账户: 密码:
同震、震后和震间应力触发
详细信息    本馆镜像全文|  推荐本文 | 收藏本文 |   获取CNKI官网全文
摘要
应力触发是指地震(或火山)发生后造成后续断层(或火山)的力学性质及物理、化学性质的改变,抑制或加速断层错动(或火山活动)现象。在过去近二十年内,库仑应力是解释主余震间、主震间、地震与火山间、火山与火山间相互触发和断层相互作用现象以及评估未来潜在地震断层段的重要量化指标。应力触发已然成为研究地震发生的力学驱动机制的重要方向。然而,应力触发领域仍然存在一些根本性的问题尚待解决:其一为接收断层的合理选择;其二为库仑应力模型对其参数的敏感性;其三为地震周期中的应力转移模式。选择合理的接收断层有利具有可预测性的库仑应力图的构制;明确库仑应力模型对其参数的敏感性有利于应力触发分析结论的可靠性;确立地震周期中不同时段的应力转移模式有利于更完整地认识地壳应力场的时空演化过程以及定位未来潜在地震危险段。因此,本文针对这三个问题从理论分析和震例分析两个方面加以研究:建立库仑应力正反演分析解析模型,将最佳破裂面模型推广至三维情形以及构建库仑应力误差估计式;考察1997年Mw7.6玛尼地震与2001年Mw7.8年可可西里地震间的应力转移以及2008年Mw7.9汶川地震周边断层同震、震后和震间应力演化。
     基于库仑应力基本理念(断层面所受剪切力与摩擦力之和若为正则断层面倾向于滑动或者若断层面法向应力为拉张正应力则断层上下两盘易于张裂),本文建立了适于库仑应力正反演分析的统一解析模型并推广了常见的二维最佳破裂面模型至三维情形。以2003年伊朗Mw6.6 Bam地震和2008年Mw7.9汶川地震为震例,检测了三维最佳破裂面模型对提高库仑应力同余震空间相关性的性能。结果表明:对2003年Bam地震而言,采用均匀接收断层时库仑应力对余震触发率为47.06%,而采用三维最佳破裂面模型时仑应力对余震触发率为87.53%;对2008年汶川地震而言,采用均匀接收断层时库仑应力对余震触发率为45.68%,而采用三维最佳破裂面模型时仑应力对余震触发率为58.20%。库仑应力对余震触发率的提高源自三维最佳破裂面模型中的接收断层具有更大的自由度,因而可以普遍性地提高库仑应力对余震的触发效能。因此,对大量震源机制未定的余震情形可以采用三维最佳破裂面模型来更好地解释余震的空间分布。
     基于库仑应力正反演分析统一解析模型,建立了库仑应力模型的误差估计式并系统性地研究了库仑应力模型对源断层的滑动分布、发震断层激发的应力张量、摩擦系数、接收断层的走向、倾角、滑动角等的不确定性和构造背景应力场的敏感性以及库仑应力模型本身。结果表明:(1)若源断层的滑动分布愈精细,则库仑应力空间分布愈平滑;源断层激发的应力张量的误差所致的库仑应力相对误差大体为90%-100%。此两点表明为构制合理的库仑应力图,源断层的滑动分布需予以尽量反演得更精细。(2)走滑型源断层激发的库仑应力对模型系数不太敏感,而倾滑型和张裂型源断层激发的库仑应力对摩擦系数略敏感,因此库仑应力模型中常采用以断层的长期滑移历史确定断层的模型系数是合理的。(3)接收断层的走向误差相对其倾角误差更易于致使库仑应力相对误差偏高,而较之倾角误差其滑动角误差所致的库仑应力相对误差相对偏低,因此接收断层的走向较之其余二者更应予以更好地加以约束。(4)若构造应力场的量值较之地震激发的应力场的量值要小,则构造应力场的大小及方向对库仑应力空间分布影响甚若,反之则构造应力场的方向控制库仑应力空间分布。因此采用顾及构造应力场的最佳破裂面模型时,构造应力场的方向需尽量予以准确确定。(5)采用断层孔隙压力与断层正应力成正比假设的库仑应力模型所构制的库仑应力空间分布与摒弃该假设的库仑应力模型所构制的库仑应力空间分布略有不同,但因这一假设所致的二者量值差异甚为明显,因此在进行库仑应力定量分析时应采用不顾及该假设的库仑应力模型。
     本文考察了昆仑断层自1937年以来六次强震间的应力转移,结果表明这六次强震可以采用同震应力转移图像来解释。着重分析了1997年Mw7.6玛尼地震和2001年Mw7.8可可西里地震间的应力转移。结果表明:1997年玛尼地震对2001年可可西里地震有一定的促进作用,对可可西里地震断层面上的应力扰动平均为0.002bars,而2001年可可西里在1997年地震断层面上的库仑应力均为正且为0-0.08bars,它对未来于1997年地震断层面上的地震危险性有一定的促进作用。
     本文从同震库仑应力、震后库仑应力以及震间库仑应力三个方面分析了2008年Mw7.9汶川地震周边断层上的库仑应力及与余震的时空演化模式。地震断层的同震错动、震后下地壳和上地幔物质的粘性流动以及震间地震断层的浅部闭锁均对地壳应力场的调节起着重要的作用。顾及同震、震后和震间的库仑应力空间分布图像可以很好地解释1到2年内余震的时空变化模式。2008年周边断层上的总库仑应力表明玉树-玛曲断裂、鲜水河断裂、安宁河断裂、则木河断裂、大凉山断裂、东昆仑断裂以及海原断裂可能是未来地震危险段。
The Coulomb failure function (CFF) quantitatively describes stress changes in sec-ondary faults near the source fault of an earthquake. It can be employed to monitor how stress transfers and then to shed some light on the probability of successive events occurring around a source fault. Accordingly, it has become a crucial quantitative index to investigate and interpret mainshock-mainshock, mainshock-aftershock, mainshock-volcano and volcano-volcano triggering phenomena as well as communication among major active faults over the past two decades. Nevertheless, there are still some funda-mental problems which should be figured out. One is which kind of receiver fault should be chosen for the analysis of earthquake stress triggering and the other is how sensitive the CFF is to its parameters. Besides, what the characteristic of stress evolution is when coseismic, postseismic and interseismic Coulomb stresses are completely considered also should be investigated, compared with that of conventional coseismic Coulomb stress. Therefore, the aim of this dissertation is twofold:(1) setting up a general analytical Coulomb stress model and estimator of CFF; (2) exploring stress transfer among the 1997 Mw7.6 Manyi earthquake and the 2001 Mw7.8 Kokoxili earthquake and stress evolution due to coseismic, postseismic and interseismic Coulomb stress of the 2008 Wenchuan earthquake.
     Based on the basic philosophy of Coulomb stress that the seismogenic fault would slide if the shear stress on it overcomes its frictional force and it would unclamp if its normal stress is extensional and vice versa, I build a unified model to determine an optimally oriented plane and its corresponding Coulomb stress, then apply the model to the 2003 Mw 6.6 Bam (Iran) earthquake and the 2008 Mw 7.9 Wenchuan (China) earthquake, thereby checking its effectiveness. The results show that spatial correla-tion between positive Coulomb stress changes and aftershocks are, for the 2003 Bam earthquake,47.06% when elastic Coulomb stress changes are resolved on uniform planes and 87.53% when these are resolved on optimally oriented planes at depth; for the 2008 Wenchuan earthquake the correlations are 45.68% and 58.20%, respectively. It is recommended that account be taken of optimally oriented planes when drawing a Coulomb stress map for analyzing earthquake triggering effects between mainshock and aftershocks, in which case the source mechanisms of aftershocks are often undetermined.
     I next construct an error estimator of Coulomb stress model based on the unified model built previously and then systematically investigate the sensitivity of Coulomb stress model to the uncertainties of the slip distribution of source fault, the stress tensor relative to seismogenic earthquake fault, the friction coefficient of receiver fault, the strike, dip and rake of receiver fault and tectonic background stress as well as Coulomb stress model itself. The results show that:(1) The larger the standard deviation of the slip distribution of source fault inverted, the more fluctuational the spatial pattern of Coulomb stress is, especially in the vicinity of source fault, and the relative error of Coulomb stress arising from the uncertainty of stress tensor imparted by source fault is generally 90%-100%, both of which indicate that the slip distribution of source fault should be carefully constrained in order to draw a reasonable Coulomb stress map; (2) The Coulomb stress is not dramatically sensitive to the uncertainty of friction coefficient for strike-slip source fault but it is slightly affected for dip-slip and tensile source faults, implying that choosing an empirical friction coefficient is reasonable according to the secular slip history of seismogenic fault; (3) The uncertainty of the strike of receiver fault affects Coulomb stress more heavily than that of the dip of receiver fault does and for the rake of receiver fault case its effect is more trivial, and thus the strike of receiver fault should be better constrained for the analysis of Coulomb stress than the other two;(4) When the magnitude of tectonic background stress chosen is relatively smaller than those of stress induced by earthquake, both the magnitude and direction of tectonic background stress have minor role in changing the spatial pattern of Coulomb stress, whereas when the magnitude of tectonic background stress chosen is larger, say tens of times of the magnitude of earthquake stress, the direction of tectonic background stress begins to dominate the spatial pattern of Coulomb stress. Given that tectonic background stress is commonly larger than the stress induced by earthquake, the direc-tion of tectonic background stress should be carefully determined when one considers Coulomb stress on optimally oriented plane receiver fault;(5) The spatial pattern of Coulomb stress calculated with a simpler Coulomb stress model where an assumption that pore pressure is proportional to normal stress of fault exits is not dramatically different from that of Coulomb stress calculated with the Coulomb stress model without such assumption. However, the difference of the magnitude of Coulomb stress owing to this assumption is not ignorable. Therefore, the Coulomb stress model without this assumption should be employed for analysis of Coulomb stress triggering.
     After presenting a unified Coulomb stress model and systematically investigating the sensitivity of Coulomb stress model to its parameters and thereby bearing some creteria in mind, I explore stress transfer and stress evolution of three strong earth-quakes, the 1997 Mw7.6 Manyi earthquake, the 2001 Mw7.8 Kokoxili earthquake and the 2008 Mw7.9 Wenchuan earthquake in Tibet Plateau as case studies of Coulomb stress triggering.
     I examine the coupling of stress transfer among strong earthquakes in the vicinity of Kunlun fault such as 1937 M7.5 Huashixia earthquake,1963 M7.0 Doulan earthquake, 1973 M7.3 Manyi earthquake,1997 Mw7.6 Manyi earthquake,2001 Mw7.8 Kokixili earthquake and 2010 Mw6.9 Yushu earthquake with focus on stress transfer between the 1997 Mw7.6 Manyi earthquake and the 2001 Mw7.8 Kokoxili earthquake with Coulomb stress model. The result show that the occurrences of these six strong earthquakes can be interpreted with coseimsic Coulomb stress map. Nevertheless, Only 2010 Mw6.9 Yushu earthquake can be interpreted with coseismic and interseismic Coulomb stresses remarkably well, which might arise from the fact that the effect of viscoelastic relaxation of lower crust and upper mantle is not considered. Besides, the Coulomb stresses im-parted by the 1997 Mw7.6 Manyi earthquake on ruptured fault planes of the 2001 Mw7.8 Kokoxili earthquake are-0.03-0.02bars with the average being 0.002bars and most of fault planes have positive Coulomb stress, indicating that the former weakly promoted the latter; The 2001 Mw7.8 Kokoxili earthquake imparted all positive Coulomb stresses no larger than 0.08bars on the fault planes of the 1997 Mw7.6 Manyi earthquake and hence it would hasten potential earthquakes to occur on ruptured planes of the 1997 Manyi earthquake.
     I probe the spatial pattern of aftershocks of the 2008 Wenchuan Mw7.9 earth-quake and stress evolution due to coseimsic, postseismic and interseismic deformation on major active faults around this strong earthquake. The coseismic stress imparting from the 2008 Mw7.9 Wenchuan earthquake, postseismic stress due to postseismic re-laxation of lower crust and upper mantle and interseismic strain accumulation are now completely considered, compared with previous analysis of Coulomb stress triggering of the 2008 Mw7.9 Wenchuan earthquake. The results show that the spatiotemporal pattern of aftershocks of the 2008 Mw7.9 Wenchuan earthquake is consistent with the net Coulomb stresses remarkably well, that is, most of the aftershocks lie in zones with positive Coulomb stresses. The coseismic stresses on major faults imparted by the 2008 Mw7.9 Wenchuan earthquake is changed by time-dependent postseismic and interseis-mic Coulomb stresses and therefore complete Coulomb stresses coming from different phases such as coseismic, postseismic and interseismic ones in earthquake cycle should be considered in order to make a robust assessment of the segments of faults with po-tential earthquake hazard. The net Coulomb stress map shows that Yushu-Maqu fault, Xianshuihe fault, Anninghe fault, Zemuhe fault, Daliangshan fault, the eastern Kunlun fault and Haiyuan fault are all gradually being loaded with positive Coulomb stresses and pose earthquake hazards in future.
引文
[1]Aksan, D., H. Karabulut and S. Ozalaybey, Stress interactions of three mod-erate size earthquakes in Afyon, southwestern Turkey, Tectonophys.,2010, doi:10.1016/j.tecto.2009.12.010.
    [2]Ali, S. T., A. M. Freed, E. Calais, D. M. Manaker, and W. R. McCann, Coulomb stress evolution in Northeastern Caribbean over the past 250 years due to coseismic, postseis-mic and interseismic deformation, Geophys. J. Int.,2008,174(3),904-918, doi:10.1111/-j.1365-246X.2008.03634.x.
