用户名: 密码: 验证码:
中小地震震源参数研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地震预测是地震研究工作中的一个重要内容。开展地震预测研究工作,需要探测地壳中应力状态、断层形态和流变特征等性质,而震源参数(深度、机制解、破裂方向、破裂速度等)可提供这些信息。震源参数中的机制解反映区域应力状态,震源深度反映介质流变性质(脆性-韧性转换),而地震破裂方向可用来确定发震断层。与数量少且分布集中的强震相比,中小地震(M2-M5)数量众多,地理分布广泛,为探测广大地区的地壳应力状态提供了可能。此外,强震的余震多为中小地震,大量中小余震可为主震发震机理研究提供重要信息。
     对于强震震源参数,可以利用长周期波形结合简单一维模型,已有很多成熟方法。然而中小地震P波信号主要能量集中在短周期,只有在高频段内才有足够的信噪比,然而在高频段内P波振幅受地壳不均匀性、尖锐间断面等三维效应影响,较难直接运用简单一维模型计算的理论波形来确定震源参数。本文一方面利用已有准确震源参数的地震标定短周期的P波幅度,得到台站振幅放大因子(Amplitude Amplification Factor, AAF),从而使短周期P波振幅可以有效地应用于中小地震震源参数求解;另一方面,由于地壳中的一些界面是影响体波振幅的重要因素,本文还对莫霍面、沉积层-结晶基底界面等界面进行了研究。
     本文首先使用接收函数方法研究首都圈地区的莫霍面深度,然后利用接收函数中首到波峰和直达P波到时差确定沉积层厚度,此外还利用井下摆记录中的直达S波与其在地表反射波到时差和波形,研究了该地区近地表S波速度结构和Q值结构。研究结果表明首都圈地区莫霍面深度西厚东薄,区域构造方向呈NE—NN方向,平均厚度约为34km,泊松比分布则有明显的分块特征,泊松比高值区对应于岩石比较破碎的多条活动断裂带交汇区。发现浅部100米的平均S波速度低于300m/s,当深度增加到500m时S波速增加到800m/s,平均速度梯度为0.8(m/s)/m。
     为了考察速度结构对高频地震波振幅的影响,本文还研究了速度结构模型与SmS振幅的关系,探讨了超临界距离上SmS震相对强地面振动衰减关系的控制作用。通过对2008年云南盈江地震的实际波形记录和理论地震图的分析表明,SmS振幅大小与当地地壳及莫霍面结构有关。对于地壳结构较简单地区,能在莫霍面形成很强的反射波,这意味着当破坏性地震发生时,在超临界震中距附近,地壳结构相对简单有利于SmS发育的地区,强地面运动主要受控于SmS波。由于SmS的大振幅强能量,地面运动会加强2-3倍,这表明在超临界距离的地面震动衰减关系和超临界距离之前的衰减关系有明显差别。
     地震深度是震源参数中一个重要参数,P-SV系列的深度震相(sPL,sPg,sPmP,sPn)已广泛应用于震源深度的确定中,能大大改善震源深度的确定精度。但目前利用切向分量上SH系列的深度震相(sSmS)来确定震源深度的研究很少。而在地震波的切向分量上,由于没有P-SV波的耦合,波形相对简单,SmS和sSmS震相更易辨认。为检验用sSmS与SmS震相确定地震深度的可行性,本文通过一系列一维地壳速度模型计算理论地震图,发现SmS和sSmS只有在高频(>0.2 Hz)、速度结构简单,且震源深度不能过浅的情形下才可使用。因此P-SV系列应该是优先使用的深度震相,而SH系列只能作为辅助深度震相。
     由于SH系列的深度震相只适用于速度结构简单的地区,而龙门山地区地质构造复杂,因此本文主要利用SP系列的近震深度震相sPL, sPg, sPmP, sPn与其主震相到时差,联合使用CAP长周期波形反演、面波与S波振幅谱比方法确定了汶川地震300多个中小余震的深度。研究结果表明,汶川余震深度优势分布在5-15km范围,最深地震为2008年05月25日Ms6.2余震,该次余震也是汶川地震最强的余震,中心震源深度为19±2km。在汶川地震破裂区中段,既没有深度小于5km的浅震,也没有深于15km的地震。在破裂区东北端,有很多浅震(1~3km深),其中2008年7月24日发生在青川与宁强交界的一次Ms5.7级地震及其余震序列深度均浅于3km。由于实地考察和InSAR研究没有发现汶川主破裂带在这个地区有地表破裂,所以本文认为这个地震序列是由于深部破裂引起浅部应力增加而导致完整岩体的新鲜破裂,而非沿着汶川主震破裂带发生。
     对于浅源地震由于震源浅,深度震相与直达P波十分接近,因此震相识别困难,难以用深度震相来确定震源深度。但是一般的浅源地震具有短周期面波发育的特点,本文使用短周期面波和远震波形拟合的方法研究了2010年1月31日遂宁—潼南M5.0地震,确定该地震深度约为1~3km,位于厚达6km的沉积盖层之内。一般而言只有结晶基底才有足够的强度积累大量的应变能然后突然释放形成破坏性地震,而沉积盖层则由于富含孔隙、流体因此较软弱而不能积累足够的能量形成大的地震。但此次破裂性地震却发生在中生代沉积盖层里,虽然文献中有古生代沉积岩中发生4级地震的报道,但是中生代沉积盖层中发生高达5级地震的案例尚属首例。此次地震给破坏性地震的孕育机理研究提供了罕见的案例。
     除震源深度之处,震源机制、破裂方向、破裂尺度和破裂速度也是描述震源的重要参数,本文使用经台站振幅放大因子AAF校正后的短周期体波进行波形反演,研究了2009年美国加州Inglewood M4.7地震序列,确定了14个M2.0以上小震的震源机制解。然后,用已知机制解的小震波形作为经验格林函数(EGF),反演了两个较大地震(Mw4.6,Mw3.8)的破裂方向,破裂尺度以及破裂速度。研究结果表明主震的震源深度约8km,断层面解为145/77/139(strike/dip/rake),与Newport-Inglewood断层方向一致,且余震主震机制解相近。这两个较大地震的破裂方向分别为154°和143°,与Newport-Inglewood断层走向一致。此外,主震表现出高破裂速度特点,与Inglewood断层为成熟断层的特征一致。用P波反演的破裂尺度和破裂速度计算SH波的理论地震图,对比实际波形,二者得到了很好的符合,从而验证了P波反演结果的可靠性。
