructure damage, casualty and property loss, which shocked all the people around the world. After nearly 60 years of study, scholars of different countries come to a common understanding that the complicated and special feature of the near-fault (near-field/source) ground motion is an important factor that causes the structure damage. Subsequently, many studies related to the near-fault ground motion arose, mainly including simulation of near-fault ground motion, setting up attenuation relationship of near-fault ground motion, analyzing the damaging effect of near-fault ground motion on structures and finding reasonable methods of vibration isolation or energy dissipation under near-fault ground motion. However, till now no systematical method and theory are proposed for structure design and structure reinforcement to consider the influence of near-fault ground motion, especially in China.
     During the process of designing or reinforcing structures, firstly, it is necessary to judge whether the building is located in the near-fault region, and then we need to decide which structure design scheme is to be used, the last step is to choose a computational method, that is to decide the design spectrum and input ground motion. To solve the previous problems, this paper proposes the definition of near-fault region and analyzes the effect of near-fault pulse-like ground motion on the design spectra of China Seismic Code, and then puts forward a synthetic method to simulate the near-fault pulse-like ground motion. The effect of the parameters of near-fault ground motion on structure damage is analyzed. It is given that structure design scheme considering the effect of near-fault pulse-like ground motion and how to select this type of ground motion for time history analysis. The main objectives and results of this study are shown as following:
     (1)Based on damage potential parameters, a method for near-fault region zoning is proposed. When defining the near-fault region, a concept of Normalized Rupture Distance (NRD) is established, and this distance is defined as the ratio of rupture distance to moment magnitude (dr/Mw). Depending on the PEER strong ground motion database, the variation of damage potential parameters with NRD is analyzed, and then the near-fault region is defined according to some appropriate parameters. The rationality of zoning result is proved to some extend by the distribution range of ground motions, which embodies directivity and hanging/ foot wall effect.
     (2)The features of elastic, inelastic response spectra of near-fault pulse-like ground motion, near-fault non-pulse-like ground motion, far-field pulse-like ground motion and far-field non-pulse-like ground motion are compared, and their effects on design spectrum of China Seismic Code and inelastic displacement of structures are analyzed. It shows that the near-fault pulse-like ground motion mainly affects the design characteristic period of ground motion, and has no special influence on the spectral function and the maximum value. A suggestion for modifying the design spectrum is also provided, which takes the near-fault pulse-like ground motion into account. Additionally, the result shows that the method adopted in China Seismic Code for inelastic displacement calculation tends to be unsafe when the near-fault pulse-like ground motion is considered, and therefore the time history analysis is needed as a complement.
     (3)The insufficiency of the previous equivalent velocity model is analyzed, and a new model of equivalent velocity pulse is put forward. The limitation of existing methods for identifying pulse period and pulse amplitude is given. A new criterion is provided, which firstly uses the Hanning Window to smooth the pulse-like ground motion, and then identifies the pulse period and pulse amplitude parameters. And the rationality of the identification method is proved. The previous method used for synthesizing near-fault ground motion is improved as well.
     (4)The effects of every element of near-fault ground motion on elastic and inelastic spectra, reinforced concrete frame structure and reinforced concrete frame-shear wall structure are deeply analyzed. The deficiency of different parameters used to represent damage potential of near-fault ground motion is pointed out, including energy density (Eρ), maximum increment velocity (ΔVmax), improved effective peak acceleration (IEPA), improved effective peak velocity (IEPV) and ratio of peak horizontal velocity to peak horizontal acceleration (PHV/PHA). The results show that the damage potential of near-fault ground motion can not be represented by a single parameter, while it should be described by peak acceleration, peak pulse velocity and the relationship between pulse period and the natural vibration period of the structure synthetically.
     (5)Dynamic response and damage mechanism of reinforced concrete frame structure and reinforced frame-shear wall structure under near-fault pulse-like ground motion and far-field ground motion are compared. According to the results, structure design scheme considering the effect of near-fault ground motion is put forward. It is proposed that the near-fault pulse-like ground motion influence area should be evaded with the permission of the engineering background as possible, and the distribution of the number of near-fault ground motion along the rupture distance is counted as well, which can be used as the reference for deciding the preventing area.
     (6)The practicability of different seismic design methods considering the effect of near-fault pulse-like ground motion is discussed, including force based seismic design method, energy based seismic design method, and displacement based seismic design method. It is showed that only the force based seismic design method is practicable for current seismic design method. Based on the analysis results of the damage potential parameters, the method of selecting near-fault pulse-like ground motion is given for time history analysis.
引文
[1]白文婷.地震动的脉冲特性与结构破坏之间的关系研究初探[D].中国地震局工程力学研究所硕士学位论文,哈尔滨,2005.
    [2]伯克利大学研制. http://www.eqsols.com/Bispec.aspx.
    [3]薄景山.场地分类和设计反应谱调整方法研究[D].中国地震局工程力学研究所博士学位论文,哈尔滨,1998.
    [4]陈培善,李保坤,白彤霞.中国强地震动速度衰减研究[J],地球物理学报,1999,42(3):358-370.
    [5]大崎顺彦著,吕敏申,谢礼立译.地震动的谱分析入门[M].地震出版社,北京:1980.
    [6]樊剑,涂家祥,吕超,张辉.采用时频滤波技术的近断层脉冲地震人工模拟[J].华中科技大学学报(自然科学版),2008,36(11):116-120.
    [7]冯启民,邵广彪.近断层地震动速度、位移峰值衰减规律的研究[J].地震工程与工程振动,2004,24(4):14-22.
    [8]高学奎,朱晞.近场地震动输入问题的研究[J].华北科技学院学报,2005,2(3): 80-83.
    [9]公茂盛.地震动能量衰减规律的研究[D].中国地震局工学硕士学位论文,哈尔滨,2002.