    [3]Amelung, F., and J. W. Bell, Interferometric synthetic aperture radar observations of the 1994 Double Spring Flat, Nevada, earthquake (M5.9):Main shock accom-panied by triggered slip on a conjugate fault, J. Geophys. Res.,2003,108(B9), doi:10.1029/2002JB001953.
    [4]Anderson, J. G., J. N. Brune, and J. N. Louie et al., Seismicity in the western Great Basin apparently triggered by the Landers, California, earthquake 28 June 1992, Bull. Seismol. Soc. Am.,1994,84,863-891.
    [5]Anderson, G., and H. Johnson, A new statistic test for static stress triggering:Ap-plication to the 1987 Superstition Hills earthquake sequence, J. Geophys. Res.,1999, 104(B9),20153-20168.
    [6]Antolik, M., R. E. Abercrombie, and G. Ekstrom, The 14 November Kokox-ili(Kunlunshan),Tibet,earthquake:rupture transfer through a large extensional stepover, Bull. Seismol. Soc. Am.,2004,94,1173-1194.
    [7]Antonioli A., M. E. Belardinelli, and M. Cocco, Modelling dynamic stress changes caused by an extended rupture in a elastic straified half-space, Geophys. J. Int.,2004, 157(1),229-244.
    [8]Antonioli A., M. E. Belardinelli, and A. Bizzarri et al., Evidence of instantaneous dy-namic triggering during the seismic sequence of year 2000 in south Iceland, J. Geophys. Res.,2006, 111(B03302),1-14.
    [9]Arnadottir, T., H. Geirsson, and P. Einarsson, Coseismic stress changes and crustal deformation on the Reykjanes Peninsula due to triggered earthquakes on 17 June 2000, J. Geophys. Res.,2004,109, B09307, doi:10.1029/2004JB003130,2004.
    [10]Arnadottir, T., S. Jonsson, F. F. Pollitz, W. Jiang, and K. L. Feigl, Postseismic defor-mation following the June 2000 earthquake sequence in the south Iceland seismic zone, J. Geophys. Res.,2005,110, B12308, doi:10.1029/2005JB003701.
    [11]Arnadottir T, S. Jonsson S and S. Pedersen et al., Coulomb stress changes in the South Iceland Seismic Zone due to two large earthquakes in June 2000, Geopys. Res. Lett. 2003,30(5),1205, doi:10.1029/2002GL016495.
    [12]Aron, A. and J. L. Hardebeck, Seismicity rate changes along the central California Coast due to stress changes from the 2003 M 6.5 San Simeon and 2004 M 6.0 Parkfield earthquakes, Bull. Seismol. Soc. Am.,2009,99(4),2280-2292.
    [13]Atakan, K. and A. Ojeda, Stress transfer in the Storegga area, offshore mid-Norway, Mar. Petrol. Geol.,2005,22(1-2),161-170.
    [14]Atkinson, B. K., Subcritical crack growth in geologic materials, J. Geophys. Res.,1984, 89(B6),4,077-4,114.
    [15]Atzori, S., M. Manunta, and G. Fornaro,Postseismic displacement of the 1999 Athens earthquakes retrieved by the Differential Interferometry by Synthetic Aperture Radar time series, J. Geophys. Res.,2008,113(B09309),1-14.
    [16]Baer, G., Y. Hamiel, G. Shamir and R. Nof, Evolution of a magma-driven earthquake swarm and triggering of the nearby Oldoinyo Lengai eruption, as resolved by InSAR, ground observations and elastic modeling, East African Rift,2007, Earth Plant. Sci. Lett.,2008,272(1-2),339-352, doi:10.1016/j.epsl.2008.04.052.
    [17]Banerjee, P., F. F. Pollitz, and B. Nagarajan et al., Coseismic slip distributions of the 26 December 2004 Sumatra-Andaman and 28 March 2005 Nias earthquakes from GPS static offsets, Bull. Seismol. Soc. Am.,2007,97, S86-S102.
    [18]Barbot, S., Y. Hamiel, and Y. Fialko, Space geodetic investigation of the coseis-mic and postseismic deformation due to the 2003 Mw7.2 Altai earthquake:Impli-cations for the local lithospheric rheology, J. Geophys. Res.,2008,113, B03403, doi:10.1029/2007JB005063.
    [19]Beeler, N. M., R. W. Simpson and S. H. Hickman et al., Pore fluid pressure, apparent friction and Coulomb failure, J. Geophys. Res.,2000,105(B11),25533-25542.
    [20]Belardinelli, M. E., M. Cocco and O. Coutant O et al., Redistribution of dynamic stress during coseismic rupture:Evidence for fault interaction and earthquake triggering, J. Geophys. Res.,1999,104(B7),14925-14945.
    [21]Ben-Menahem, A., S. J. Singh, and F. Solomon, Static deformation of a spherical earth model by internal dislocations, Bull. Seismol. Soc. Am.,1969,59,813-853.
    [22]Ben-Menahem, A., S. J. Singh, and F. Solomon, Deformation of an homogeneous earth model by finite dislocations, Rev. Geophys. Space Phys.,1970,8,591-632.
    [23]Benetatos, C., A. Kiratzi and A. Ganas et al., Strike-slip motions in the Gulf of Sigacik (western Turkey):Properties of the 17 October 2005 earthquake seismic sequence, Tectonophys.,2006,426(3-4),263-279.
    [24]Berardino, P., G. Fornaro and R. Lanari et al., A new algorithm for surface deforma-tion monitoring based on small baseline differential SAR interferograms, IEEE Trans. Geosic. Remote Sens.,2002,40(11),2375-2383.
    [25]Bezerra, F. H. R., M. K. Takeya, and M. O. L. Sousa et al., Coseismic reactivation of the Samambaia fault, Brazil, Tectonophys.,2007,430(1-4),27-39.
    [26]Biggs, J., R. Burgmann and J. T. Freymueller et al., The postseismic response to the 2002 M7.9 Denali fault earthquake:constraints from InSAR 2003-2005, Geophys. J. Int.,2008,176(2),353-367.
    [27]Biggs, J., E. Bergman and B. Emmerson et al.,Fault identification for buried strike-slip earthquakes using InSAR:the 1994 and 2004 Al Hoceima, Morocco earthquakes, Geophys. J. Int.,2006,166,1347-1362.
    [28]Bilek, S. L., and C. Lithgow-Bertelloni, Stress changes in the Costa Rica subduction zone due to the 1999 Mw=6.9 Quepos earthquake, Earth Planet. Sci. Lett.,2005, 230(1-2),97-112, doi:10.1016/j.epsl.2004.11.020.
    [29]Bilek, S. L., C. E. Elliott, and C. L. Bertelloni, Triggered seismicity associated with the 1990 Nicoya, Costa Rica, Mw=7.0 earthquake, Geochem. Geophys. Geosyst.,2009, 10(Q04S13), doi:10.1029/2008GC002317.
    [30]Bosl, W. J. and A. Nur, Aftershocks and pore fluid diffusion following the 1992 Landers earthquake, J. Geophys. Res.,2002,107(B2),1-12.
    [31]Bourouis, S. and P. Bernard, Evidence for coupled seismic and aseismic fault slip water injection in the geothermal site of Soultz (France), and implications for seismogenic transients, Geophys. J. Int.,2007,169(2),723-732.
    [32]Bressan, G., G. F. Gentile and B. Perniola, The 1998 and 2004 Bovec-Krn(Slovenia) seismic sequences:aftershock pattern, focal mechanisms and static stress changes, Geophys. J. Int.,2009,179,231-253.
    [33]Brodsky, E. E., E. Roeloffs, D. Woodcock. I. Gall, and M. Manga, A mechanism for sustained groundwater pressure changes induced by distant earthquakes, J. Geophys. Res.,2003,108(B8), doi:10.1029/2002JB002321.
    [34]Brodsky, E. E. and S. G. Prejean, New constraints on mechanisms of remotely triggered seismicity at Long Valley Caldera, J. Geophys. Res.,2005,110(B04302), doi:10.1029/-2004JB003211.
    [35]Brodksy, E. E., V. Karakostras, and H. Kanamori, A new observation of dynamically triggered regional seismicity:earthquakes in Greece following the August,1999 Izmit, Turkey earthquake, Geophys. Res. Lett.,2000,27(17),2741-2744.
    [36]Burchfiel, B. C., L. H. Royden, and R. D. Van der Hilst et al., A geological and geophysical context for the Wenchuan earthquake of 12 May 2008, Sichuan, People's Republic of China, Geol. Soc. Am. Today,2008,18(7), doi:1130/GSATG18A.1.
    [37]Burgmann, R., and G. Dresen, Rheology of the lower crust and upper mantle:evidence from rock mechanics, geodesy, and field observations, Ann. Rev. Earth Planet. Sci., 2008,36,531-567, doi:10.1146/annurev.earth.36.031207.124326.
    [38]Burgmann, R., and G. Dresen, Rheology of the lower crust and upper mantle:evidence from rock mechanics, geodesy, and field observations, Ann. Rev. Earth, Planet. Sci., 2008,36,531-567.
    [39]Burgmann, R., M. G. Kogan, and V. E. Levin et al., Rapid aseismic moment release following the 5 December,1997 Kronotsky, Kamchatka, earthquake, Geophys. Res. Lett.,2001,28(7):1331-1334.
    [40]Carder, D. S., Seismic investigations in the Boulder Dam area,1940-1944, and the influence of reservoir loading on local earthquake activity, Bull. Seismol. Soc. Am., 1945,35(4),175-192.
    [41]Carli, S. D., Voisin C, Cotton Fabrice et al. The 2000 western Tottori (Japan) earth-quake:Triggering of the largest aftershock and constraints on the slip-weakening dis-tance. J. Geophys. Res.,2008,113, B05307, doi:10.1029/2007JB004951.
    [42]Casarotti, E., and A. Piersanti, Postseismic stress diffusion in Chile and South Peru, Earth Plant. Sci. Lett.,2003,206(3),325-333, doi:10.1016/S0012-821X(02)01103-2.
    [43]Casarotti, E., A. Piersanti, and F. P. Lucentc et al., Global postseismic stress diffusion and fault interaction at long distances, Earth Planet. Sci. Lett.,2001,191(1-2),75-84.
    [44]Catherine, J. K., V. K. Gahalaut, and A. Ambikapathy, et al,2008 little Andaman af-tershock:genetic linkages with the subducting 90?E ridge and 2004 Sumatra-Andaman earthquake, Tectonophys.,2009, doi:10.1016/j.tecto.2009.08.017.
    [45]Catalli, F., M. Cocco, and R. Console, et al., Modeling seismicity rate changes during the 1997 Umbria-Marche sequence (central Italy) through a rate-and state-dependent mdoel, J. Geophys. Res.,2008,113(B11301), doi:10.1029/2007JB005356.
    [46]Cattin, R., N. Chamot-Rooke, and M. Pubellier et al., Stress change and effective friction coefficient along the Sumatra-Andaman-Sagaing fault system after the 26 De-cember 2004 (Mw=9.2) and the 28 March 2005 (Mw=8.7) earthquakes, Geochem. Geophys. Geosyst.,2009,10(Q03011), doi:10.1029/2008GC002167.
    [47]Chan, C H and R. S. Stein, Stress evolution following the 1999 Chi-Chi, Taiwan, earthquake:Consequences for afterslip, relaxation, aftershocks and departures from Omori decay, Geophys. J. Int.,2009,177(1):179-192.
    [48]Chen, K. H., S. Toda, and R J. Rau, A leaping triggered sequence along a segmented fault:The 1951 ML 7.3 Hualien-Taitung earthquake sequence in eastern Taiwan, J. Geophys. Res.,2008,113(B02304),1-19.
    [49]Chen, Q. and J. T. Freymueller, Geodetic evidence for a near-fault compliant zone along the San Andreas Fault in the San Francisco Bay, Bull. Seismol. Soc. Am.,2002, 92(2),656-671.
    [50]Chery, J., S. Carretier, and J. F. Ritz, Postseismic stress transfer explains time cluster-ing of large earthquakes in Mongolia, Earth Planet. Sci. Lett.,2001,194(1-2),277-286, doi:10.1016/S0012-821X(01)00552-0.
    [51]Chi, W. C. and E. Hauksson, Fault-perpendicular aftershock clusters following the 2003 Mw=5.0 Big Bear, California, earthquake, Geophys. Res. Lett.,2006,33(L07301), doi:10.1029/2005GL025033.
    [52]Chinnery, M. A., The stress changes that accompany strike-slip faulting, Bull. Seismol. Soc. Am.,1963,53,921-932.
    [53]Chinnery, M. A. and D. B. Jovanovich, Effect of earth layering on earthquake displace-ment fields. Bull. Seismol. Soc. Am.,1972.62,1629-1639.
    [54]Cocco, M. and J. R. Rice, Pore pressure and poreelasticity effects in Coulomb stress analysis of earthquake interactions, J. Geophys. Res.,2002,107(0),10.1029/-2000JB000138.
    [55]Cocco, M., S. Hainzl, F. Catalli et al., Sensitivity study of forecasted aftershock seis-micity based on Coulomb stress calculation and rate-and state-dependent frictional response, J. Geophys. Res.,2009, doi:10.1029/2009JB006863.
    [56]Cociani, L., C. J. Bean, and H. Lyon-Caen et al., Coseismic velocity variations caused by static stress changes associated with the 2001 Mw=4.3 Agios loanis earthquake in the Gulf of Corinth, Greece, J. Geophys. Res.,2010, doi:10.1029/2009JB006859.