     本文为中小地震震源参数研究提供了系统的框架:在较好了解了地壳间断面结构的基础上,对主要震相进行幅度和到时改正,从而更好地确定中小地震震源参数。
Earthquake prediction, one of the most important fields in seismology, depends on the information on stress state, fault feature and rheology in the crust. Source parameters including depth, focal mechanisms, rapture directivity and rupture velocity provide abundent such information. Focal mechanism reflects regional stress state and focal depth shows rheology feature of medium, while rupture directivity can be used to determine the fault on which the earthquake occurs. Large numbers of small and moderate earthquakes (M2-M5) distribute widely, which make it possible to explore the crust physical state. Moreover, most aftershocks of strong earthquake are small and moderate events, which provide important information on focal mechanism of mainshock.
     For macroseism, the mature long period waveforms inversion methods are applied to determine source parameters. For small and moderate events, energy of P waves concentrate at short period, so Signal Noise Ratio is high enough only at this band. But the amplitudes of observed P waves are quite different from those of synthetics at this band, thus it can not be used to invert source parameters directly. With determined source parameters, short period (0.5-2Hz) P waves of the these events are compared with synthetic ones to handle amplitude variability with Amplitude Amplification Factor (AAF) correction, which is then used in modeling source mechanism of the small and moderate earthquakes. On the other hand, interfaces in the crust may affect body wave amplitude, and hence interfaces such as Moho discontinuity and basin basement were also investigated in this study.
     Receiver functions were calculated with teleseismic P waveforms recorded at broadband and short period stations of the Capital Digital Seismic Network. H-Kappa method was adopted to obtain the thickness and Poisson ratio of the crust. The results show that the crust thickeness gradually thickens from SE to NW with an average thickness of 34 km. The crustal Poisson ratios are sensitive to geological structure and high ratios are considered to be related to active faults. S wave velocity in the top 100m of the crust is lower than 300 m/s, and it reaches 800 m/s as depth increases to 500 m with an average gradient of 0.8 m/s which are obtained from differential travel time between direct S wave and reflected wave at the free surface with borehole station records.