    [10]贺秋梅,闫维明,懂娣,徐国栋,高丽霞.震源机制和场地条件对近场强震地面运动特性的影响[J].地震研究,2006,29(3):256-263.
    [11]胡进军.近断层地震动方向性效应及超剪切破裂研究[D].博士学位论文,哈尔滨,2009.
    [12]胡聿贤著.地震工程学(第二版)[M].地震出版社,北京:2006.
    [13]黄慧华.近源地震动加速度峰值衰减关系影响因素分析[J].工程地质学报,1998,6(1):61-65.
    [14]黄建文,朱晞.近场地震作用下钢筋混凝土桥墩基于位移的抗震设计[J].土木工程学报,2005,4: 83-90.
    [15]黄建文,朱晞.近震作用下单自由度结构的非弹性响应分析研究[J].中国安全科学学报,2003,13(11):59-68.
    [16]黄思霞等编.统计学原理解题思路与方法(第二版)[M].广东中山大学出版社出版,广东: 2001.
    [17]霍俊荣.近场强地面运动衰减规律的研究[D].中国地震局工程力学研究所博士论文,哈尔滨,1989.
    [18]建筑抗震设计规范(GB 50011-2001)[S].中国建筑工业出版社,北京:2001.
    [19]建筑抗震设计规范(GB 50011-2001)[S].中国建筑工业出版社,北京:2008.
    [20]建筑结构荷载规范[S].中国建筑工业出版社出版.北京:2005.
    [21]江辉.近场地震下桥梁结构基于性能抗震设计的能量方法[D].北京交通大学博士学位论文,北京,2007.
    [22]金星,刘启方.断层附近强地震动半经验合成方法的研究[J].地震工程与工程振动,2002,22(4):22-27.
    [23]李宏男.多层及高层建筑结构设计[M].中国建筑工业出版社,北京:1998.
    [24]李宏男.建筑抗震设计原理[M].中国建筑工业出版社,北京:1997.
    [25]李菊芳.建筑结构基于能量的地震反应分析及设计方法[D].西安建筑科技大学硕士学位论文,西安,2004.
    [26]李爽,谢礼立,郝敏.地震动参数及结构整体破坏相关性研究[J].哈尔滨工业大学学报,2007,39(4):506-512.
    [27]李爽,谢礼立,郝敏.上盘效应对工程结构位移反应影响分析[J].西安建筑科技大学学报,2006,38(6):823-827.
    [28]李爽,谢礼立.近场脉冲型地震动对钢筋混凝土框架结构影响[J].沈阳建筑大学学报,2006,22(3):406-410.
    [29]李爽,谢礼立.近场问题的研究现状与发展方向[J].地震学报,2007,29 (1):102-111.
    [30]李爽.近场脉冲型地震动对钢筋混凝土框架结构影响[D].哈尔滨工业大学硕士学位论文,哈尔滨,2005.
    [31]李新乐,窦慧娟,朱晞,孙建刚.缺乏近断层强震观测资料地区抗震设计规范反应谱研究[J].地震学报,2007,29(4):419-425.
    [32]李新乐,王瀑,窦慧娟,杜蓬娟.近断层地震动峰值加速度特性研究[J].大连民族大学学报.2006,32(3):73-75.
    [33]李新乐,朱晞.近断层地震动等效速度脉冲研究[J].地震学报,2004,26 (6):634-643.
    [34]李新乐,朱晞.抗震设计规范之近断层中小地震影响[J].工程抗震,2004b, 4:43-46.
    [35]李新乐,朱晞.近断层地震动等效速度脉冲研究[J].地震学报,2004,26 (6):634-643.
    [36]李新乐,朱睎.考虑场地和震源机制的近断层地震动衰减特性的研究[J].工程地质学报.2004,12(2):141-148.
    [37]廖振鹏,李大华.设计地震动反应谱的标定[R].地震区划专题研究阶段报告,1987.
    [38]刘波,肖明葵.结构地震总输入能量的分配[J].重庆建筑大学学报,1996,18(2):100-109.
    [39]刘启方,袁一凡,金星,丁海平.近断层地震动的基本特征[J].地震工程与工程振动,2006,26(1):1-10.
    [40]刘启方.基于运动学和动力学震源模型的近断层地震动研究[D].博士学位论文,哈尔滨,2005.
    [41]刘有军,周建民.基于位移的RC框架结构抗震设计研究[J].结构工程师,2003,3:1-6.
    [42]刘哲锋.地震能量反应分析方法及其在高层混合结构抗震评估中的应用[D].湖南大学博士学位论文,长沙,2006.
    [43]刘志平,石林英.最小二乘法原理及其MATLAB实现[J].中国西部科技,2008,7(17):33-34.
    [44]卢明奇,田玉基.近断层地震作用下基于位移的抗震设计方法[J].哈尔滨工程大学学报,2008,29(1):16-21.
    [45]卢明奇.近断层地震加速度设计反应谱[J].三峡大学学报(自然科学版),2007,29(1):30-35.
    [46]卢文祥,杜润生编.工程测试与信息处理[M].华中科技大学出版社,武汉:2000.
    [47]罗伟.近断层地震作用下钢筋混凝土多层框架结构的响应分析[D].北京交通大学硕士学位论文,北京,2008.
    [48]罗文斌,钱稼茹.钢筋混凝土框架基于位移的抗震设计[J].土木工程学报,2003,36(5):22-29.
    [49]马宁,徐龙军,谢礼立.集集地震地震动频谱参数研究[J].地震工程与工程振动,2008,28(1):11-17.
    [50]毛剑猛. PUSHOVER分析方法的改进研究.中国地震局工程力学研究所博士学位论文,哈尔滨,2008.
    [51]美国太平洋地震工程抗震研究中心(PEER)强震数据库. http://peer.berkeley.edu/smcat/search.html.