    [57]Cohen,S. C. and J. T. Freymueller, Deformation of the Kenai Peninsula Alaska, J. Geophys. Res.,1997,102, B9,20479-20487, doi:10.1029/97JB01513.
    [58]Collettini, C. and R. H. Sibson, Normal faults, normal friction?, Geology,2001,29(10), 927-930.
    [59]Console, R., M. Murru M and G. Falcone et al., Stress interaction on the occurrence probability of characteristic earthquakes in Central Apennines, J. Geophys. Res.,2008, 113(B08313),1-18.
    [60]Console, R., M. Murru M and G. Falcone, Perturbation of earthquake probability for interacting faults by static Coulomb stress changes, J. Seismol.,2010,14,67-77.
    [61]Cotton, F. and O. Coutant, Dynamic stress variations due to shear faults in a plane-layered medium, Geophys. J. Int.,1997,128,676-688.
    [62]Currenti, G., C. D. Negro and G. Ganci et al., Static stress changes induced by the magmatic intrusions during the 2002-2003 Etna eruption, J. Geophys. Res.,2008, 113(B10206),1-13.
    [63]Daniel, G., D. Marsan and M. Bouchon, Perturbation of the Izmit earthquake af-tershock decaying activity following the 1999 Mw 7.2 Duzce, Turkey, earthquake, J. Geophys. Res.,2006, 111(B05310), doi:10.1029/2005JB003978.
    [64]Das, S., and C. H. Scholz,Off-fault aftershocks clusters caused by shear stress increase? Bull. Seismol. Soc. Am.,1981,71(5),1669-1675.
    [65]Decriem, J., T. Arnadottir, and A. Hooper et al.,The 2008 May 29 earthquake doublet in SW Iceland, Geophys. J. Int.,2010,181(2),1128-1146.
    [66]Delouis, B., T. Monfret, L. Dorbath et al., The Mw=8.0 Antofagasta (northern Chile) earthquake of 30 July 1995:A precursor to the end of the large 1877 gap, Bull. Seismol. Soc. Am.,1997,87(2),427-445.
    [67]Deng, J., K. Hudnut, M. Gurnis,and E. Hauksson, Stress loading from viscous flow in the lower crust and triggering of aftershocks following the 1994 Northridge, California, earthquake, Geophys. Res. Lett.,1999,26,3209-3212.
    [68]Deng, J., and L. R. Sykes, Triggering of 1812 Santa Barbara earthquake by a great San Andreas shocks:implications for future seismic hazards in southern California, Geophys. Res., Lett,1996,23,1155-1158.
    [69]Deng, J., and L. R. Sykes, Evolution of the stress field in southern California and triggering of moderate-size earthquakes:a 200-year perspective, J. Geophys. Res., 1997a,102,9859-9886.
    [70]Deng, J., and L. R. Sykes, Stress evolution in southern California and triggering of moderate-, small-, and micro-size earthquakes, J. Geophys. Res.,1997b,102,24411-24435.
    [71]Densmore, A. L.,M. A. Ellis, and Y. Li, R. Zhou, et al., Active tectonics of the Beichuan and Pengguang faults at the eastern margin of the Tibetan Plateau, Tectonics,2007, 26, TC4005, doi:10.1029/2006TC001987.
    [72]Dieterich, J. H., A constitutive law for rate of earthquake production and its application to earthquake clustering, J.Geophys. Res.,1994,99,2601-2618.
    [73]Doser, D. I., K. B. Olsen, and F. F. Pollitz et al., The 1911 M-6.6 Calaveras earth-quake:source parameters and the role of static, viscoelastic, and dynamic Coulomb stress changes imparted by the 1906 San Francisco earthquake, Bull. Seismol. Soc. Am., 2009,99(3),1746-1759.
    [74]Dubois, L., K. L. Feigl, D. Komatitsch et al., Three-dimensional mechanical models for the June 2000 earthquake sequence in the south Iceland seismic zone, Tectonophys., 2008,457(1-2),12-29.
    [75]Eberhart-Phillips, D., P. J. Haeussler, and J. T. Freymueller, eta al., The 2002 Denali fault earthquake, Alaska:A large magnitude, slip-partitioned event, Science,2003, 300(5622),1113-1118, doi:10.1126/science.108270.
    [76]Edmonds, A. R., Angular momentum in quantum mechanics, Princeton University Press, second edition,1960.
    [77]Elliott, J. L., J. T. Freymueller, and B. Rabus, Coseismic deformation of the 2002 Denali fault earthquake:contributions from synthetic aperture radar range offsets, J. Geophys. Res.,2007,112, B06421, doi:10.1029/2006JB004428.
    [78]Enescu, B. and K. Ito, The 1998 Hida Mountain, central Honshu, Japan, earth-quake swarm:Double-difference event relocation, frequency-magnitude distribution and Coulomb stress changes, Tectonophys.,2005,409(1-4),147-157.
    [79]Felzer, K. R. and E. E. Brodsky, The absence of stress shadow, Seismol. Res. Lett., 2003,75,285.
    [80]Felzer, K. R. and E. E. Brodsky, Testing the stress shadow hypothesis, J. Geophys. Res.,2005,110(B05S09),1-13.
    [81]Felzer, K. R. and E. E. Brodsky E E.2006. Decay of aftershock density with distance indicates triggering by dynamic stress, Nature,441,735-738.
    [82]Felzer, K. R., T. W. Becker and R. E. Abercrombie et al., Triggering of the 1999 Mw 7.1 Hector Mine earthquake by aftershocks of the 1992 Mw 7.3 Landers earthquake, J. Geophys. Res.,2002,107(B9), doi:10.1029/2001JB000911.
    [83]Feuillet, N., C. Nostro, C. Chiarabba, and M. Cocco, Coupling between earthquake swarms and volcanic unrest at the Alban Hill Vocano (central Italy) modeled through elastic stress transfer, J. Geophys. Res.,2004,109, B02308, doi:10.1029/2003JB002419.
    [84]Fialko, Y., D. Sandwell, M. Simons, and P. Rosen, Three-dimensional deformation caused by the Bam, Iran, earthquake and the origin of shallow slip deficit, Nature, 2005,435,295-299, doi:10.1038/nature03425.
    [85]Fielding, E. J., M. Talebian, P. A. Rosen, H. Nazari, J. A. Jackson, M. Ghorashi, and R. Walker, Surface ruptures and building damage of the 2003 Bam, Iran, earthquake mapped by satellite synthetic aperture radar interferometric correlation, J. Geophys. Res.,2005,110, B03302, doi:10.1029/2004JB003299.
    [86]Fornaro. G., F. Serafino and A. Pauciullo, Deformatoin monitoring over a large area via the ESD technique with data takes on adjacent tracks, Proc. IEEE Int. Geosci. Reomte Sens. Symp.,2007, IGARSS,2114-2117.
    [87]Fornaro, G., A. Pauciullo and F. Serafino, Deformation monitoring over large area with Multipass Differential SAR Interferometry:A new approach based on the use of Spatial Differences, Int. J. Remote Sen.,2009,30(6),1455-1478.
    [88]Freed, A. M., Earthquake triggering by static, dynamic and postseismic stress transfer, Annu. Rev. Earth Planet. Sci.,2005,33:335-67, doi:10.1146/annurev.earth.33.092203-122505.
    [89]Freed, A. M., Afterslip (and only afterslip) following the 2004 Parkfield, California, earthquake, Geophys. Res. Lett.,2007,34, L06312, doi:10.1029/2006GL029155.
    [90]Freed, A. M. and J. Lin, Time-dependent changes in failure stress following thrust earthquakes, J. Geophys. Res.,1998,103(10),24393-24410.
    [91]Freed, A. M., and J. Lin, Delayed triggering of the 1999 Hector Mine earthquake by viscoelastic stress transfer, Nature,2001,411,180-183.
    [92]Freed, A. M., S. T. Ali, and R. Burgmann, Evolution of stress in southern California for the past 200 years from coseismic, postseismic and interseismic stress changes, Geophys. J. Int.,2007,169(3),1164-1179, doi:10.1111/j.1365-246X.2007.03391.x.
    [93]Freed, A. M. and R. Burgmann, Evidence of power-law flow in the Mojave desert mantle, Nature,2004,430,548-551.
    [94]Freed, A.M., R. Burgmann, and E. Calais et al., Implications of deformation following the 2002 Denali, Alaska, earthquake for postseismic relaxation processes and litho-spheric rheology, J. Geophys. Res.,2006, 111(B1):B01,401,10.1029/2005JB003,894.
    [95]Friederich, W. and J. Dalkolmo, Complete synthetic seismograms for a spherically symmetric earth by a numerical computation of the Green's function in the frequency domain, Geophys. J. Int.,1995,122,537-550.
    [96]Fu, G. and W. Su, Surface coseismic gravity changes by dislocations in a 3-D heteroge-nous earth, Goephys. J. Int.,2008,172,479-503.
    [97]Funning, G. J., B. Parsons, and T. J. Wright, Fault slip in the 1997 Manyi, Tibet earthquake from linear elastic modeling of InSAR displacements, Geophys. J. Int. 2007,169,988-1008.
    [98]Funning, G. J., B. Parsons, and T. J. Wright, Surface displacements and source pa-rameters of the 2003 Bam (Iran) earthquake from Envisat advanced systhetic aperture radar imagery, J. Geophys. Res.,2005,110, B09406, doi:10.1029/2004JB003338.
    [99]Gahalaut, K., V. K. Gahalaut, and J. R. Kayal, Poroelastic relaxation and after-shocks of the 2001 Bhuj earthquake, India, Tecopophysics,2008,450(1-4),76-82, doi:10.1016/j.tecto.2008.07.004.
    [100]Ganas, A., G. Drakatos G and S. B. Pavlides et al., The 2001 Mw=6.4 Skyros earth-quake, conjugate strike-slip faulting and spatial variation in stress within the central Aegean Sea, J. Geodyn.,2005,39(1),61-77.
    [101]Ganas, A., S. Shanov, G. Drakatos et al., Active fault segmentation in southwest Bulgaria and Coulomb stress triggering of the 1904 earthquake sequence, J. Geodyn., 2005,40(2-3),316-333.
    [102]Ganas, A., E. Sokos and A. Agalos et al., Coulomb stress triggering of earthquakes along the Atalanti fault, central Greece:Two April 1894 M6+ events and stress changes patterns, Tectonophys.,2006,420(3-4),357-369.
    [103]Gardi, A., A. Lemoine, and R. Madariaga, Modeling of stress transfer in the Coquimbo region of central Chile, J. Geophys. Res.,2006, 111(B04307), doi:10.1029/2004JB003440.
    [104]Ge, S. M., M. Liu and N. Lu et al., Did the Zipingpu Reservior trig-ger the 2008 Wenchuan earthquake? Geophys. Res. Lett.,2009,36, L20315, doi:10.1029/2009GL040349.
    [105]Ghimire, S., K. Katsumata, and M. Kasahara, Spatio-temporal evolution of Coulomb stress in the Pacific slab inverted from the seismicity rate change and its tectonic interpretation in Hokkaido, Northern Japan, Tectonophys.,2008,455,25-42.
    [106]Gomberg, J., Stress/strain changes and triggered seismicity following the Ms 7.3 Lan-ders, California, earthquake, J. Geophys. Res.,1996,101,751-764.
    [107]Gomberg, J., M. E. Belardinelli, M. Cocco, and P. Reasenberg, Time-dependent earth-quake probabilites, J. Geophys. Res.,2005a,110, B05S04, doi:10.1029/2004JB003405.
    [108]Gomberg, J., M. L. Blanpied, and N. M. Beeler, Transient triggering of near and distant earthquakes, Bull. Seismol. Soc. Am.,1997,87(2),294-309.
    [109]Gomberg, J., N. Beeler, and M. Blanpied, On rate-state and Coulomb failure models, J. Geophys. Res.,2000,105,7857-7872.
    [110]Gomberg, J. N. M. Beeler, M. L. Blanpied, and P. Bodin, Earthquake triggering by transient and static doformations, J. Geophys. Res.,1998,103(B10),24411-24426.
    [111]Gomberg, J., P. A. Reasenberg, P. Bodin, and R. A. Harris, Earthquake triggering by seismic waves following the Landers and Hector Mine earthquakes, Nature,2001,411, 462-466.
    [112]Gomberg, J., P. Bodin, Triggering of the Little Skull Mountain, Nevada earthquake with dynamic strains, Bull. Seismol. Soc. Am.,1994,84,844-853.
    [113]Gomberg, J. P. Bodin, and H. Dragert, Earthquake nucleation by transient deforma-tions caused by the M= 7.9 Denali, Alaska, earthquake, Nature,2004,427,621-624, doi:10.1038/nature02335.
    [114]Gomberg, J., P. Bodin, and P. A. Reasenberg, Observing earthquakes triggered in the near field by dynamic deformations, Bull. Seismol. Soc. Am.,2003,93(1),118-138, doi:10.1785/0120020075.
    [115]Gomberg, J. and S. Davis, Stress/strain changes and triggered seismicity at The Gey-sers, California, J. Geophys. Res.,1996,101,733-749.
    [116]Gomberg, J. and P. Johnson, Dynamic triggering of earthquakes, Nature,2005,437, 830.
    [117]Gomberg, J., M. E. Belardinelli and M. Cocco et al., Time-dependent earthquake probabilities, J. Geophys. Res.,2005,110, B05S04, doi:10.1029/2004JB003405.