     To demonstrate the effect of velocity structure on amplitude of high frequency waves, the relationship between velocity models and SmS amplitude was studied, and the effect of SmS amplitude over the critical distance on the strong ground motion was investigated. The foreshock and aftershocks of the 21 August 2008 Yingjiang earthquake (Mw5.9) were used in this study. For the data recorded at Wangding station which is 100 km far away from epicenter, large SmS phases were observed with amplitudes of 2 to 5 times greater than the direct S wave. Comparisions with the synthetic seismograms indicate that such large-amplitude SmS phases were produced by simple crustal structure of Wangding region which allows a large Moho reflection. This suggests that when damaging earthquakes occur in regions of simple crustal structures, Moho reflections will produce amplified strong motions at distance around 100km depending on the local structure.
     Focal depth is one of the most important source parameters, which can be well determined by depth phases of P-SV series such as sPL, sPg, sPmP, sPn, greatly improving the resolution of depth determination. But so far, the depth phases of SH series have been rarely used to determine focal depth. In fact, SmS and sSmS phases could be easily indentified due to there are no P-SV coupling with relatively simple waveforms on tangential componet. To test the feasibility of determing focal depth with SmS and sSmS phases, we calculated synthetic seimograms on a set of 1D crustal velocity models, finding out that SmS and sSmS are obvious phases only in high frequency(>0.2Hz), simple crustal velocity model, and deep focal depth(>10km). Therefore, we drawed the results that the depth phases of P-SV series are preferential, while those of SH series are supplementary.
     Since depth phases of SH series is feasible only in regions with simple velocity structures and the geological structures near Longmen Mountain faults are very complicated that the crustal structures of eastern and western sides near LongMengShan faults are very different, we determined focal depths of over 300 small to moderate afthershocks of the Wenchuan earthquake using depth phases and CAP inversion at long period which employed amplitude ratios between surface waves and S wave. The results show the epicenter mainly locates at 5-15km deep and the largest depth is around 21km, while the shallowest one is only 1km. A Ms 5.7 aftershock occurred at Qingchuan, northeast end of the LongMengShan fault on Jul 24, 2008, featuring thrust mechanism with a 3km source centroid depth. The shallow focal depth is confirmed using the sPL phase recorded by a station at an epicentral distance of 15km. The observed large amplitude of Rg at a distance of 15km implies a depth of 3km or less. Dozens of aftershocks' sPL waveforms are also analyzed and less than 3km depths were obtained from it. On the other hand, both geological observations and InSAR studies report there is no surface breaks in this region. It is strongly suggested that this aftershock sequence initiates a fresh rupture in intact rocks which were triggered by stress increment raisen from the deep co-seismic rupture of the Wenchuan mainshock.
     Shallow earthquakes with potential of great earthquake disaster are very dangerous. The depth phases are very close to Pg in arrival time because of shallow depth, which makes it difficult to identify them. However, generally the shallow earthquakes are characterized by developmental surface waves. Waveform modeling of short period surface waves and teleseismic body waves is performed to study 2010 Suining-Tongnan M5.0 earthquake. The source depth of 1-3km indicates that this event occur in the over six kilometer's sediment layer. In general, only basement rocks are strong enough to accumulate strain energy for destructive earthquake. While sediment layers are porous and full of fluids, thus they are too soft to accumulate enough strain energy. This event provides an unusual but typical case for seismogenic mechanism.
     Besides source depth, focal mechanism, rupture directivity, rupture length and rupture speed are also important parameters for describing source. Short period body waves calibrated with station amplitude amplification factor (AAF) inversion approach is applied to study the 2009 Inglewood M4.7 earthquake sequence in California. Using this approach, we have determined 14 focal mechanism solutions of small events with ML down to 2.0. Then records of small events with well determined source mechanism was taken as Empirical Green's Function (EGF), and the source parameters including rupture directivity, rupture length and rupture speed of two largest events (M>3.5) obtained with such EGF. The results show a source depth of 8km and fault solution of 145/77/139(strike/dip/rake) for mainshock. One of the fault planes has similar strike to that of Newport-Inglewood fault. The rupture propagation directions of the two largest events are N154 and N143 respectively, coinciding with strike of Newport-Inglewood fault. The high rupture velocity may be related to the fact that the Newport-Inglewood fault is a mature fault. To confirm the results from P wave inversion, we first used the rupture velocity and rupture scale to obtain duration time of SH wave and then calculate SH synthetics. Comparison between synthetics and observed SH waveforms demonstrated validity of results inferred from P waves.