    [52]倪永军,朱晞.近断层地震的加速度峰值比和反应谱分析[J].北方交通大学学报,2004,28(4):1-5.
    [53]倪永军.桥梁结构抗震设计的设计地震与基于位移的抗震设计方法[D].北方交通大学学位论文,北京,2001.
    [54]钱稼茹,罗文斌.建筑结构基于位移的抗震设计[M].建筑结构.2001, 31(4):3-6.
    [55]日本道路协会:道路桥示方书V耐震设计编同解说,2002.
    [56]邵广彪,冯启民.近断层地震动峰值加速度衰减规律的研究[J].地震工程与工程振动,2004,24(3):30-37.
    [57]沈军,俞言祥,许力生,柔洁,姜慧.逆断层地震近场地震动影响场和地表形变模拟[J].地震工程与工程振动,2006,26(1):11-18.
    [58]唐玉红,张敏政,戴君武.钢筋混凝土结构在近场脉冲型地震作用下的试验分析[J].世界地震工程,2007,23(3):41-46.
    [59]田玉基,杨庆山,卢明奇.近断层脉冲型地震动的模拟方法[J].地震学报,2007,29(1):78-84.
    [60]土木工程在线论坛http://bbs.co188.com/content/1655_1148288_1.html
    [61]王长龙.近断层地震动作用下钢框架结构的地震响应分析[D].北京交通大学硕士学位论文,北京,2008.
    [62]王栋,谢礼立,胡进军.倾斜断层不对称分布引起的几何效应-上/下盘效应[J].地震学报,2008,30(3):271-278.
    [63]王国新.强地震动衰减研究[D].中国地震局工程力学研究所,哈尔滨,2001.
    [64]王海云,谢礼立.近断层强地震动的特点[J].哈尔滨工业大学学报,2006,38(12):2070-2076.
    [65]王海云.近场强地震动预测的有限断层震源模型[D].中国地震局工程力学研究所博士学位论文,哈尔滨,2004.
    [66]王京哲,朱晞.近场地震速度脉冲下的反应谱加速度敏感区[J].中国铁道科学,2003,24(6):27-30.
    [67]王京哲.近场地震速度脉冲效应下的结构特殊响应[D].北京交大硕士学位论文,北京,2004.
    [68]王亚勇.关于设计反应谱时程法和能量方法的探讨[J].建筑结构学报,2000,21(1): 21-28.
    [69]韦韬,赵凤新,张郁山.近断层速度脉冲的地震动特性研究[J].地震学报,2006,28(6):629-637.
    [70]韦韬.近断层速度脉冲对钢筋混凝土框架结构影响的研究[D].中国地震局地球物理研究所硕士学位论文,北京,2005.
    [71]温联星.姚振兴.用广义射线和有限差分计算近场理论论地震图的混合方法[J].地球物理学报,1994,37(2):211-219.
    [72]邬鑫,朱晞.近场地震的速度脉冲效应及简化冲击回归公式的检验[J].北方交通大学学报,2003.2(27):36-39.
    [73]肖明葵,刘波.抗震结构总输入能量及其影响因素分析[J].重庆建筑大学学报,1996,18(2):20-33.
    [74]肖明葵.基于性能的杭展结构位移及能且反应分析方法研究[D].重庆大学博士学位论文,重庆,2004.
    [75]辛力,梁兴文,童岳生.基于位移的抗震设计中结构设计承载力的取值研究[J].地震工程与工程振动,2009,29(2):35-41.
    [76]徐龙军,谢礼立.近断层地区抗震设计谱研究[J].东南大学学报(自然科学版),2005,35(I):105-110.
    [77]杨迪雄,李刚,程耿东.近断层地震动作用下隔震结构的优化设计[J].世界地震工程,2006,22(1):1-8.
    [78]叶生.基于位移的结构抗震设计方法研究[J].中国科技信息,2008, 24:54-56.
    [79]易伟建,张冰.近场地震作用下框架结构的损伤机理[J].自然灾害学报,2007,16(2):112-117.
    [80]俞言祥,高孟潭.台湾集集地震近场地震动的上盘效应[J].地震学报,2001,23(6):615-621.
    [81]翟长海,李爽,谢礼立,孙亚民.近场脉冲型地震动位移比谱特征研究[J].土木工程学报,2008,41(10):1-5.
    [82]翟长海,谢礼立.近场脉冲效应对强度折减系数的影响分析[J].土木工程学报,2006,39(7):15-42.
    [83]翟长海.最不利设计地震动的研究[D].中国地震局工程力学研究所硕士学位论文,哈尔滨,2002.
    [84]翟长海.最不利设计地震动及强度折减系数研究[D].哈尔滨工业大学工学博士学位论文,哈尔滨,2004.
    [85]张冰.近场地震作用下框架与桥梁结构抗震分析[D].湖南大学硕士学位论文,长沙,2007.
    [86]张冬丽,陶夏新,周正华.近场强地震动数值模拟的简化计算方法[J].地震地质,2006,4(2A):613-624.
    [87]张磊,石晓玲.近场地震浅析[J].西部探矿工程,2005,104 (1):193- 194.
    [88]张魏,孟少平.混凝土结构基于位移的抗震能力设计[J].工程抗震,2002,3:5-8.
    [89]赵凤新,韦韬,张郁山.近断层速度脉冲对钢筋混凝土框架结构地震反应的影响[J].工程力学,2008,25(10):180-188.
    [90]赵冠远,阎贵平.一种基于能力谱的位移抗震设计方法[M].中国铁道科学.2002,23(3):64-67.
    [91]资料来源:中国地震局. http://img1.qq.com/news/pics/12661/1266178 5.jpg.
    [92]中国地震烈度表(GB/T 17742-1999)[S].中国标准出版社,北京:1999.
    [93]周仕勇,陈晓非.近震源破裂过程反演研究—II.9.21中国台湾集集地震破裂过程的近场反演[J].中国科学D辑地球科学,2006,36 (1):49-58.