    [118]Gourmelen, N. and F. Amelung, Postseismic mantle relaxation in the central Nevada seismic belt, Science,2005,310,1473-1476.
    [119]Hainzl, S and Y. Ogata, Detecting fluid signals in seismicity data through statistical earthquake modeling, J. Geophys. Res.,2005,110(B05S07), doi: 10.1029/2004JB003247.
    [120]Hainzl, S., B. Enescu, and M. Cooco et al., Aftershock modeling based on uncertain stress calculations, J. Geophys. Res.,2009,114, B05309, doi:10.1029/2008JB006011.
    [121]Hardebeck, J. L., J. J. Nazareth, and E. Haukson, The static stress change triggering model:constraints from two southern California aftershocks sequences, J. Geophys. Res.,1998,103,24427-24437.
    [122]Hardebeck, J. L., Stress triggering and earthquake probability estimates, J. Geophys. Res.,2004,109, B04310, doi:10.1029/2003JB002437.
    [123]Harrington, R. M., and E. E. Brodsky, The absence of remotely triggered seismicity in Japan, Bull. Seismol. Am.,2006,96,871-979.
    [124]Harris, R. A., Introduction to special section:stress triggers, stress shadows, and implications for seismic hazard, J. Geophys. Res.,1998,103,24347-24358.
    [125]Harris, R. A., and R. W. Simpson, Changes in static stress on southern California faults after the 1992 Landers earthquake, Nature,1992,360,251-254.
    [126]Harris, R. A., and R. W. Simpson, Suppression of large earthquakes by stress shadows-Implication of rate and state friction laws-two examples, J. Geophys. Res.,1998,103, 24439-24451.
    [127]Harris, R. A., R. W. Simpson, and P. A. Reasenberg, Influence of static stress chantes on earthquake location in southern California, Nature,1995,375,221-224.
    [128]Hayes, T. J., K. F. Tiampo, and J. Fernandez et al., A gravity gradient method for characterizing the post-seismic deformation field for a finite fault, Geophys. J. Int. 2008,173(3),802-805.
    [129]Hearn, E. H., Earthquakes:Shock delay, Nature,2001,411,150-151.
    [130]Hearn, E. H., R. Burgmann, and R. E. Reilinger, Dynamics of Izmit earthquake post-seismic deformation and loading of the Duzce earthquake hypocenter, Bull. Seismol. Soc. Am.,2002,92(1),172-193.
    [131]Healy, J. H., W. W. Rubey, and D. T. Griggs et al., The Denver earthquakes:Disposal of waste fluids by injection into a deep well has triggered earthquakes near Denver, Colorado, Science,1968,161,1301-1310.
    [132]Heidbach, O. and Z. Ben-Avraham, Stress evolution and seismic hazard of the Dead Sea Fault system, Earth Planet. Sci. Lett.,2007,257(1-2),299-312.
    [133]Hetland, E. A., and B. H. Hager, Postseismic and interseismic displacements near a strike-slip fault:A two-dimensional theory for general linear viscoelastic rheologies, J. Geophys. Res.,2005,110, B10401, doi:10.1029/2005JB003689.
    [134]Hill, D. P., Dynamic stresses, Coulomb failure, and remote triggering, Bull. Seismol. Soc. Am.,2008,98(1),66-92.
    [135]Hill, D. P., F. Pollitz, and C. Newhall, Earthquake-volcano interactions, Phys. To-day,2002,55,41-47.
    [136]Hill, D. P., M. J. S. Johnston, O. J. Langbein, and R. Bilham, Response of Long Valley caldera to the Mw=7.3 Landers, California, earthquake, J. Geophys. Res.,1995,100, 12985-13005.
    [137]Hill, D. P., P. A. Reasenberg, and A. J. Michael, et al., Seismicity remotely triggered by the magnitude 7.3 Landers, California earthquake, Science,1993,260,1617-1623.
    [138]Hill, D. P., Prejean S G. Dynamic triggering, Treatise Geophys.,2007,4,1-61.
    [139]Hough, S. E., Remotely triggered earthquakes following moderate mainshocks (or why California is not falling into the ocean, Seismol. Res. Lett.,2005,76(1),58-66.
    [140]Hsu, Y J, Simons, M, Avouac J P,Galetzka J, Sieh K, Chlieh M, Natawidjaja D, Prawirodirdjo L, Bock Y., Frictional afterslip following the 2005 Nias-Simeulue earth-quake, Sumatra, Science,2006,312(5782),1921-1926.
    [141]Hubert, A., G. King, R. Armijo, B. Meyer, and D. Papanastasiou, Fault re-activation, stress interaction, and rupture propagation of the 1981 Corinth earthquake sequence, Earth and Planet. Sci. Lett.,1996,142,573-585.
    [142]Hubert-Ferrari, A., A. Barka, E. Jacques, S. S. Nalbant, B. Meyer, R. Armijo, P. Tapponnier, and G. C. P. King, Seismic hazard in the Marmara Sea region following the 17 August 1999 Izmit earthquake, Nature,2000,404,269-273.
    [143]Huang, Y., J. Wu, and T. Zhang et al., Relocation of the M 8.0 Wenchuan earthquake and its aftershock sequence, Sci. China D,2008,51,1703-1711.
    [144]Hughes, K. L. H., T. Masterlark, and W. Mooney, Poroelastic stress-triggering of the 2005 M8.7 Nias earthquake by the 2004 M9.2 Sumatra-Andaman earthquake, Earth Planet. Sci. Lett.,2010,293,289-299.
    [145]Husen, S., S. Wiemer, and R. B. Smith, Remotely triggered seismicity in the Yellow-stone National Park Region by the 2002 Mw 7.9 Denali fault earthquake, Alaska, Bull. Seismol. Soc. Am.,2004,94,6B, S317-S331, doi:10.1785/0120040617.
    [146]Husker, A. L., and E. E. Brodsky, Seismicity in Idaho and Montana triggered by the Denali fault earthquake:A window into the geologic context for seismic triggering, Bull. Seismol. Soc. Am.,2004,94,68, S310-S316, doi:10.1785/0120040618.
    [147]Ishii, H. and A. Takagi, Theoretical study on the crustal movements. Part Ⅰ. The influcence of surface topography(two-dimensional SH-torque source), Sci. Rep. Tohoku Univ. Serv.5, Geophys.,1967,19,77-94.
    [148]Jackson, J., M. Bouchon, and E. Fielding et al., Seismotectonic, rupture process, and earthquake-hazard aspects of the 2003 December 26 Bam, Iran, earthquake, Geophys. J. Int.,2006,166,1270-1292.
    [149]Jacques, E., C. Monaco and P. Tapponnier P et al., Faulting and earthquake triggering during the 1783 Calabria seismic sequence, Geophys. J. Int.,2002,147(3),499-516.
    [150]Ji, C., and G. Hayes, Preliminary result of the May 12,2008 Mw 7.9 east-ern Sichuan, China earthquake,2008, http://earthquake.usgs.gov/eqcenter/ eqinthenews/2008/us2008ryan/finite_fault.php.
    [151]Jin, H., T. Kato, and M. Hori, Estimation of slip distribution using an inverse method based on spetral decomposition of Green's function utilizing Global Positioning Sys-tem(GPS) data, J. Geophys. Res.,2007,112, B07414, doi:10.1029/2004JB003378.
    [152]Jonsson, S., S. Segall, R. Pedersen, and G. Bjornsson, Post-earthquake ground move-ments correlated to pore-pressure transients, Nature,2003,424,179-183.
    [153]Johnson, K. M., R. Burgmann, and J. T. Freymueller, Coupled afterslip and viscoelastic flow following the 2002 Denali Fault, Alaska earthquake, Geophys. J. Int.,2009,176, 670-682.
    [154]Jonsson, S., Stress interaction between magma accumulation and trapdoor faulting on Sierra Negra volcano, Galapagos, Tectonophys.,2009,471(1-2),36-44.
    [155]Jolivet, R., Burgmann R., Houlie N., Geodetic exploration of the elastic properties across and within the northern San Andreas Fault zone, Earth Planet. Sci. Lett.,2009, 126-131.
    [156]Kagan, Y. Y., and D. D. Jackson, Probabilistic forecasting of earthquakes, Geophys. J. Int.,2000,143,438-453.
    [157]Kagan, Y. Y., D. D. Jackson, and Y. F. Rong, A testable five-year forecast of moderate and large earthquake in southern California based on smoothed seismicity, Seism. Res. Lett.,2007,78(1),94-98.
    [158]Kanamori, H., Earthquake Prediction:An Overview, in W. H. K. Lee, Kanamori, H., Jennings, P., and Kisslinger, C., eds., "International Handbook of Earthquake and Engineering Seismology":San Diego, Academic Press, Part B, p.2003,1205-1216.
    [159]Karakostas, V. G., E. E. Papadimitriou, and C. B. Papazachos, Properties of the 2003 Lefkada, Ionian Islands, Greece, Earthquake seismic sequence and seismicity triggering, Bull. Seismol. Soc. Am.,2004,94(5),1976-1981.
    [160]Kenner, S.. and P. Segall. Time-dependence of the stress shadowing effect and its relation to the structure of the lower crust, Geology,1999,27,119-122.
    [161]Kilb, D., A strong correlation between induced peak dynamic Coulomb stress change from the 1992 M7.3 Landers, California, earthquake and hypocenter of the 1999 M7.1 Hector Mine, California, earthquake, J. Geophys. Res.,108(B1),2012, doi:10.1029/2001JB000678.
    [162]Kilb, D., J. Gomberg, and P. Bodin, Aftershock triggering by complete Coulomb stress changes, J. Geophys. Res.,2002,107(B4),10.1029/2001JB000202.
    [163]Kilb, D. J. Gomberg, and P. Bodin, Triggering of earthquake aftershocks by dynamic stresses, Nature,2000,408,570-574, doi:10.1038/35046046.
    [164]Kilb, D., M. Ellis, J. Gomberg, and S. Davis, On the origin of diverse aftershock mechanisms following the 1989 Loma Prieta earthquake, Geophys. J. Int.,1997,128, 557-570.
    [165]King, G. C. P., Fault interaction, earthquake stress changes, and the evolution of seismicity, Treatise Geophys.,2007,4,225-255.
    [166]King, G. C. P., R. S. Stein, and J. Lin, Static stress changes and the triggering of earthquakes, Bull. Seismol. Soc. Am.,1994,84(3),935-953.
    [167]King, G. C. P., and M. Cocco, Fault interactions by elastic stress changes:new clues from earthquake sequences, Adv. Geophys.,2001,44,1-38.
    [168]Kiratzi, A, E. Sokos and A. Ganas et al., The April 2007 earthquake swarm near Lake Trichonis and implications for active tectonics in western Greece, Tectonophys.,2008, 452(1-4),51-65.
    [169]Kisslinger, C., A review of theories of mechanisms of induced seismicity, Eng. Geol., 1976,10,85-98.
    [170]Kreemer, C., W. E. Holt, and A. J. Haines, An integrated global model of present-day plate motions and plate boundary deformation, Geophys. J. Int.,2003,154(1),8-34.
    [171]Kuempel, H. J., Poroelasticity:Parameters reviewed, Geophys. J. Int.,1991,105(3), 783-799.
    [172]Lasocki, S., V. G. Karakostas V G and E. E. Papadimitriou, Assessing the role of stress transfer on aftershock locations, J. Geophys. Res.,2009,114, B11304, doi:10.1029/2008JB006022.
    [173]Lasserre, C., G. Peltzer, F. Crampe, Y. Klinger, J. Van der Woerd, and P. Tap-ponnier, Coseismic deformation of the 2001 Mw=7.8 Kokoxili earthquake in Tibet, measured by Syntetic Aperture Radar Interferometry, J. Geophys. Res.,2005,110, B12408, doi:1029/2004JB003500.
    [174]Lapwood, E. R. and T. Usami, Free oscillations of the earth, Cambridge University Press,1981.
    [175]LePichon, X, C. Kreemer,and N. Chamot-Rooke, Asymmetry in elastic properties and the evolution of large continental strike-slip faults, J. Geophys. Res.,2005,110(B03405).
    [176]Li, Z., E. Fielding J., and T. Wright et al., Fault trace and slip in the 2008 Mw 7.9 Sichuan, China earthquake from InSAR and GPS observations, AGU Fall Meeting 2008 Eos Trans. AGU,2008,89(53), Fall Meet. Suppl., Abstract G33C-0714.
    [177]Lienkaemper, J., J. S. Galehouse, and R. W. Simpson, Creep response of the Hayward fault to stress changes caused by the Loma Prieta earthquake, Science,1997,276, 2014-2016.
    [178]Linde, A. T., I S. Sacks, M. J. S. Johnston, D. P. Hillt, and R. G. Bilham, Increased pressure from rising bubbles as mechanism for remotely triggered seismcity, Nature, 1994,408-410, doi:10.1038/371408a0.
    [179]Lin, J. and R. S. Stein, Stress triggering in thrust and subduction earthquakes and stress interaction between the southern San Andreas and nearby thrust and strike-slip faults, J. Geophys. Res.,2004,109(B02303),1-19.
    [180]Lin, J. and R. S. Stein, Seismic constraints and Coulomb stress changes of a blind thrust fault system,1:Coalinga and Ketteman Hills, California, Open-File Report, 2006,2006-1149.
    [181]Lin, J., R. Stein R, and V. Sevilgen et al., USGS-WHOI-DPRI Coulomb stress-transfer model for the January 12,2010, Mw= 7.0 Haiti earthquake:U.S. Geological Survey Open-File Report 2010-1019,2010,7 p.