     We try to provide a frame of systematically studying source parameters of small to moderate earthquakes. The amplitudes and arrival times of main phases could be corrected on the base of the well understood fine-scale velocity model, which is required by studying source parameters of small and moderate earthquakes with good resolution.
引文
[1]Abercrombie R E,1995. Earthquake source scaling relationships from-1 to 5 ml using seismgrams recorded at 2.5-km depth. J. Geophys. Res,100(B12):24015-24036.
    [2]Abers G A and Gephart J W,2001. Direct inversion of earthquake first motions for both the stress tensor and focal mechanisms and application to southern Ca-lifornia. J. Geophys. Res,106(B11):26523-26540.
    [3]Aki K,1988. Separation of source and site effects in acceleration power spectral of major California earthquakes. Proc.9th WCEE,8:163-167.
    [4]Aki K and Richards P G,2002. Quantitative Seismology. Second edn. Sausalito: Univ. Science Books.
    [5]Ammon C J, Randall G E and Zandt G,1990. On the nonuniqueness of receiver function inversions. J. Geophys. Res,95(B10):15303-15318.
    [6]Ammon C J and Zandt G,1993. Receiver structure beneath the southern Mojave Block, California. Bull. Seism. Soc. Am,83(3):737-755.
    [7]Backus G E,1977a. Interpreting the seismic glut moments of total degree two or less. Geophys. J. R. Astron. Soc,51(1):1-25.
    [8]Backus G E,1977b. Seismic sources with observable glut moments of spatial degree two. Geophys. J. R. Astron. Soc,51(1):27-45.
    [9]Backus G E and Mulcahy M,1976a. Moment tensors and other phenomenologi-cal descriptions of seismic sources-I. Continuous displacements. Geophys. J. R. Astron. Soc,46(2):341-361.
    [10]Backus G E and Mulcahy M,1976b. Moment tensors and other phenomenological descriptions of seismic sources-II. Discontinuous displacements. Geophys. J. R. Astron. Soc,47(2):301-329.
    [11]Bakun WH,1984a. Magnitudes and moments of duration. Bull. Seism. Soc. Am, 74(6):2335-2356.
    [12]Bakun W H,1984b. Seismic moments, local magnitudes, and coda-duration magni-tudes for earthquakes in central California. Bull. Seism. Soc. Am,74(2):439-458.
    [13]Bakun W H and Joyner W B,1984. The ML scale in central California. Bull. Seism. Soc. Am,74(5):1827-1843.
    [14]Bard P Y, Campillo M, Chavez-Garcia F J et al.,1988. The Mexico Earthquake of September 19,1985—A Theoretical Investigation of Large-and Small-scale Amplification Effects in the Mexico City Valley. Earthquake Spectra,4(3):609-633.
    [15]Ben-Zion Y and Zhu L P,2002. Potency-magnitude scaling relations for southern California earthquakes with 1.0< ml<7.0. Geophys. J. Int,148:F1-F5.
    [16]Bent A L and Perry H K C,2002. Depths of eastern Canadian earthquakes from regional data. Seism. Res. Lett,73:273-284.
    [17]Bock G,1993. Depth phases from local earthquakes. BMR J. Aust. Geol. Geophys, 13:275-279.
    [18]Bock G, Grunthal G and Wylegalla K,1996. The 1985/86 Western Bohemia earthquakes:Modelling source parameters with synthetic seismograms. Tectono-physics,261(1-3):139-146. Seismic Source Parameters:From Microearthquakes to Large Events.
    [19]Boore D M,1983. Stochastic simulation of high-frequency ground motions based on seismological models of the radiated spectra. Bull. Seism. Soc. Am,73(6):1865-1894.
    [20]Boore D M,2003. Simulation of Ground Motion Using the Stochastic Method. Pure and Applied Geophysics,160(3-4):635-676.
    [21]Boore D M,2004. Estimating Vs(30) (or NEHRP Site Classes) from Shallow Velocity Models (Depths< 30 m). Bull. Seism. Soc. Am,94(2):591-597.
    [22]Boore D M, Gibbs J F, Joyner W B et al,2003. Estimated Ground Motion From the 1994 Northridge, California, Earthquake at the Site of the Interstate 10 and La Cienega Boulevard Bridge Collapse, West Los Angeles, California. Bull. Seism. Soc. Am,93(6):2737-2751.