    [94]周锡元,徐平,王国权,闫维明. 1999年台湾集集地震近断层竖向与水平反应谱比值的研究[J].地震地质,2006,28(3):325-335.
    [95]周云,安宇,梁兴文.基于性态的抗震设计理论和方法的研究与发展[J].世界地震工程.2001,17(2):1-7.
    [96]周云,徐彤,周福霖.抗震与减震结构的能量分析方法研究与应用[J].地震工程与工程震动,1999,19(4):133-139.
    [97]周正华,周雍年,卢滔,杨程.竖向地震动特征研究[J].地震工程与工程振动,2003,23(3):27-19.
    [98]周正华,周雍年,赵刚.强震近场加速度峰值比和反应谱统计分析[J].地震工程与工程振动,2002,22(3):15-18.
    [99]朱银全,郭文强.钢筋混凝土框架基于位移的动力反设计[M].山西建筑,2003,29(12):13-14.
    [100] Aagaard B T, Hall J F, Heaton T H. Characterization of near- source ground motion with earthquake simulations [J]. Earthquake Spectra, 2002, 17(2): 177-207.
    [101] Abrahamson N A, Somerville P G. Effects of the hanging wall and footwall on ground motions recorded during the Northridge earthquake [J]. Bull.Seism.Soc.Am. 1996, 86(1):93-99.
    [102] Agrawal A K, Xu Z, He W L. Ground motion pulse-based active control of a linear base-isolated benchmark building [J]. Structural control and health monitoring. 2005, 13(23): 792-808.
    [103] Akkar S, Bommer J J. Empirical prediction equations for peak ground velocity derived from strong-motion records from Europe and the Middle East [J]. Bulletin of the Seismological Society of America, 2007, 97(2): 511-530.
    [104] Akkar S, Yazgan U, Gülkan P. Drift estimates in frame buildings subjected to near-fault ground motions [J]. Journal of Structural Engineering, 2005 131(7): 1014-1024,
    [105] Alavi B, Krawinkler H. Consideration of near-fault ground motion effects in seismic design Proceedings[C]. 12WCEE, New Zealand,2000, No. 2665.
    [106] Alavi B. Effect s of near-fault ground motions on frame structure [D]. PHD Dissertation, Berkeley, California: University of California: 2000.
    [107] Alavi, B, Krawinkler H. Strengthening of moment-resisting frame structures against near-fault ground motion effects [J]. Earthquake Engineering and Structural Dynamics, 2004, 33(6):707-722.
    [108] Ambraseys N, Douglas J. Reappraisal of the effect of vertical ground motions on response[R]. Engineering Seismology and Earthquake Engineering Report, 2000, No.00-4.
    [109] Amiri J A, M R. Sahafi D A. Behaviour of MRF structures designed according to IRAN seismic code (2800) subjected to near-fault ground motions. The 14WCEE, Beijing, China, 2008, ID: 05-05-0002.
    [110] Anderson, J C, Bertero V V. Uncertainties in Establishing Design Earthquakes [J]. Structural Engineering, 1987, 113(8): 1709-24.
    [111] Arias A. A measure of earthquake intensity[R]. Seismic Design of Nuclear Power Plants. Cambridge, MA: MIT Press. 1970: 438-468.
    [112] Ariga T, Kanno Y, Takewaki I. Resonant behavior of base-isolated high-rise buildings under long-period ground motions the structure design of tall and special building [J]. Design Tall Spec. Build. 2006,15(3): 325-338.
    [113] Bachmann H, Dazio A. A Deformation-Based Seismic Design Procedure for Structural Wall Buildings. Seismic Design Methodologies for the Next Generation of Codes Bled, Slovenia, 1997:159-170.
    [114] Baez J I And Miranda E. Amplification factors to estimate inelastic displacement demands for the design of structures in the near field [C]. 12WCEE, 2000, No. 1561.
    [115] Baki Mehti Ozturk. Seismic drift response of building structures in seismically active and near-fault regions [D]. Purdue University Requirements for the Degree ofDoctor of Philosophy, 2003.
    [116] Bertero V V, Mahin S A, Herrera R A. Aseismic design implications of near-fault San Fernando earthquake records [J]. Earthquake Engng Struct Dyn, 1978, 6 (1): 31-42.
    [117] Bolt B A, Abrahamson N A. New attenuation relations for peak and expected accelerations of strong ground motion [J]. Bull. Seism. Soc. Am. 1982, 72(6): 2307-2321.
    [118] Bray J D, Rodriguez-Marek A. Characterization of forward directivity ground motions in the near fault region [J]. Soil Dyn Earthq Eng, 2004, 24 (11): 815-828.
    [119] Calvi G M, Kingsley G R. Displacement-based seismic design of muti-degree-of-freedom bridge structures [J]. Earthquake Engineering and Structural Dynamics, 1995, 24(9): 1247-1266.
    [120] Campbell K W, Bozorgnia Y. Updated near-source ground-motion (attenuation) relations for the horizontal and vertical components of peak ground acceleration and acceleration response spectra [J]. Bulletin of the Seismological Society of America. 2003, 93(1): 314-331.
    [121] Campbell K W, Bozorgnia Y. Near-source attenuation of peak horizontal acceleration [J]. Bulletin of the Seismological Society of America. 1981, 71(6): 2039-2070.
    [122] Chandler A M, Lam N T K. Preformace-Based Design in Earthquake Engineering: A Muti-Disciplinary Review [J]. Engineering Structures, 2001, 23(12): 1525-1543.
    [123] Chandler A M. Performance of Reinforced Concrete Frames Using Force and Displacement Based Seismic Assessment Methods [J]. Engineering Structures. 2002, 22(4): 352-363.