    [182]Lohman, R. B., and J. J. McGuire, Earthquake swarms driven by aseismic creep in the Salton Trough, California, J. Geophys. Res.,2007,112(B04405),1-10.
    [183]Lorenzo-Martin, F., F. Roth, and R. Wang, Elastic and inelastic triggering of earth-quakes in the North Anatolian fault zone, Tectonicphysics.,2006,424(3-4),271-289.
    [184]Luo G., and M. Liu, Stress evolution and fault interactions before and after the 2008 Great Wenchuan earthquake, Tectonophys.,2010, doi:10.1016/j.tecto.2009.12.019.
    [185]Lynch, J. C., R. Burgmann, M. A. Richards, and R. M. Ferencz, When faults commu-nicate:Viscoelastic coupling and earthquake clustering in a simple two-fault system, Geophys. Res. Lett.,2003,30(6),1270, doi:10.1029/2002GL016765.
    [186]Ma, K. F., C. Chan, and R. S. Stein, Response of seismicity to Coulomb stress triggers and shadows of the 1999 Mw=7.6 Chi-Chi, Taiwan, earthquake, J. Geophys. Res., 2005,110, B05S19, doi:10.1029/2004JB003389.
    [187]Mallman, E. P., and M. D. Zoback, Testing Coulomb stress-transfer models with seism-city rates for the Landers and Kobe earthquakes, Seismol, Res. Lett.,2003,75,285.
    [188]Mallman, E. P., and M. D. Zoback, Assessing elastic Coulomb stress transfer models using seismicity rates in southern California and southwestern Japan, J. Geophys. Res., 2007,112, B03304, doi:10.1029/2005JB004076.
    [189]Malservisi, R., K. P. Furlong, and C. R. Gans, Microseismicity and creeping faults: Hints from modeling the Hayward fault, California (USA), Earth Planet. Sci. Lett., 2005,234,421-435.
    [190]Mandal, P., K. R. Chadha, and I. P. Raju et al., Coulomb static stress variations in the Kachchh, Gujarat, India:Implications for the occurrences of two recent earthquakes (Mw=5.6) in the 2001 Bhuj earthquake region, Geophys. J. Int.,2007,169,281-285.
    [191]Marsan, D., Triggering of seismicity at short timescales following California earth-quakes, J. Geophys. Res.,2003,108(B5),2266, doi:108:10.1029/2002JB001946.
    [192]Marsan, D., and O. Lengline, Extending earthquakes reach through cascading, Science, 2008,319(5866),1076-1079.
    [193]Martinez-Diaz, J. J., R. Capote and M. Tsige et al., Seismic triggering in a stable continental area:The Lugo 1995-1997 seismic sequences (NW Spain), J. Geodyn., 2006,41(4),440-449.
    [194]Masterlark, T., and H. F. Wang, Transient stress coupling between the 1992 Landers and 1999 Hector Mine, California, earthquakes, Bull. Seismol. Soc. Am.,2002,92(4), 1470-1480, doi:10.1785/0120000905.
    [195]Matsu'ura, M. and R. Sato, Static deformation due to the fault spreading over several layers in a multi-layered medium, Part Ⅱ.Strain and tilt, J. Phys. Earth,1975,23,1-29.
    [196]McCaffrey, R., Crustal block rotations and plate coupling, in Plate Boundary Zones, Geodyn. Seri.,30 Stein and J. Freymeller, editors, AGU,2002,101-122.
    [197]McCloskey, J., S. S. Nalbant, and S. Steacy, Structural constraints on the spatial distribution of aftershocks, Geophys. Res. Lett.,2003,30(2),1610, doi:10.1029/2003GL017225.
    [198]McCloskey, J., S. S. Nalbant, and S. Steacy, Earthquake risk from co-seismic stress, Nature,2005,434,291.
    [199]McGarr, A. and D. Simpson, Keynote lecture:A broad look at induced and triggered seismicityin Rockbursts and Seismicity in Mines(eds Lasocki, S. and Gibowicz, S.), Balkema, Rotterdam,1997,385-396.
    [200]McGinley, J. R., A comparison of observed permanent tilts and strains due to earth-quakes with those calculated from displacement dislocations in elastic earth models, Ph.D. Thesis, California Institute of Technology, Pasadena, California,1969.
    [201]McGinty, P. and R. Robinson R., The 2003 Mw 7.2 Fiordland subduction earthquake, New Zealand:aftershock distribution, main shock fault plane and static stress changes on the overlying Alpine Fault, Geophys. J. Int.,2007,169(2),579-592.
    [202]McHugh, S. and M. Johnston, Surface shear stress, strain and shear displacement for screw dislocations in a vertical slab with shear modulus contrast, Geophys. J. R. Astr. Soc.,1977,49,715-722.
    [203]Meade, B. J., Present-day kinematics at the India-Asia collision zone, Geology,2007, 35,81-84, doi:10.1130/G22924A.1.
    [204]Meade, B. J., et al., Estimates of seismic potentional in the Marmara Sea region from block models of secular deformation constrained by global postioning system measure-ments, Bull. Seismol. Soc. Am.,2002,92(1),208-215.
    [205]Meade, B. J., and H. B. Hager, Block models of crustal motion in southern Cal-ifornia constrained by GPS measurements, J. Geophys. Res.,2005a,110, B03403, doi:10.1029/2004JB003209.
    [206]Meade,B. J., and B. H. Hager, Spatial localization of moment deficits in southern California, J. Geophys. Res.,2005b,110(B4).
    [207]Meade, B. J., and J. P. Loveless.Block modeling with connected fault-network geome-tries and a linear elastic coupling estimator in spherical coordinates. Bull. Seismol. Soc. Am.,2009,99(6),3124-3139.
    [208]Micklethwaite, S. and S. F. Cox, Progressive fault triggering and fluid flow in aftershock domains:Examples from mineralized Archaean fault system, Earth Planet. Sci. Lett. 2006,250(1-2),318-330.
    [209]Mikumo, T., S. K. Singh,and M. A. Santoyo, A possible stress interaction between large thrust and normal faulting earthquakes in the Mexican subduction zone, Bull. Seismol. Soc. Am.,1999,89(6),1418-1427.
    [210]Mikumo, T., T. Miyatake, and M. A. Santoyou, Dynamic rupture of asperities and stress change during a sequence of large interpolate earthquakes in the Mexican sub-duction zone, Bull. Seismol. Soc. Am.,1998,88,686-702.
    [211]Mikumo, T., Y. Yagi, and S. K. Singh et al., Coseismic and postseismic stress changes in a subduction plate:Possible stress interactions between large interpo-late thrust and intraplate normal-faulting earthquak, J. Geophys. Res.,2002,107(B1), doi:10.1029/2001JB000446.
    [212]Miller. M. M., T. Melbourne, and D. J. Johnson et al., Periodic slow earthquakes from the Cascadia subduction zone, Science,2002,295(5564),2423.
    [213]Miyazawa, M., E. E. Brodsky, and J. Mori J., Learning from dynamic triggering of low-frequency tremor in subduction zones, Earth Planet. Space,2008,60, e17-e20.
    [214]Miyazawa, M., and E. E. Brodsky, Deep low-frequency tremor that correlates with passing surface waves, J. Geophys. Res.,2008,113(B01307),doi:10.1029/2006JB004890.
    [215]Miyazawa, M., and J. Mori, Evidence suggesting fluid flow beneath Japan due to periodic seismic triggering from the 2004 Sumatra-Andaman earthquake, Geophys. Res. Lett.,2006,33(L05303), doi:10.1029/2005GL025087.
    [216]Miyazawa, M., and J. Mori, Detection of triggered deep low-frequency events from the 2003 Takachi-oki earthquake, Geophys. Res. Lett.,2005,32(L10307), doi:10.1029/2005GL022539.
    [217]Miyazawa, M., I. Nakanishi, and Y. Sudo et al., Dynamic response of frequent tremors at Aso volcano to teleseismic waves from the 1999 Chi-Chi,Taiwan earthquake, J. Vol-canol. Geotherm. Res.,2005,147(1-2),173-186.
    [218]Mohamad, R., A. N. Darkal, and D. Seber, Remote earthquake triggering along the Dead Sea Fault in Syria following the 1995 Gulf of Aqaba earthquake (Ms=7.3), Seismol. Res. Lett.,2000,71,47-52.
    [219]Molnar, P., and P. Tapponnier, Cenozoic tectonics of Asia:Effects of a continental collision:Featurs of recent continental tectonics in Asia can be interpreted as results of the India-Eurasia collision, Science,1975,189(4201),419-426.
    [220]Motagh M., B. Schurr, J. Anderssonhn et al., Subduction earthquake deformation associated with 14 November 2007, Mw7.8 Tocopilla earthquake in Chile; Results from InSAR and aftershock, Tectonophys.,2010, doi:10.1016/j.tecto.2010.04.033.
    [221]Mouyen, M., R. Cattin, and F. Masson, Seismic cycle stress change in west-ern Taiwan over the last 270 years, Geophys. Res., Lett.,2010,37, L03306, doi:10.1029/2009GL042292.
    [222]Muller, J. R., A. Aydin, and F. Maerten, Investigating the transition between the 1967 Mudurnu Valley and 1999 Izmit earthquakes along the North Anatolian fault with static stress changes, Geophys. J. Int.,2003,154,471-482.
    [223]Murray-Moraleda, J. R., and R. W. Simpson, Geodetically inferred coseismic and post-seismic slip due to the M 5.4 31 October 2007 Alum Rock earthquake, Bull. Seismol. Soc. Am.,2009,99(5),2784-2800.
    [224]Nakamura, T., S. Tsuboi, and Y. Kaneda et al., Rupture process of the 2008 Wenchuan, China earthquake inferred from teleseismic waveform inversion and forward modeling of broadband seismic waves. Tectonophys.,2009, doi:10.1016/j.tecto.2009.09.020.
    [225]Nakano, M., H. Kumagai, and S. Toda et al., Source model of an earthquake doublet that occurred in a pull-apart basin along the Sumatran fault, Indoniesia, Geophys. J. Int.,2010,181,141-153.
    [226]Nalbant, S. S. A. Hubert, and G. C. P. King, Stress coupling between earthquakes in northwest Turkey and the North Agean sea, J. Geophys. Res.,1998,103,24469-24486.
    [227]Nalbant, S. S., J. McCloskey, and S. Steacy, Lessons on the calculation of static stress loading from the 2003 Bingol, Turkey earthquake, Earth Planet. Sci. Lett.,2005a,235, 632-640.
    [228]Nalbant, S. S., J. McCloskey, S. Steacy, and A. A. Barka, Stress accumulation and increased seismic risk in Eastern Turkey, Earth Planet. Sci. Lett.,2002,195,291-298.
    [229]Nalbant, S. S., S. Steacy, and J. McCloskey, Stress transfer relations among the earth-quakes that occurred in Kerman province, southern Iran since 1981, Geophys. J. Int. 2006,167,309-318.
    [230]Niewiadomski, J. and K. Rybicki, The stress field induced by antiplane shear cracks-Application to earthquake study, Bull. Earthquake Res. Inst., Tokyo Univ.,1984,59, 67-81.
    [231]Nostro, C., A. Piersanti, and M. Cocco, Normal fault interaction caused by coseismic and postseismic stress changes, J. Geophys. Res.,2001,106(B9),19391-19410.
    [232]Nostro, C., L. Chiaraluce, and M. Cocco, Coulomb stress changes caused by repeated normal faulting earthquakes during the 1997 Umbria-Marche(central Italy) seismic se-quence, J. Geophys. Res.,2005,110, B05S20, doi:10.1029/2004JB003386.
    [233]Nostro, C., R. S. Stein, M. Cocco, M. E. Belardinelli, and W. Marzochi, Two-way coupling between Vesuvius eruptions and southern Apennine earthquake (Italy) by elastic stress transfer, J. Geophys. Res.,1998,103,24487-24504.
    [234]Nur, A., and J. R. Booker, Aftershocks caused by pore fluid flow? Science,1972,175, 4024,885-887, doi:10.1126/science.175.4024.885.
    [235]Obana, K., and S. Kodaira, Low-frequency tremors associated with reverse faults in a shallow accretionary prism, Earth Planet. Sci. Lett.,2009,287(1-2),168-174.
    [236]Okada, Y., Surface Deformation due to shear and tensile faults in a half-space, Bull. seism. Soc. Am.,1985,75,1135-1154.
    [237]Okada, Y., Internal deformation due to shear and tensile faults in a half-space, B. Seismol. Soc. Am.,1992,82(2),1018-1040.
    [238]Oppenheimer, D. H., P. A. Reasenberg, and R. W. Simpson, Fault plane solutions for the 1984 Morgan Hill, California, earthquake sequence:Evidence for the state of stress on the Calaveras fault, J. Geophys. Res.,1988,93,9007-9026.
    [239]Ortega, R., and L. Quintanar, Seismic evidence of a ridge-parallel strike-slip fault off the transform system in the Gulf of California, Geophys. Res. Lett.,2010,37, L06301, doi:10.1029/2009GL042208.
    [240]Pankow, K. L., W. J. Arabasz, and J. C. Pechmann J C et al., Triggered seismicity in Utah from the November 3,2002, Denali Fault earthquake, Bull. Seismol. Soc. Am., 2004,94(6B), S332-S347.
    [241]Papadimitriou, E. E., Mode of strong earthquake recurrence in the central Ionian is-lands (Greece):Possible triggering due to Coulomb stress changes generated by the occurrence of previous strong shocks, Bull. Seismol. Soc. Am.,2002,92(8),3293-3308, doi:10.1785/0120000290.