    [23]Bath M,1975. Short-period Rayleigh waves from near-surface events. Phys. Earth Planet. Interiors,10(4):369-376.
    [24]Bukchin B G,1995. Determination of stress glut moments of total degree 2 from teleseismic surface wave amplitude spectra. Tectonophysics,248(3-4):185-191.
    [25]Burchfiel B C, Royden L H, van der Hilst R D et al.,2008.A geological and geo-physical context for the Wenchuan earthquake of 12 May 2008, Sichuan, People's Republic of China. GSA Today,18(7):4-14.
    [26]Burger R W, Somerville P G, Barker J S et al.,1987. The effect of crustal structure on strong ground motion attenuation relations in eastern North America. Bull. Seism. Soc. Am,77(2):420-439.
    [27]Canitez N and Toksoz M N,1971. Focal mechanism and source depth of earth-quakes from body-and surface-wave data. Bull. Seism. Soc. Am,61(5):1369-1379.
    [28]Chang S J and Baag C E,2005. Crustal Structure in Southern Korea from Joint Analysis of Teleseismic Receiver Functions and Surface-Wave Dispersion. Bull. Seism. Soc. Am,95(4):1516-1534.
    [29]Chang S J, Baag C E and Langston C A,2004. Combined Receiver-Function and Surface Wave Phase-Velocity Inversion Using a Niching Genetic Algorithm: Application to Patagonia. Bull. Seism. Soc. Am,94(2):691-704.
    [30]Chen P, Jordan T H and Zhao L,2005. Finite-moment tensor of the 3 September 2002 Yorba Linda earthquake. Bull. Seism. Soc. Am,95(3):1170-1180.
    [31]Chen S F and Wilson C J L,1996. Emplacement of the Longmen Shan Thrust-Nappe Belt along the eastern margin of the Tibetan Plateau. Journal of Structural Geology,18(4):413-430.
    [32]Chen S F, Wilson C J L, Deng Q D et al.,1994. Active faulting and block mo-vement associated with large earthquakes in the Min Shan and Longmen Moun-tains,northeastern Tibetan Plateau. J. Geophys. Res,99(B12):24025-24038.
    [33]Chi W C and Hauksson E,2006. Fault-perpendicular aftershock clusters follo-wing the 2003 Mw= 5.0 Big Bear, California, earthquake. Geophys. Res. Lett, 33:L07301.
    [34]Crampin S, Chastin S and Gao Y,2003. Shear-wave splitting in a critical crust III. Preliminary report of multi-variable measurements in active tectonics. Journal of Applied Geophysics,54(3-4):265-277.
    [35]Crosson R S,1976. Crustal structure modeling of earthquake data 1. Simultaneous least squares estimation of hypocenter and velocity parameters. J. Geophys. Res, 81(17):3036-3046.
    [36]Dahm T and Kruger F,1999. Higher-degree moment tensor inversion using far-field broad-band recordings:theory and evaluation of the method with application to the 1994 Bolivia deep earthquake. Geophys. J. Int,137:35-50.
    [37]Das S and Kostrov B V,1997. Determination of the polynomial moments of the seismic moment rate density distributions with positive constraints. Geophys. J. Int,131:115-126.
    [38]Dawson J, Cummins P, Tregoning P et al.,2008. Shallow intraplate earthquakes in Western Australia observed by Interferometric Synthetic Aperture Radar. J. Geophys. Res,113:B11408.
    [39]de Lorenzo S, Filippucci M and Boschi E,2008. An EGF technique to infer the rupture velocity history of a small magnitude earthquake. J. Geophys. Res, 113:B10314.
    [40]Douglas A,1967. Joint epicenter determination. Nature,215:47-48.
    [41]Dreger D S and Helmberger D V,1993. Determination of Source Parameters at Regional Distances With Three-Component Sparse Network Data. J. Geophys. Res,98(B5):8107-8125.
    [42]EBel J E and Bonjer K P,1990. Moment tensor inversion of small earthquakes in southwestern Germany for the fault plane solution. Geophys. J. Int,101(1):133-146.
    [43]Engdahl E R, van der Hilst R and Buland R,1998. Global teleseismic earthquake relocation with improved travel times and procedures for depth determination. Bull. Seism. Soc. Am,88(3):722-743.