    [124] Chang-Hai Z, Hong-Bo L, Li-Li X. Near-fault pulse-like effect on strength reduction factors[C]. 4th International Conference on Earthquake Engineering Taipei, Taiwan , 2006 , No. 160
    [125] Chi Wu C, Douglas D, Anastasia K. Finite-source modeling of the 1999 Taiwan (Chi-Chi) earthquake derived from a dense strong-motion network [J]. Bull. Seismic. Soc. Am., 2001, 91(5): 1144-1157.
    [126] Chopra A K, Chintanapakdee C. Comparing response of SDF systems to near-fault and far-fault earthquake motions in the context of spectral regions [J]. Earthquake Engineering and Structural Dynamics. 2001, 30(12): 1769–1789.
    [127] Chopra A K, Chintanapakdee C. Accuracy of response spect rum estimates of st ructural response to near-field eart hquake ground motions: Preliminary results[C]. Proceedings of the A S CE S t ructures Worl d Conf erence. Ox-ford, England: Elsevier Science Ltd, 1998: T136-1.
    [128] Chopra A K, Goel R K. Capacity-demand-diagram methods for estimating eeismic deformation of inelastic structures: SDF systems[R]. PEER Report 1999, Berkeley, 1999: 55-57.
    [129] Chou C C, Uang C M. A procedure for framed structures demand of seismic energy [J]. Earthquake Engineering evaluating and Structural Dynamics, 2003, 32(2): 229-244.
    [130] Chung-Che C, Chia-Ming U. A procedure for evaluating seismic energy demand of framed structures [J].Earthquake Enging. And Struct. Dynamics, 2003, 32 (2): 229-244.
    [131] Court A B, Kowalsy M J. Performance-Based Engineering of Buildings—A Displacement Design Approach [J]. Structural Engineering World Wide, SEAOC, 1998, No. T109-1.
    [132] Deb S K. Seismic base isolation - An overview [J]. Current Science, 2004, 87(10):1426-1430.
    [133] Decanini L, Liberatore L, Mollaioli F. Estimate of near-source ground motion and seismic behavior of RC framed structures damaged by the 1999 Athens earthquake [J]. Journal of Earthquake Engineering, 2005, 9(5): 609–635.
    [134] Dicleli, M. Supplemental elastic stiffness to reduce isolator displacements for seismic-isolated bridges in near-fault zones [J]. Engineering Structures, 2007, 29(5): 763-775.
    [135] Dixiong Y, Jianwei P, Gang L. Non-structure-specific intensity measure parameters and characteristic period of near-fault ground motions [J]. Earthquake Engng Struct. Dyn, 2009, 38 (11): 1257-1280.
    [136] Douglas J. A comprehensive worldwide summary of strong-motion attenuation relationships for peak ground acceleration and spectral ordinates (1969 to 2000) [J]. ESEE Report, 2001, No.01-1.
    [137] Erdik M, Durukal E. A hybrid procedure for the assessment of design basis earthquake ground motions for near-fault conditions [J]. Soil Dynamics and Earthquake Engineering, 2001, 21(5): 431-443.
    [138] Erol K, Sashi K K. Effects of fling step and forward directivity on seismic response of buildings [J]. Earthquake spectra, 2006, 22(2): 367-390.
    [139] European Committee Standardization. Eurocode 8: Design of structures for earthquake resistance-Part 1: General rules, seismic actions and rules for buildings, European Committee Standardization, Brussels, Belgium.
    [140] Fajfar P, Vidic T. Consistent inelastic spectra: hysteretic and input energy [J]. Earthquake Engineering and Structural Dynamics, 1994, 23(5): 523 -537.
    [141] Fajfar P. Capacity spectrum method based on inelastic demand spectra [J]. Earthquake Engineering and Structural Dynamics. 1999, 28(9): 979-993.
    [142] George P M, Apostolos S P. A mathematical representation of near-fault ground motions [J]. Bull Seism. Soc. Am. 2003, 93(3): 1099-1131.
    [143] George P M. Modeling and Simulation of near-fault strong-ground motions for earthquake engineering application [D]. PHD Dissertation, University of New York at Buffalo, 2004
    [144] Georgia E, Sravroula T, Pantaz-opulou T. Design methodology for seismic upgrading of substandard reinforced concrete structures [J]. Journal of Earthquake Engineering, 2007, 11(4): 582-606.
    [145] Ghobarah A. Said Shear strengthening of beam-column joints [J]. Engineering Structures, 2002, 24(7): 881-888.
    [146] Graves R W. Recent advances in finite difference methodologies for the sinulation of strong motions[C]. Proceedinns of 12th WCEE Auckland, New Zealand, 2000.
    [147] Gutierrez J, Alpizar M. An effective method for displacement-based earthquake design of building[C]. 13WCEE, Vancouer, B.C., Canada, 2004, No. 1512.
    [148] Hall J F, Heaton T H, Halling M W, et al. Near source ground motion and it s effect s on flexible buildings [J]. Earthquake Spectra, 1995, 11(4): 569-604.
    [149] Hall, J.Seismic response of steel frame buildings to near-source ground motion [D]. California Institute of Technology Earthquake Engineering Research Laboratory, California, 1997.
    [150] Haluk S, Alphan N. Earthquake ground motion characteristics and seismic energy dissipation [J]. Earthquake Engineering and Structural Dynamics, 1995, 24(9): 1195-1213.
    [151] He, W L, Agrawal A K. A closed-form approximation of near-fault ground motion [A]. Proceedings of 2002 ASCE Engineering Mechanics Conf. [C]. NewYork. Columbia University. 2002, 32-34.
    [152] Housner G W, Martel R R and Alrord J L. Spectrum analysis of strong-motion earthquake [J]. Bulletin of the Seismological Society of America, 1953, 43(2): 97-119.