    [242]Papadimitriou, E. E., and V. G. Karakostas, Earthquake generation in Cyprus revealed by the evolving stress field, Tectonophys.,2006,423(1-4),61-72.
    [243]Papadimitriou, P., G. Kaviris, and K. Makropoulos, The Mw=6.3 2003 Lefkada earth-quake(Greece) and induced stress transfer changes, Tectonphys.,2006,423(1-4),73-82.
    [244]Papadimitriou, P., X. Z. Wen, and V. Karakostas et al., Earthquake triggering along the Xianshuihe fault zone of western Sichuan, China, Pure Appl. Geophys.,2004,161, 1683-1707.
    [245]Park, S. C., and J. Mori, Triggering of earthquakes during the 2000 Papua New Guinea earthquake sequence, J.Geophy. Res.,2007,112(B03302),1-14.
    [246]Parotidis, M., S. A. Shapior, and E. Pothert, Evidence for triggering of the Vogt-land swarms 2000 by pore pressure diffusion, J. Geophys. Res.,2005,110(B05S10), doi:10.1029/2004JB003267.
    [247]Parsons, T., A. Barka, and S. Toda S et al., Influence of the 17 August 1999 Izmit earthquake on seismic hazards in Istanbul, The 1999 Izmit and Duzce Earthquakes: Preliminary results,2000, pp.295-310.
    [248]Parsons, T., Global Omori law decay of triggered earthquakes:Large aftershocks outside the classical aftershock zone, J. Geophys. Res.,2002,107(B9),2199, doi:10.1029/2001JB000646.
    [249]Parsons, T., C. Ji, E. Kirby, Stress changes from the 2008 Wenchuan earth-quake and increased hazard in the Sichuan basin, Nature,2008,454,509-510, doi:10.1038/nature0717.
    [250]Parsons, T. and D. S. Dreger, Static-stress impact of the 1992 Landers earthquake sequence on nucleation and slip at the site of the 1999 M=7.1 Hector Mine earthquake, southern California, Geophys. Res. Lett.,2000,27(13),1949-1952.
    [251]Parsons, T., R. S. Stein, R. W. Simpson, and P. A. Reasenberg, Stress sensitivity of fault seismicity:a comparison between limited-offset oblique and major strike-slip faults, J. Geophys. Res.,1999,104,20183-20202.
    [252]Parsons, T., R. S. Yeats, and Y. Yagi et al., Static stress change from the 8 Oc-tober,2005 M=7.6 Kashimir earthquake, Geophys. Res. Lett.,2006,33(L06304), doi:10.1029/2005GL025429.
    [253]Parsons, T., S. Toda, R. S. Stein, A. Barka, and J. H. Dieterich, Heightened odds of large earthquakes near Istanbul:An interaction based probability calculation, Science, 2000,288,661-665.
    [254]Peltier, W. R., The impluse response of a Maxwell earth, Rev. Geophys.,1974,12(4), 649-669.
    [255]Peltzer, G., P. Rosen, F. Rogez, and K. Hudnut, Postseismic rebound in fault step-overs caused by pore fluid flow, Science,1996,273(5279),1202-1204.
    [256]Perea, H., The Catalan seismic crisis (1427 and 1428;NE Iberian Peninsula):geological sources and earthquake triggering, J. Geodyn.,2009,47(5),259-270.
    [257]Pollitz, F. F., Postseismic relaxation theory on the spherical earth, Bull. Seismol. Soc. Am.,1992,82,422-453.
    [258]Pollitz, F. F., Coseismic deformation from earthquake faulting on a layered spherical Earth, Geophys. J. Int.,1996,125,1-14.
    [259]Pollitz, F. F., Gravitational-viscoelastic postseismic relaxation on a layered spehrical earth, J. Geophys. Res.,1997,102,17921-17941.
    [260]Pollitz, F. F., Post-seismic relaxation theory on a laterally heterogeneous viscoelastic model, Geophys. J. Int.,2003,155,57-78.
    [261]Pollitz, F. F., The relationship between the instantaneous velocity field and the rate of moment release in the lithosphere, Geophys. J. Int.,2003,153,595-608.
    [262]Pollitz, F. F., Transient rheology of the upper mantle beneath central Alaska inferred from the crustal velocity field following the 2002 Denali earthquakes, J. Geophys. Res., 110, B08407, doi:10.1029/2005JB003672.
    [263]Pollitz, F. F., A new class of earthquake observations, Geophys.,2006,313(5787), 619-620.
    [264]Pollitz,F. F. and D. P. Schwartz, Probabilistic seismic hazard in the San Francisco Bay area based on simplified viscoelastic cycle model of fault interactions, J. Geophys. Res. 2008,113, p. B05409 10.1029/2007JB005227.
    [265]Pollitz, F. F. and M. J. S. Johnston, Direct test of static stress versus dy-namic stress triggering of aftershocks, Geophys. Res. Lett.,2006,33(L15318), doi:10.1029/2006GL026764.
    [266]Pollitz, F. F., M. Vergnolle, and E. Calais, Fault interaction and stress triggering of twentieth century earthquakes in Mongolia, J. Geophys. Res.,2003,108(B10),2503, doi:10.1029/2002JB002375.
    [267]Pollitz, F. F., P. McCrory, J. Svarc, and J. Murray, Dislocation models of interseis-mic deformation in the western United States, J. Geophys. Res.,2008,113, B04413, doi:10.1029/2007JB005174.
    [268]Pollitz, F. F., and I. S. Sacks, Consequences of stress changes following the 1891 Nobi earthquake, Japan, Bull. Seismol. Soc. Am.,1995,85,796-805.
    [269]Pollitz, F. F., and I. S. Sacks, The 1995 Kobe, Japan, earthquake:a long-delayed aftershock of the offshore 1944 Tonankai and 1946 nankaido earthquakes, Bull. Seismol. Soc. Am.,1997,87,1-10.
    [270]Pollitz, F. F. and I. S. Sacks, Stress triggering of the 1999 Hector Mine earthquake by transient deformation following the 1992 Landers earthquake, Bull. Seismol. Soc. Am., 2002,92(4),1487-1496, doi:10.1785/0120000918.
    [271]Pollitz, F. F., P. Banerjee, R. Burgmann, M. Hashimoto and N. Choosakul, Stress changes along the Sunda trench following the 26 December 2004 Sumatra-Andaman and 28 March 2005 Nias earthquakes, Geophys. Res. Lett.,2006,33, L06309, doi:10.1029
    [272]Pollitz, F. F., R. Burgman, and R. Romanowicz, Viscocity of oceanic asthenosphere inferred from remote triggering of earthqukeas, Science,1998,280(5367),1245-1249.
    [273]Pollitz, F. F., W. H. Bakun, and M. Nyst, A physical model for strain accumulation in the San Francisco Bay region:Stress evolution since 1838, J. Geophys. Res.,2004, 109, B11408, doi:10.1029/2004JB003003.
    [274]Pondard, N., R. Armijo, and G. C. P. King et al., Fault interactions in the Sea of Marmara pull-apart (North Anatolian fault):earthquake clustering and propagating earthquake sequences, Geophys. J. Int.,2007,171(3),1185-1197.
    [275]Prejean, S. G., A. Stork, W. Ellsworth, D. Hill, and B. Julian, High precision earth-quake locations reveal seismogenic structure beneath Mammoth Mountain, California, Geophys. Res. Lett.,2003,30(24),2247, doi:10.1029/2003GL018334.
    [276]Prejean, S. G., D. P. Hill, and E. E. Brodsky et al., Remotely triggered seismcity on the United States West Coast following the Mw 7.9 Denali fault earthquake, Bull. Seismol. Soc. Am.,2004,94,6B, S348-S359.
    [277]Raleigh, C. B., J. H. Healy, and J. D. Bredehoeft, An experiment in earthquake control at Rangeley, Colorado, Science,1976,191,1230-1237.
    [278]Ranalli, G., Rheology of the Earth, Chapman and Hall, London,1995,413 pp.
    [279]Rajput, S, V. K. Gahalaut and P. S. Raju et al., Rupture parameters of the 1999 Chamoli earthquake in Garhwal Himalaya:Constraints from aftershocks and change in failure stress, Tectonophys.,2005,404(1-2),23-32.
    [280]Raju, P. S., V. K. Gahalaut, and M. R. Kumar, Phodong(Sikkim)earthquake of 14 February 2006 and its aftershocks-Coulomb stress analysis, J. Geodyn.,2008,46(1-2), 63-67.
    [281]Raeesi, M. and K. Atakan, On the deformation cycle of a strongly coupled plate in-terface:The triple earthquakes of 16 March 1963,15 November 2006, and 13 Jan-uary 2007 along the Kurile subduction zone, J. Geophys. Res.,2009,114, B10301, doi:10.1029/2008JB006184.
    [282]Reasenberg, P. A, and R. W. Simpson, Response of regional seismicity to the static stress change produced by the Loma Prieta earthquake, Science,1992,255,1687-1690.
    [283]Reid, H. F., The mechanism of the earthquake. In:"The California Earthquake of April 18,1906." Report of the State Earthquake Investigation Commission,1910,2. pp. 1-192, Carnegie Institution, Washington, D. C.
    [284]Rhie, J., D. Dreger, and R. Burgmann et al., Slip of the 2004 Sumatra-Andaman earthquake from joint inversion of long period global seismic waveforms and GPS static offsets, Bull. Seismol. Soc. Am.,2007,97, S115-S127.
    [285]Richwalski, S. M., and F. Roth, Elastic and visco-elastic stress triggering in the South Iceland Seismic Zone due to large earthquakes since 1706, Tectonophys.,2008,447(1-4), 127-135.
    [286]Rivera, L., J. Van der Woerd, and A. Tocheport, The Kokoxili, November 14,2001, earthquake:History and geometry of the rupture from teleseismic data and field ob-servations, Geophys. Res. Abstr.[CD-ROM],2003,5, Abstract 10910.
    [287]Robinson, R., Fault interactions and subduction tectonics:a re-examination of the Weber, New Zealand, earthquake sequence of 1990, Geophys. J. Int.,2003,154,745-753.
    [288]Robinson, R., Potential earthquake triggering in a complex fault network:the northern South Island, New Zealand, Geophys. J. Int.,2004,159,734-748.
    [289]Robinson, R., and S. Y. Zhou, Stress interactions within the Tangshan, China, earth-quake sequence of 1976, Bull. Seismol. Soc. Am.,2005,95(6),2501-2505.
    [290]Roeloffs, E., Poroelastic techniques in the study of earthquake-related hydrologic phe-nomena, Adv. Geophys.,1996,37,135-195.
    [291]Rongved, L. and J. T. Frasier, Displacement discontinuity in the elastic half-space, J. Appl. Mech.,1958,25,125-128.
    [292]Rubinstein, J. L., J. E. Vidale, and J. Gomberg J et al., Non-volcanic tremor driven by large transient shear stresses, Nature,2007,448,579-582.
    [293]Rubinstein, J. L., J. Gomberg, and J. E. Vidale et al., Dynamic triggering of non-volcanic tremor, ETS and earthquakes on Vancouver island, J. Geophys. Res.,2009, 114(B00A01), doi:10.1029/2008JB005875.
    [294]Rybicki, K., The elastic residual field of a very long strike-slip fault in the presence of a discontinuity, Bull. Seismol. Soc. Am.,1971,61,79-92.
    [295]Rybicki, K., Analysis of aftershocks on the basis of dislocation theory, Phys. Earth Planet. Inter.,1973,7,409-422.
    [296]Rybicki, K., Static deformation of a laterally inhomogenenous half-space by a two-dimensional strike-slip fault, J. Phys. Earth,1978,26,351-366.
    [297]Rybicki, K. and K. Kasahara, A strike-slip fault in a laterally inhomogeneous medium, Tectonophys.,1977,42,127-138.
    [298]Rydelek, P. A., and I. S. Sacks, Asthenospheric viscosity and stress diffusion:A mech-anism to explain correlated earthquakes and surface deformations in northeast Japan, Geophys. J. Int.,1990,100(1),39-58.
    [299]Rydelek, P. A., and I. S. Sacks, Triggering and inhibition of great Japanese earthquakes: The effect of Nobi 1891 on Tonankai 1944. Nankaido 1946 and Tokai. Earth Planet. Sci. Lett.,2003,206(3-4),289-296.
    [300]Ryder, I., R. Burgmann, and J. Sun, Tandem afterslip on connected fault planes fol-lowing the 2008 Nima-Gaize (Tibet) earthquake, J. Geophys. Res.,2010,115, B03404, doi:10.1029/2009JB006423.
    [301]Ryder, I., B. Parsons, T. J. Wright, and G. J. Funning, Post-seismic motion following the 1997 Manyi (Tibet) earthquake: InSAR observations and modellingl, Geophys. J. Int.,2007,169,1009-1027.
    [302]Shearer, P. M., Introduction to Seismology, Cambridge University Press, Cambridge, 1999.
    [303]Sabadini, R. and B. Vermeersen, Global dynamics of the earth:Applications of normal model relaxation theory to solid-earth geophysics, Kluwer Academic Pub.,2004.
    [304]Sadeghia H., S.M.F. Aghda, and S. Suzuki et al.,3-D velocity structure of the 2003 Bam earthquake area (SE Iran):existence of a low-Poisson's ratio layer and its relation to heavy damage, Tectonophys.,2006,417,269-283.
    [305]Saito, M., Some problems of static deformation of the earth, J. Phys. Earth,1974,22, 123-140.