    [44]Fan G W, Ni J F and Wallace T,1994. Active tectonics of the Pamirs and Kara-korum. J. Geophys. Res,99(B4):7131-7160.
    [45]Fan G W and Wallace T,1991. The determination of source parameters for small earthquakes from a single, very broadband seismic station. Geophys. Res. Lett, 18(8):1385-1388.
    [46]Fletcher J B and Spudich P,1998. Rupture characteristics of the three M 4.7(1992-1994) Parkfield earthquakes. J. Geophys. Res,103(B1):835-854.
    [47]Frankel A and Kanamori H,1983. Determination of rupture duration and stress drop for earthquakes in southern California. Bull. Seism. Soc. Am,73(6):1527-1551.
    [48]Geiger L,1912. Probability method for the determination of earthquake epicenters from arrival time only. Bull. St. Louis Univ,8:60-71.
    [49]Gephart J W and Forsyth D W,1984. An improved method for determining the regional stress tensor using earthquake focal mechanism data:application to the San Fernando earthquake sequence. J. Geophys. Res,89(B11):9305-9320.
    [50]Gilbert F,1971. Excitation of the normal modes of the Earth by earthquake source. Geophys. J. R. Astron. Soc,22(2):223-226.
    [51]Gilbert F,1973. Derivation of source parameters from low frequency spectra. Philos. Trans. R. Soc. London, Ser. A,274:369-371.
    [52]Gilbert F and Dziewonski A M,1975. An application of normal mode theory to the retrieval of structural parameters and source mechanisms from seismic spectra. Philos. Trans. R. Soc. London, Ser. A,278:187-269.
    [53]Graves R and Pitarka A,2004. Broadband time history simulation using a hybrid approach. in Proceedings of the 13th World Conference on Earthquake Enginee-ring, Vancouver,B.C., Canada:Paper No.1098.
    [54]Gupta H K, Sarma S V S, Harinarayana T et al.,1996. Fluids below the hypocentral region of Latur earthquake, India:geophysical indicators. Geophys. Res. Lett, 23(13):1569-1572.
    [55]Gusev A A and Pavlov V M,1988. Determination of space-time structure of a deep earthquake source by means of power moments. Tectonophysics,152(3-4):319-334.
    [56]Hadley D and Kanamori H,1977. Seismic structure of tile Transverse Ranges, California. Geol. Soe. Am. Bull.,88:1469-1478.
    [57]Hanks T C and Boore D M,1984. Moment-magnitude relations in theory and practice. J. Geophys. Res,89(B7):6229-6235.
    [58]Hanks T C and Kanamori H,1979. A moment magnitude scale. J. Geophys. Res, 84:2348-2350.
    [59]Hardebeck J L and Hauksson E,2001a. Crustal stress field in southern California and its implications for fault mechanics. J. Geophys. Res,106(B10):21859-21882.
    [60]Hardebeck J L and Hauksson E,2001b. Stress orientations obtained from ear-thquake focal mechanisms:What are appropriate uncertainty estimates. Bull. Seism. Soc. Am,91:250-262.
    [61]Hardebeck J L and Shearer P M,2002. A new method for determining first-motion focal mechanisms. Bull. Seism. Soc. Am,92(6):2264-2276.
    [62]Harkrider D G,1964. Surface waves in multilayered elastic media I. Rayleigh and Love waves from buried sources in a multilayered elastic half-space. Bull. Seism. Soc. Am,54(2):627-679.
    [63]Harkrider D G,1970. Surface waves in multilayered elastic media. Part Ⅱ. Higher mode spectra and spectral ratios from point sources in plane layered Earth models. Bull. Seism. Soc. Am,60(6):1937-1987.
    [64]Hartzell S H,1978. Earthquake aftershocks as Green's functions. Geophys. Res. Lett,5(1):1-4.
    [65]Haskell N A,1964. Total energy and energy spectra density of elastic waves from propagating faults. Bull. Seism. Soc. Am,54:1811-1841.
    [66]Hauksson E,1987. Seismotectonics of the Newport-Inglewood fault zone in the Los Angeles basin Southern California. Bull. Seism. Soc. Am,77(2):539-561.
    [67]Hauksson E,1994. State of stress from focal mechanisms before and after the 1992 Landers earthquake sequence. Bull. Seism. Soc. Am,84(3):917-934.