    [153] Hui L, Jinping O. A design approach for semi-active and smart base-isolated buildings [J]. Struct Control Health Monit. 2006, 13(23):660-681.
    [154] Hyung-Jo J, Kang-Min C, Billie F, Spencer J, In-Won L. Application of some semi-active control algorithms to smart base-isolated building employing MR dampers [J]. Struct. Control Health Monit. 2006, 13(23): 693-704.
    [155] Irikura K. Prediction of strong ground motions from future earthquake cause by active faults-case of the Osaka Basin [A]. In Report on the 12th WCEE Auckland, New Zealand, 2000.
    [156] Iwan W D, Ching-Tung H and Guyader. Important feature of the response of inelastic structures to near-field ground motion[C].12WCEE, 2000, No.1740.
    [157] Iwan W D. Drift spectrum: Measure of demand for earthquake ground motions [J]. Struct Eng, 1997,123 (4): 397-404.
    [158] Jalali R S, Trifunac M D. Ghodrati A G, Zahedi M. Wave-passage effects on strength-reduction factors for design of structures near earthquake faults [J]. Soil Dynamics and Earthquake Engineering, 2007, 27(8): 703-711.
    [159] Jangid R S, Kelly J M. Research Article Base isolation for near-fault motions [J]. Earthquake Engineering and Structural Dynamics, 2000, 30 (5): 691 - 707.
    [160] Jangid R S, Kelly J M. Base isolation for near-fault motions [J]. Earthquake Engineering and Structural Dynamics, 2001, 30(5): 691-707.
    [161] Jangid R S. Optimum lead-rubber isolation bearings for near-fault motions [J]. 2007, 29(10): 2503-2513.
    [162] Jennings P C. Ground motion pulses and structural response [J]. Fronitiers in the New Millennium, Spencer and Hu (eds), 2001: 1-7.
    [163] John X Z, Jian Z. Inelastic Demand spectra of bi-Linear models for capacity spectrum method and response of simple structures under near -source records [J]. Journal of Earthquake Engineering, 2007, 11(4): 631-652.
    [164] Joyner W B,Boore D M. Peak horizontal acceleration and velocity from strong-motion records including records from the 1979 Imperial Valley.California,earthquake [J]. Bul1.Seism.Soc.Am.1981,71(6):2011-2038.
    [165] Joyner W B, Boore D M. Peak horizontal acceleration and velocity from strong records including records from the 1970 Imperial Valley, California earthquake [J]. Bulletin of the Seismological Society of America, 1981, 71(6): 2011-2038.
    [166] Juin-Fu C, Tsung-Jen T, Wen-I L. Numerical simulation of near-fault ground motions and induced structural responses [C]. 13th World Conference on Earthquake Engineering Vancouver, B.C., 2004, No. 3309.
    [167] Junwu D, Xiaozhai Q, Mai T and George C L and Vladimir R. Near-fault ground motions with prominent acceleration pulses part II: shaking table evalution of structural response and damage under acceleration pulese [C]. 4th International Conference on Earthquake Engineering Taipei, Taiwan, 2006, No. 143.
    [168] Kalkan E, Kunnath, S K. Effects of Fling Step and Forward Directivity on Seismic Response of Buildings [J]. Earthquake Spectra. 2006, 22(2): 367-390.
    [169] Kelly J M. The role of damping in seismic isolation [J]. Earthquake Engineering and Structural Dynamics. 1999, 28(3): 4-20.
    [170] Kirlin R L. Root-mean-square velocity estimation in covariance analysis for seismic signal processing [J]. Geophysical Development Series, 1999: 83-107.
    [171] Kowalsky M J, Priestley M J N, Macrae G A. Displacement-based design of RC bridge column in seismic regions [J]. Earthquake Engineering and Structural Dynamics, 1995, 24(12):1623~1643.
    [172] Kunnath S K, Chai Y H. Cumulative damage-based inelastic cyclic demand spectrum [J]. Earthquake Engineering and Structural Dynamics, 2004, 33(3): 499-520.
    [173] Leavitt J, Bobrow J E, Jabbari F, and Yang J N. Application of a high-pressure gas semi-active resettable damper to the benchmark smart base-isolated building [J]. Struct. Control Health Monit. 2006, 13(23): 748–757.
    [174] Li X L , Zhu X. Study on near fault design spectra of seismic design code[C]// Liu W Q, Yuan F G, Chang P Ceds. 3th International Conf erence on Earthquake Engineering: New Frontier and Research Tran’s f ormation. Beijing, 2004: 147-152.
    [175] Liao W I, Loh C H, Wan S. Earthquake responses of RC moment frames subjected to near - fault ground motions [J]. The Structural Design of Tall Buildings, 2001, 10 (3): 219 - 229.
    [176] Lieping Y. Capicity-demand curves method for performance/ displacement-based seismic design[C]. Proceedings of the International Conference on Advances and New Challenges in Earthquake Engineering Research, Harbin, 2002. China, Seismological Press: 103-112.
    [177] Li-li X, Long-jun X. Adirian Rodriguez-Marek. Representation of near-fault pulse-type ground motions [J].Earthquake engineering and engineering vibration .2005, 4(2): 191-199.
    [178] Lu Y. Seismic behaviour of multistory RC wall-frame system versus bare ductile frame system [J]. Earthquake Engineering and Structural Dynamics, 2002, 31(1): 79-97.
    [179] Makris N and Black C J. Evaluation of peak ground velocity as a“good”intensity measure for near-source ground motions [J]. ASCE, 2004: 1032-1044.
    [180] Makris N. Elect of viscous, viscoplastic and friction damping on the response of seismic isolated structures [J]. Earthquake Engineering and Structural Dynamics, 2000, 29(1): 85-107.
    [181] Makris N. Rigidity-plasticity-viscosity: can electroheological dampers protect base-isolated structures from near-source ground motions [J]. Earthquake Engineering and Structural Dynamics, 1997, 26: 571-591.