    [306]Sanders, C. O., Interaction of the San Jacinto and San Andreas fault zones, southern California:Triggered earthquake migration and coupled recurrence intervals, Science, 1993,260(5110),973-976.
    [307]Santoyo, M. A, A. Garcia-Jerez, and F. Luzon, A subsurface stress analysis and its possible relation with seismicity near the Itoiz Reservoir, Navarra, Northern Spain, Tectonophys.,2009, doi:10.1016/j.tecto.2009.06.022.
    [308]Santoyo, M. A, S. K. Singh, and T. Mikumo et al., Space-time clustering of large thrust earthquakes along the Mexican subduction zone:An evidence of source stress interaction, Bull. Seismol. Soc. Am.,2005,95(5),1856-1864.
    [309]Santoyo, M. A, and F. Luzon F, Stress relations in three recent seismic series in the Murcia region, southeastern Spain, Tectonophys.,2008,457(1-2),86-95.
    [310]Sato, R., Crustal deformation due to dislocation in a multi-layered medium, J. Phys. Earth,1971,19,31-46.
    [311]Sauber, J. G. Carver, S. Cohen, and R. King, Crustal deformation and the seis-mic cycle across the Kodiak Islands, Alaska, J. Geophys. Res.,2006,111, B02403, doi:10.1029/2005JB003626.
    [312]Savage, J. C., A dislocation model of strain accumulation and release at a subduction zone, J. Geophys. Res.,1983,88,4984-4996.
    [313]Savage, J. C., and M. Lsowski, Inferred depth of creep on the Hayward Fault, central California, J. Geophys. Res.,1993,98,787-793.
    [314]Savage, J. C., and R. Burford, Geodetic determination of relative determination plate motion in Central California, J. Geophys. Res.,1973,88,787-793.
    [315]Segall, P. and D. F. McTigue, Vertical displacements from a dip-slip fault beneath surface topography, Abstract Chapman Conference on Vertical Crustal Motion:Mea-surement and Modeling, AGU, Washington, D. C.,1984.
    [316]Scholz, C. H., Earthquakes and friction laws, Nature,1998,391,37-42.
    [317]Shearer, P. M., Improving local earthquake locations using the L1 norm and waveform cross correlation:Application to the Whittier Narrows, California, aftershock sequence, J. Geophys. Res.,1997,102(B4),8269-8283.
    [318]Shieh, C. F.,and S. Y. Sheu, The Chi-Chi 1999 earthquake:Correlation between the spatio-temporal distribution of aftershocks and viscoelastic stress changes, J. Geodyn., 2008,45(4-5),208-216.
    [319]Simpson, R. W., and P. A. Reasenberg, Earthquake-induced static stress changes on central California faults,. In:"The Loma Prieta, California, Earthquake of October 17, 1989-Tectonic Processes and Models(R. W. Simpson, Ed.)", pp.F55-F89. USGeol. Surv. Prof. Paper 1550-F.1994.
    [320]Singh, S. J., Static deformation of a multilayered half-space by internal sources, J. Geophys. Res.,1970,75,3257-3263.
    [321]Singh, S. J. and N. R. Garg, On two-dimensional elastic dislocations in multilayered half-space, Phys. Earth Planet. Inter.,1985,40,135-145.
    [322]Sladen, A.,2008, http://www.tectonics.caltech.edu/slip_history/2008_e_sichuan/e_sichuan.html.
    [323]Smith, B. and D. Sandwell, Coulomb stress accumulation along the San Andreas fault system, J. Geophys. Res.,20003,108(B6),1-17.
    [324]Smith, B. and D. Sandwell, Stress evolution of the San Andreas fault system: Recurrence interval versus locking depth, Geophys. Res. Lett.,2009,36(L13304), doi:10.1029/2009GL037235.
    [325]Smith, S. W. and W. Van de Lindt, Strain adjustments associated with earthquakes in southern California, Bull. Seismol. Soc. Am.,1969,59(4),1569-1589.
    [326]Smylie, D. E. and L. Mansinha, The elasticity theory of dislocations in real earth models and changes in the rotation of the earth, Geophys. J. R. Astr. Soc.,1971,23, 329-354.
    [327]Spina, V., E. Tondi, and P. Galli et al., Fault propagation in a seismic gap area (north-ern Calabria, Italy):Implications for seismic hazard, Tectonophys.,2009,476(1-2), 357-369.
    [328]Steacy, S., D. Marsan, and S. S. Nalbant et al., Sensitivity of static stress calculations to the earthquake slip distribution, J. Geophys. Res.,2004,109(B04303),1-16.
    [329]Steacy, S., S. Nalbant, and McCloskey et al., Onto what planes should Coulomb stress perturbations be resolved?, J. Geophys. Res.,2005,110(B05S15), doi:10.1029/2004JB003356.
    [330]Steacy, S., J. Gomberg, and M. Cocco (2005), Introduction to special section:Stress transfer, earthquake triggering, and time-dependent seismic hazard, J. Geophy. Res., 110, B05S01, doi:10.1029/2005JB003692.
    [331]Stein, R. S.,and M. Lisowski,The 1979 Homestead Valley earthquake sequence, Cali-fornia:Control of aftershocks and postseismic deformation, J. Geophys. Res.,1983, 88(B8),6477-6490.
    [332]Stein, R. S., The role of stress transfer in earthquake occurrence, Nature,1999,402, 605-609.
    [333]Stein, R. S., A. A. Barka, and J. H. Dieterich, Progressive failure on the North Ana-tolian fault since 1939 by earthquake stress triggering, Geophys. J. Int.,1997,128, 594-604.
    [334]Stein, R. S., G. C. P. King, and J. Lin, Change in failure stress on the southern San Andreas fault system caused by the 1992 magnitude = 7.4 Landers earthquake, Science, 1992,258,1328-1332.
    [335]Stein, R. S., G. C. P. King, and J. Lin, Stress triggering of the 1994 M=6.7 Northridge, California, earthquake by its predecessors, Science,1994,265,1432-1435.
    [336]Stein, R. S., and G. Ekstrom, Seismicity and geometry of a 110-km long blind thrust fault,2, Synthesis of the 1982-85 California earthquake sequence, J. Geophys. Res., 1992,97(B4),4865-4883.
    [337]Stein, R. S., J. H. Dieterich, and A. A. Barka, Role of stress triggering in earthquake migration on the north Anatolian fault, Phy. Chem. Earth,1996,21(4),225-230.
    [338]Stein, S.S. and J. Lin, Seismic constraints and Coulomb stress changes of a blind thrust fault system,2:Northridge, California, Open-File Report,2006,2006-1158.
    [339]Steketee, J.A., On Volterra's dislocation in a semi-infinite elastic medium, Can. J. Phys.,1958,36,192-205.
    [340]Sturtevant, B., H. Kanamori and E. E. Brodsky, Seismic triggering by rectified diffusion in geothermal system, J. Geophys. Res.,1996,101(B11),25269-25282.
    [341]Sumita, I., and M. Manga, Suspension rheology under oscillatory shear and its geo-physical implications, Earth Planet. Sci. Lett.,2008,268(3-4),468-477.
    [342]Sun, W., and S. Okubo, Surface potential and gravity changes due to internal dislo-cations in a spherical Earth,1, Theory for a point dislocation, Geophys. J. Int.,1993, 114,569-592.
    [343]Sun, W. and S. Okubo, Surface potential and gravity changes due to internal disloca-tions in a spherical earth-Ⅱ.Application to a finite fault, Geophys. J. Int.,1998,132, 7-88.
    [344]Sun, W., S. Okubo, and G. Fu, Green's functions of coseismic strain changes and investigation of effects of Earth's spherical curvature and radial heterogeneity. Geophys. J. Int.,2006.167,1273-1291.
    [345]Sun, W., S. Okubo, and P. Vanicek, Global displacement caused by dislocations in a realistic earth model, J. geophys. Res.,1996,101,8561-8577.
    [346]Suito, H., and J. T. Freymueller, A visocelastic and afterslip postseismic de-formation model for 1964 ALaska earthquake, J. Geophys. Res.,114, B11404, doi:0.1029/2008JB00554.
    [347]Szeliga, W., T. Melbourne, M. Santillan, and M. Miller, GPS constraints on 34 slow slip events within the Cascadia subduction zone,1997-2005, J. Geophys. Res.,2008, 113, B04404, doi:10.1029/2007JB004948.
    [348]Takemoto, S., Effects of local inhomogeneities on tidal strain measurements, Bull. Disas. Prev. Res. Inst., Kyoto Univ.,1981,31,211-237.
    [349]Takeuchi, H. and M. Saito, Seismic surface waves, Method in Computaional Physics, Acadamic Press,1972,11,217-295
    [350]Talebian, M. et al., The 2003 Bam (Iran) earthquake:Rupture of a blind strike-slip fault, Geophys. Res. Lett.,2004,31, L11611, doi:10.1029/2004GL020058.
    [351]Tapponnier, P., and P. Molnar, Active faulting and tectonics in China, J. Geophys. Res.,1977,82(20),2905-2930.
    [352]Ten Brink, U., and J. Lin, Stress interaction between subduction earthquakes and forearc strike-slip faults:Modeling and application to the northern Caribbean plate boundary, J. Geophy. Res.,2004,109(B12310), doi:10.1029/2004JB003031.
    [353]Thatcher,W., How the continents deform:The evidence from tectonic geodsy, Ann. Rev. Earth Planet. Sci.,2009,37,237-262.
    [354]Thatcher, W., The crustal deformation cycle at convergent plate margins, R. Soc. New Zealand Bull.,1986,24,317-332.
    [355]Thatcher, W., and F. F. Pollitz, Temporal evolution of continental lithospheric strength in actively deforming regions, GSA Today,18(4/5),doi:10.1130/GSAT01804-5A.
    [356]Thatcher, W., and J. C. Savage, Triggering of large earthquakes by magma-chamber inflation, Izu Peninsula, Japan,. Geology,1982,10,637-640.
    [357]Thatcher, W., T. Matsuda, and T. Kato et al., Lithospheric loading by the 1896 Riku-u earthquake, northern Japan:Implications for plate flexure and asthenospheric rheology, J. Geophys. Res.,1980,85,6429-6435.
    [358]Tibi, R., D. A. Wiens, and H. Inoue, Remote triggering of deep earthquakes in the 2002 Tonga sequences, Nature,2003,424,921-925, doi:10.1038/nature01903.
    [359]To, A., R. Burgmann R, and F. Pollitz, Postseismic deformation and stress changes following the 1819 Rann of Kachchh, India earthquake:Was the 2001 Bhuj earthquake a triggered event?, Geophys. Res. Lett.,2004,31(L13609),doi:10.1029/2004GL020220.
    [360]Toda, S., Coulomb stress imparted by the 25 March 2007 Mw=6.6 Noto-Hanto, Japan earthquake explain its'butterfly'distribution of aftershocks and suggest a heightened seismic hazard, Earth Planet. Space,2008,60(10),1041-11046.
    [361]Toda, S. J., J. Lin, M. Meghraoui, and R. S. Stein,12 May 2008 M=7.9 Wenchuan, China, earthquake calculated to increase failure stress and seismicity rate on three major fault systems, Geophys. Res., Lett.,2008,35(L17305),1-6.
    [362]Toda, S., and S. Matsumura, Spatio-temporal stress states estimated from seismicity rate changes in the Tokai region, central Japan, Tectonophys.,2006,417,53-68.
    [363]Toda, S., and R. Stein, Did stress triggering cause the large off-fault aftershocks of the 25 March 1998 Mw= 8.1 Antarctic plate earthquake?, Geophys. Res. Letts.,2000,27, 2,301-2304.
    [364]Toda, S., and R. Stein, Response of the San Andreas fault to the 1983 Coalinga-Nunez earthquakes:An application of interaction-based probabilities for Parkfield, J. Geophys. Res.,2002,107(B6),2126, doi:10.1029/2001JB000172.
    [365]Toda, S., and R. Stein, Toggling of seismicity by the 1997 Kagoshima earthquake couplet:A demonstration of time-dependent stress transfer, J. Geophys. Res.,2003, 108(12),2567, doi:10.1029/2003JB002527.
    [366]Toda, S., R. S. Stein,and K. Richards-Dinger et al., Forecasting the evolution of seismic-ity in southern California:Animations built on earthquake stress transfer, J. Geophys. Res.,2005,110(B05S16), doi:10.1029/2004JB003415.
    [367]Toda, S., R. S. Stein,and P. A. Reasenberg et al., Stress tranferred by the 1995 Mw= 6.9 Kobe, Japan, shock:effect on aftershocks and future earthquake probabilities, J. Geophys. Res.,1998,103,24543-24565.
    [368]Torise, C., G. De Natale, F. Pingue, S. M. Petrazzuoli, Evidence of earthquake corre-lation with earth tides:an inication of high preseismic fault stress rate, J. Geophys. Res.,1998,103,24567-24572.
    [369]US Geological Survey, Southern California Earthquake Center, and California Division of Mines and Geology, Preliminary report on the 16 October 1999 M 7.1 Hector Mine, California, earthquake, Seismol. Res. Lett.,2003,71,11-23.
    [370]US Geological Survey,2008, http://earthquake.usgs.gov/eqcenter/eqinthenews/ 2008/us2008ryan/.
    [371]Utkucu, M., S. Nalbant, J. McCloskey, S. Steacy, and O. Alptchin, Slip distribution and stress changes associated with the November 12,1999, Duzce (Turkey) Earthquake (Mw=7.1), Geophys. J. Int.,2003; 153,229-241.