    [182] Malhot P K. Response of buildings to near-field pulse-like ground motions [J]. Earthquake Engineering and Structural Dynamics. 1999, 28, 1309-1326.
    [183] Malhot ra P K. Response of buildings to near-field pulse-like ground motions [J]. Earthquake Engng Struct Dyn, 1999, 28(11): 1309-1326.
    [184] Manfredi G. Structural evaluation of seismic energy demand [J]. Earthquake Engineering and structure dynamics, 2001, 30(4): 485-499.
    [185] Mavroeidis G P, Dong G, Papageorgiou A S. Near-fault ground motions and the response of elastic and inelastic single degree of freedom (SDOF) systems [J]. Earthquake Engineering and Structural Dynamics, 2004, 33(9): 1023-1049.
    [186] Mavroeidis G P. Modeling and simulation of near-fault strong ground motions for earthquake engineering applications. University of New York at Buffalo Doctor of Philosophy. 2004.
    [187] Medhekar M S, Kennedy D J L. Displacement-based seismic design of buildings -Application[J]. Engineering Structrues, 2000, 22(3):210-221.
    [188] Menun C, Qiang F. An analytical model for near-fault ground motions and the response of SDOF systems [A]. Seventh U S National Conference on Earthquake Engineering, Boston. Massachusetts. Mira Digital Publishing. 2002, No. 00011.
    [189] Ming, L, Yongqiang Y, Jinjun H and Lili X. Comparison and analysis of attenuation relation ships of near-fault horizontal peak ground acceleration and velocity[C]. 14WCEE, Beijing, 2008.
    [190] Mohammadjafari A, Jalali A. Assessment of performance based parameters in near fault tall buildings [J]. Journal of Applied Sciences 2009, 9(22): 4044-4049.
    [191] Mori1 Y, Yamanaka T, Luco N and Allin C. Cornell. A static predictor of seismic demand on frames based on a post elastic deflected shape [J]. Earthquake Engineering and Structural Dynamics. 2006(35): 1295-1318.
    [192] Mortezaei A, Kheyroddin A, Ghodrati-Amiri G. Influence of external steel plates on the characteristics of existing RC columns under near field ground motion [C]. The 14th World Conference on Earthquake Engineering, Beijing, China, 2008.
    [193] Mosenza E, Manfredi G, Ramsco R. The use of damage functionals in earthquake engineering: a comparison between different methods [J]. Earthquake Engineering and Structural Dynamics, 1993, 22(10): 855-867.
    [194] Mylonakis G, Voyagaki E. Yielding oscillator subjected to simple pulse waveforms: numerical analysis and closed-form solution [J]. Earthquake Engineering and Structural Dynamics. 2006, 35(15): 1949-1974.
    [195] Narasimhan S, Nagarajaiah S. A STFT semiactive controller for base isolated buildings with variable stiffness isolation systems [J]. 2005, 27(4): 514-523.
    [196] Nurtug A, Sucuoglu H. Prediction of seismic energy dissipation in SDOF systems [J]. Earthquake Engineering and Structural Dynamics, 1995, 24(9): 1215-1223.
    [197] Oyarzo-Vera C ,Chouw N. Comparison of record scaling methods proposed by standards currently applied in different country [C]. The 14th World Conference on Earthquake Engineering, Beijing, China, 2008.
    [198] Ozturk B M. Seismic drift response of building structures in seismically active and near-fault regions [D]. PHD disertation. Purdue University, 2003.
    [199] Panagiotakos T B, Fardis M N. A Displacement-based seismic design procedure for RC buildings and comparison with EC8 [J]. Earthquake Engineering and Structural Dynamics, 2001, 30(10): 1439-1462.
    [200] Panchal V R and Jangid R S. Variable friction pendulum system for near-fault ground motions [J]. Structural control and health monitoring, 2007, 15(4):568 - 584.
    [201] Park S W, Ghasemi H, Shen J, Somerville P G, Yen W P, Yashinsky M. Simulation of the seismic performance of the Bolu Viaduct subjected to near-fault ground motions [J].Earthquake engineering and structural dynamics , 2004 , 33(13): 1249-1270.
    [202] Paulay T. Displacement-based design approach to earthquake induced torsion in ductile Building [J]. Engineering Structures, 1997, 19(9): 699-707.
    [203] Pauschke M. Peak vs. root-mean-square acceleration to characterize strong ground motion[C]. Proceedings of the 2th international conference on soil mechanics and earthquake engineering, 1985: 119-138.
    [204] Pincheira J A And Song J K. Displacement amplification factors for degrading systems subjected to near-fault ground motion[C]. 12WCEE, 2000, No.1945.
    [205] Priestley M J N. Performance based seismic design[C]. 12WCEE, Auckland, Newzland, 2000, No.2831.
    [206] Qiang X, Cheng-Chung C. Performance-Based Seismic Design of Structures: A Direct Displacement-Based Approach [J]. Enginee- ring Structrues, 2003, 25(14): 1803-1813.
    [207] Qiang X. Adirect Displacement-Based Seismic Design Procedure of Inelastic Structures [J]. Engineering Structrues, 2001, 23(11): 1453-1460.
    [208] Rao P B, Jangid R S. Performance of sliding systems under near-fault motions [J].Nuclear Engineering and Design, 2001, 20(3): 259-272.
    [209] Roberts M W, and Lutes L D. Potential for structural failure in the seismic near field [J]. Journal of engineering mechanics, 2003 129(8): 927-934.
    [210] Rodriguez-Marek A Near-fault seismic site response [D]. PHD Dissertation, University of California at Berkeley, 2000.
    [211] Sabetta F , Pugliese A. Attenuation of peak horizontal acceleration and velocity from Italian strong-motion records[J].Bulletin of the Seismological Society of America,1987, 77(5):1491-1513
    [212] Salazar A R and Haldar A. Energy dissipation at PR Frames under seismic loading [J]. Journal of Structural Engineering ASCE, 2001, 127(5): 588-592.
    [213] Sankaranarayanan R, Ricardo A. Medina. Acceleration response modification factors for nonstructural components attached to inelastic moment-resisting frame structures [J]. Earthquake Engineering and Structural Dynamics, 2007, 36(2): 169-189.
    [214] Seismic rehabilitation of existing buildings, ASCE/SEI 41-06[S].American Society of Civil Engineers, American: 2007.
    [215] Somerville P G, Smith N F, Graves R W, and Abranhamson N A. Modification of empirical strong ground motion attenuation relations to include the amplitude and duration effects of rupture directivity [J]. Seismological Research Letters, 1997, 68(1): 180-203.
    [216] Somerville P G. Magnitude scaling of the near fault rupture directivity pulse [J]. Physics of the Earth and Planetary Interiors, 2003.137(4): 201-212.
    [217] Somerville P G, Irikura, K., Graves, R., et al.. Characterizing crustal earthquake slip models for the prediction of strong ground motion [J]. Seismol. Res. Lett., 1999, 70(1):59-80.
    [218] Somerville P G, Saikia C K, Wald, D and Graves R. Implications of the Northridge earthquake for strong ground motions from thrust faults [J]. Bull.Seism. Soc.Am.1995, 86(1): 5115-5125.
    [219] Somerville P G, Smith N F, Graves R W, et al. Modification of empirical strong ground motion attenuation relations to include amplitude and duration effect s of rupture directivity [J]. Seism Res Lett, 1997 68 (1): 199-222.
    [220] Somerville P G, and Smith N F. Forward rupture directivity in the Kobe and Northridge earthquakes, and implications for structural engineering [J]. Seismological Research Letters, 1996, 67(2): 55.
    [221] Somerville P G. Development of an Improved Ground Motion Representation for Near Fault Ground Motions [A]. SMIP98 Seminar on Utilization of Strong-Motion Data, Oakland: CA, 1998.
    [222] Somerville P G. Characterizing near fault ground motion for the design and evaluation of bridges[R]. Proceedings of the Third National Seismic Conference and Workshop on Bridges and Highways held in Portland, Oregon, 2002.
    [223] Standards New Zealand[S]. NZS 1170.5:2004 - Structural design actions. Earthquake actions., Wellington, New Zealand, 2004a.
    [224] Standards New Zealand[S]. NZS 1170.5:2004 - Structural design actions. Earthquake actions.–Commentary, Wellington, New Zealand, 2004b.
    [225] Stewart J P, Chiou S J, Bray J D, et al. (2001). Ground motion evaluation procedures for performance-based design[R]. PEER Report, 2001, 09.
    [226] Sullivan T J, Calvi, G M, Priestley M J N. Initial stiffness versus secant stiffness in displacement based design[C]. 13WCEE, 2004, No. 2888.
    [227] Suresh S, Narasimhan S, Sundararaja N. Adaptive control of nonlinear smart base-isolated buildings using Gaussian kernel functions. Engineering and StructuralDynamics, 2007,15 (4): 585 - 603
    [228] Tentative Provisions for the Development of Seismic Regulations for Buildings, ATC-06[S]. Redwood City, California: 1978.
    [229] The Building standard law of Japan by Japan [S]. Building Center of Japan, Tokyo: 1986.
    [230] Trifunac, M D. Preliminary analysis of the peaks of strong earthquake ground motion-dependence of peaks on earthquake magnitude, displacement, and recording site conditions [J]. Bull. Seism. Soc. Am. 1976,166 (1): 189-219.
    [231] Tsui-Yu Chang, Fabrice Cotton, Yi-Ben Tsai and Jacques Angelier. Quantification of hanging-wall effects on ground motion: Some insights from the 1999Chi-Chi Earthquake [J]. Bull.Seism.Soc.Am. 2004, 94(6): 2186-2197.
    [232] Uniform Building Code[S]. International Conference of Building Officials, 1997.
    [233] Valles R E, Reinhorn A M, Kunnath S K, Li C and Madan A. IDARC 2D Version 4.0: A Program for the Inelastic Damage Analysis of Buildings [M]. State University of New York at Buffalo, New York: 1996.
    [234] Wang G Q, Zhou X Y, Zhang P Z, et al. Characteristics of amplitude and duration for near fault strong ground motion from t he 1999 Chi-Chi Taiwan earthquake [J]. Soil Dyn Earthq Eng, 2002, 22 (1): 73-96.
    [235] Wen-I L, Chin-hstung L and Shiuan W. Earthquake responses of RC moment frames subjected to near-fault ground motions the structural design of tall buildings [J]. Struct. Design Tall Build, 2001, 10 (3): 219–229.
    [236] Xia-xin T and Anderson J G. Near field strong ground motion simulation [A]. Proc of ICANCEER, Harbin, China, 2002.
    [237] Xu L S, Chen Y T, Teng T L, et al . Temporal-spatial rupture process of 1999 Chi-Chi earthquake from the IRIS and Gyroscope long period waveform data using aftershocks as empirical Green’s functions [J]. Bull. Seism. Soc. Am., 2002, 92(8): 3210-3228
    [238] Xue Q. Need of performance-based earthquake engineering in Taiwan: a lesson from the Chichi earthquake [J].Earthquake Engineering and Structural Dynamics, 2000, 29(11):1609-1627.
    [239] Yang N J, Agrawal A K. Semi-active hybrid control systems for nonlinear buildings against near-field [J]. Earthquakes Engineering Structures, 2002, 24, No.271–280.
    [240] Yeh C H, Loh C H. Methodology of seismic hazard analysis and damage assessment [J]. Earthquake Engineering and Engineering Seismology. 2001, 3(1): 21-34.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700