    [372]Van der Woerd, J. et al., Holocene left-slip rate determined by cosmogenic surface dating on the Xidatan segemnt of the Kunlun fault(Qinghai, China), Geology,1998, 26,695-698.
    [373]Van der Woerd, J., F. J. Ryerson, and P. Tapponnier et al., Uniform slip-rate along the Kunlun fault:Implications for seismic behavior and large-scale tectonics, Geophys. Res. Lett.,2000,27(6),2353-2356.
    [374]Van der Woerd, J. et al., Uniform postglacial slip-rate along the central 600 km of the Kunlun Fault(Tibet)from Al-26. Be-10, and C-14 dating of riser offsets and climatic origin of the regional morphology, Geophys. J. Int.,2002,148,356-388.
    [375]Velasco, A. A., C. J. Ammon, and S. L. Beck, Broadband source modeling of the November 8,1997, Tibet(Mw=7.5)earthquake and its tectonic implications, J. Geo-phys. Res.,2000,105,28065-28080.
    [376]Velasco, A. A., S. Hernandez, T. Parsons, and K. Pankow, Global ubiquity of dynamic earthquake triggering, Nature Geoscience,2008, doi:10.1038/ngeo204.
    [377]Walter, T. R., How a tectonic earthquake may wake up volcanoes:Stress transfer during the 1996 earthquake-eruption sequence at the Karymsky Volcanic Group, Kam-chatka, Earth Planet. Sci. Lett.,2007,264(3-4),347-359.
    [378]Walter, T. R. and F. Amelung, Influence of volcanic activity at Manuna Loa, Hawaii, on earthquake occurrence in the Kaoiki seismic zone, Geophys. Res. Lett.,2004, 31(L07622),doi:10.1029/2003GL019131.
    [379]Walter, T. R. and F. Amelung, Volcano-earthquake interaction at Mauna Loa volvcano, Hawaii, J. Geophys. Res.,2006,111, B05204, doi:10.1029/2005JB003861.
    [380]Walter, T. R., R. Wang, and M. Zimmer et al., Volcanic- activity influenced by tec-tonic earthquakes:static versus dynamic stress triggering at Mt. Merapi, Indonesia, Geophys. Res. Lett.,2007,34(5), L05304, doi:10.1029/2006GL028710.
    [381]Walter, T. R., R. Wang, and V. Acocella et al., Simultaneous magma and gas eruptions at three volcanoes in southern Italy:an earthquake trigger?, Geology,2009,37(3),251-254.
    [382]Walter, T. R., V. Acocella, and M. Neri et al., Feedback processes between magmatic events and flank movement at Mount Etna (Italy) during the 2002-2003 eruption, J. Geophys. Res.,2005,110, B10205, doi:10.1029/2005JB003688.
    [383]Wan, Y. G., Z. K. Shen, and Y. H. Zeng et al., Visco-elastic stress triggering model of Tangshan earthquake sequence, Acta Seismol. Sin.,2008,21(6),585-587.
    [384]Wang, R., Y. Xia, H. Grosser, H.-U. Wetzel, H. Kaufmann, and J. Zschau, The 2003 Bam (SE Iran) earthquake:precise source parameters from satellite radar interferom-etry, Geophys. J. Int.,2004,159(3),917-922, doi:10.1111/J.1365-246X.2004.02476.x.
    [385]Wang, Q., P. Z. Zhang, and J. T. Freymueller et al., Present-day crustal deformation in China constrained by Global Positioning System measurements, Science,2001a,294, 574-577.
    [386]Wang, R., F. Lorenzo-Martin,and F. Roth, Computation of deformation induced by earthquakes in a multi-layered elastic crust-FORTRAN programs EDGRN/EDCMP, Comput. Geosci.,2003,29(2),195-207.
    [387]Wang, R. J. and H. J. Kiimpel, Poroelasticity:Efficent modeling of strongly coupled, slow deformation processes in a multilayered half-space, Geophys.,2003,68(2),705-717.
    [388]Wang, H., M. Liu, and X. Shen et al., Balance of seismic moment in the Songpan-Ganze region, eastern Tibet:Implications for the 2008 Great Wenchuan earthquake, Tectonophys.,2009, doi:10.1016/j.tecto.2009.09.022.
    [389]Wang, W. H. and C. H. Chen, Static stress transferred by the 1999 Chi-Chi, Taiwan, earthquake:Effects on the stability of the surrounding fault systems and aftershock triggering with a 3D fault-slip model, Bull. Seismol. Soc. Am.,2001b,91(5),1041-1052.
    [390]Wei, M., D. Sandwell, and Y. Fialko, A silent Mw 4.7 slip event of October 2006 on the Superstition Hills fault, southern California, J. Geophys. Res.,2009,114(B07402), 1-15.
    [391]Wen, K. L., I. A. Beresnev, and S. N. Cheng, Moderate-magitude seismicity remotely triggered in the Taiwan region by large earthquakes around the Philippine Sea plate, Bull. Seismol. Soc. Am.,1996,86,843-847.
    [392]West, M., J. J. Sanchez, and S. R. McNutt, Periodically triggered seismicity at Mount Wrangell, Alaska, after the Sumatra earthquake, Science,2-005,308(5725),1144-1146
    [393]Wu, P. and W.R.Peltier, Viscous gravitational relaxation, Geophy.J.R. Astr.Soc.,1982, 70,435-486.
    [394]Wright, T. J., Z. Lu, and C. Wicks. Constraining the slip distribution and fault ge-ometry of the Mw 7.9,3 November 2002, Denali fault earthquake with Interferometric Synthetic Aperture Radar and Global Positioning System data, Bull. Seismol. Soc. Am.,2004,94(6B), S175-S189.
    [395]Wu, X. P., X. L. Hu, and M. Bouchon et al., Complete Coulomb stress changes induced by the Ms 7.6 earthquake in Lancang-Gengma, Yunnan and triggering of aftershocks by dynamic and static stress, Sci. China Ser. D:Earth Sci.,2007, 51(11),doi:10.1007/s11430-007-9197-8.
    [396]Xiong, X., B. Shan, and Y. Zheng et al., Stress transfer and its implica-tion for earthquake hazard on the Kunlun Fault, Tibet. Tectonophys.,2009, doi:10.1016/j.tecto.2009.07.020.
    [397]Xu, C. J., J. J. Wang, and Z. H. Li et al., Applying the Coulomb failure function with an optimally oriented plane to the 2008 Mw 7.9 Wenchuan earthquake triggering, Tectonophys.,2009, doi:10.1016/j.tecto.2009.09.019.
    [398]Xu, X., W. Chen, and W. Ma et al., Surface rupture of the Kunlunshan earthquake(M 8.1),northern Tibetan plateau, China, Seismol. Res. Lett,2002,73,884-892.
    [399]Yamashina, K., Induced earthquakes in the Izu Peninsula by the Izu-Hanto-Oki earth-quake of 1974, Japan, Tectonophy.,1978,51,139-154.
    [400]Zhang, P. Z., Z. Shen, and M. Wang et al., Continuous deformation of the Tibet Plateau from global positioning system data, Geology,2004,32(9),809-812.
    [401]Zhang, Z. Q., J. Y. S. Chen, and J. Lin, Stress interactions between normal faults and adjacent strike-slip faults of 1997 Jiashi earthquake swarm, Sci. China Ser. D-Earth Sci.,51(3),431-440.
    [402]Zeng, Y., Viscoelastic stress-triggering of the 1999 Hector Mine earthquake by the 1992 Landers earthquake, Geophys. Res., Lett.,2001,28(15),3007-3010.
    [403]Ziv, A., On the role of multiple interactions in remote aftershock triggering:The Landers and the Hector Mine case studies, Bull. Seismol. Soc. Am.,2006,96(1),80-89.
    [404]Zhou, R., Y. Li, A. L. Densmore, M. A. Ellis, Y. He, Y. Li, and X. Li(2007), Active tectonics of the Longmen Shan region of the eastern margin of the Tibetan plateau, Act. Geol. Sin.,2007,81,593-604.
    [405]Zhu, H., and X. Z. Wen, Static stress triggering effects related with Ms8.0 Wenchuan earthquake, J. Earth Sci.,2010,21(1),32-41.
    [406]Zoback, M.D. et al., New evidence on the state of stress of the San Andreas fault system, Science,187,238,1105-1111.
    [407]Zweck, C. J. T. Freymueller, and S. C. Cohen, The 1964 great Alaska earthquake: Present day and cumulative postseismic deformation in the western Kenai Peninsual, Phys. Earth Planet. Inter.,132(1-3),5-20, doi:10.1016/S0031-9201(02)00041-9.
    [408]陈桂华,徐锡伟,于贵华等,2008年汶川Ms8.0地震多断裂破裂的近地表同震滑移及滑移分解,地球物理学报,2009,52(5),1384-1394.
    [409]陈顒,汶川地震是由水库蓄水引起的吗?中国科学D辑:地球科学,2009,39(3),257-259.
    [410]陈运泰等,2010年4月14日青海玉树Ms7.1级地震,中国地震局地球物理研究第四研究室,2010.
    [411]杜方,闻学泽,张培震等,2008年汶川8.0级地震震前横跨龙门山断裂带的震间形变,地球物理学报,2009,52(11),2729-2738.
    [412]华卫,陈章立,李志雄等.汶川8.0级地震触发与余震活动空间分布研究,地震,2009,29(1),33-39.
    [413]雷建设,赵大鹏,苏金蓉等,龙门山断裂带地壳精细结构与汶川地震发震机理,地球物理学报,2009,52(2),339-345.
    [414]雷兴林,马胜利,闻学泽等,地表水平对断层应力与地震时空分布影响的综合分析-以紫平铺水库为例,地震地质,2008,30(4),1046-1064.
    [415]单斌,熊熊,郑勇,等.2008年5月12日Mw7.9汶川地震导致的周边断层应力变化,中国科学D辑:地球科学,2009,39(5),537-545.
    [416]单建新,屈春燕,宋小刚等,汶川Ms8.0级地震InSAR同震形变场观测与研究,地球物理学报,200,52(2),496-504.
    [417]沈正康,万永革,甘卫军等,东昆仑活动断裂带大地震之间的黏弹性应力触发研究,地球物理学报,2003,46(6),786-795.
    [418]石耀霖,曹建玲,库仑应力计算及其应用过程中若干问题的讨论-以汶川地震为例,地球物理学报,2010,53(1),102-110.
    [419]王连捷,周春景,孙东生,等.汶川5.12地震引起的库仑应力变化及其对周边地震活动性的影响.地质力学学报,2008,14(3),193-200.
    [420]王阎昭,王恩宁,沈正康等,基于GPS资料约束反演川滇地区主要断裂现今活动速率,中国科学D辑:地球科学,2008,38(5),582-597.
    [421]闻学泽,张培震,杜芳等,2008年汶川8.0级地震发生的历史与现今地震活动背景,地球物理学报,2009,52(2),444-454.
    [422]万永革,沈正康,盛书中等,2008年汶川大地震对周围断层的影响,地震学报,2009,31(2),128-139.
    [423]吴小平,黄雍,胡家富等,汶川Ms8.0巨震产生的完全库仑破裂应力变化及其强余震群.地震地质,2008,31(4),317-323.
    [424]徐锡伟,于贵华,马文涛等,昆仑山地震(Mw7.8)破裂行为、变形局部化特征及其构造内涵讨论,中国科学(D辑),2008,38(7),785-796.
    [425]徐锡伟,张培震,闻学泽等,川西及其邻近地区活动构造基本特征与强震复发模型,地震地质.2005.27(3).446-461.
    [426]徐锡伟,闻学泽,叶建青等,汶川Ms8.0地震地表破裂带及其发震构造,地震地质,2008,30(3),597-628.
    [427]徐锡伟,闻学泽,陈桂华等.巴颜喀拉地块东部龙日坝断裂带的发现及其大地构造意义,中国科学(D辑),2008,38(5),529-542.
    [428]徐锡伟,P. Tapponnier, and J. V. Der Woerd等,阿尔金断裂带晚第四纪左旋走滑速率及其构造运动转换模型讨论,中国科学,2003,33(10),967-974.
    [429]杨挺青,粘弹性力学.武汉:华中理工大学,1996.
    [430]张国宏,单新建,李卫东.汶川Ms8.0地震库仑破裂应力变化及断层危险性初步研究.地震地质,2008,30(4),935-944.
    [431]张培震,闻学泽,徐锡伟等,2008年汶川8.0级特大地震孕育和发生的多单元组合模式,科学通报,2009,54(7),44-953.
    [432]张培震,徐锡伟,闻学泽等,2008年汶川8.0级地震发震断裂的滑动速率、复发周期和构造成因,地球物理学报,2008,51(1),1066-1073.
    [433]张同义.热粘弹性理论.天津:天津大学出版社,2002.
    [434]张希,崔笃信,蒋锋云.基于GPS观测的汶川地震参数反演与库仑应力变化分析.地震研究,2009,32(4), 351-356.
    [435]赵翠萍,陈章立,周连庆等,汶川Mw8.0级地震震源破裂过程研究:分段特征,科学通报,2009,54(22),3475-3482.
    [436]郑勇,马宏生,吕坚等,汶川地震强余震(Ms≥5.6)的震源机制解及其与发震构造的关系,中国科学D辑:地球科学,2009,39(4),413-426.
    [437]朱守彪,张培震,2008年汶川Ms8.0地震发生过程的动力学机制研究,地球物理学报,2009,52(2),418-427.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅:66554900、66554949;咨询服务:66554800;科技查新:66554700