    [68]Helmberger D V, Dreger D, Stead R et al.,1993. Impact of broadband seismology on the understanding of strong motions. Bull. Seism. Soc.Am,83(3):830-850.
    [69]Helmberger D V and Engen G R,1980. Modeling the long-period body waves from shallow earthquakes at regional ranges. Bull. Seism. Soc. Am,70(5):1699-1714.
    [70]Horton S P, Kim W Y and Withers M,2005. The 6 June 2003 Bardwell, Kentucky, earthquake sequence:evidence for a locally perturbed stress field in the Mississippi Embayment. Bull. Seism. Soc. Am,95(2):431-445.
    [71]Hough S E and Dreger D S,1995. Source parameters of the 23 April 1992 m 6.1 Joshua Tree, California, earthquake and its aftershocks:empirical Green's function analysis of GEOS and TERRAscope data. Bull. Seism. Soc. Am,85:1576-1590.
    [72]Huang J L and Zhao D P,2004. Crustal heterogeneity and seismotectonics of the region around Beijing, China. Tectonophysics,385(1-4):159-180.
    [73]Hutton L K and Boore D M,1987. The ML scale in Southern California. Bull. Seism. Soc. Am,77(6):2074-2094.
    [74]Jemberie A L and Langston C A,2005. Site Amplification, Scattering, and Intrinsic Attenuation in the Mississippi Embayment from Coda Waves:Bull. Seism. Soc. Am,95(5):1716-1730.
    [75]Ji C, Wald D J and Helmberger D V,2002. Source Description of the 1999 Hector Mine, California, Earthquake, Part II:Complexity of Slip History. Bull. Seism. Soc. Am,92(4):1208-1226.
    [76]Jones L E and Helmberger D V,1998. Earthquake source parameters and fault kinematics in the eastern California shear zone. Bull. Seism. Soc. Am,88(6):1337-1352.
    [77]Julia J, Ammon C J, Herrmann R B et al.,2002. Joint inversion of receiver function and surface wave dispersion observations. Geophys. J. Int,143(1):99-112.
    [78]Kafka A L,1990. Rg as a depth discriminant for earthquakes and explosions:A case study in New England. Bull. Seism. Soc. Am,80(2):373-394.
    [79]Kafka A L and Weidner D J,1979. The focal mechanisms and depths of small earthquakes as determined from Rayleigh-wave radiation patterns. Bull. Seism. Soc. Am,69(5):1379-1390.
    [80]Kanamori H and Anderson D L,1975. Theoretical basis of some empirical relations in seismology. Bull. Seism. Soc. Am,65(5):1073-1095.
    [81]Kanamori H and Cipar J J,1974. Focal process of the great Chilean earthquake May 22,1960. Phys. Earth Planet. Interiors,9:128-136.
    [82]Kanamori H and Given J W,1981. Use of long-period surface waves for rapid determination of earthquake-source parameters. Phys. Earth Planet. Interiors, 27(1):8-31.
    [83]Kastrup U, Deichmann N, Frohlich A et al.,2007. Evidence for an active fault below the northwestern Alpine foreland of Switzerland. Geophys. J. Int, 169(3):1273-1288.
    [84]Keilis-Borok V I and Yanovskaya T B,1962. Dependence of the spectrum of surface waves on the depth of the focus within the Earth's crust. Bull. Acad. Sci. USSR, Geophys. Set.,(English Transl.),11:1532-1539.
    [85]Kim W Y, Dineva S, Ma S et al.,2006. The 4 August 2004, Lake Ontario, Earth-quake. Seism. Res. Lett,77(1):65-73.
    [86]Kind R,1979. Observations of sPn from Swabian Alb earthquakes at the GRF Array. J. Geophys,45:337-340.
    [87]Kobayashi T, Takada Y, Furuya M et al.,2009. Locations and types of ruptures involved in the 2008 Sichuan earthquake inferred from SAR image matching. Geo-phys. Res. Lett,36:L07302.
    [88]Komatitsch D, Martin R, Tromp J et al.,2001. Wave propagation in 2-D elastic media using a spectral element method with triangles and quadrangles. Journal of Computational Acoustics,9:703-718.
    [89]Langston C A,1977a. Corvallis, Oregon, crustal and upper mantle receiver struc-ture from teleseismic P and S waves. Bull. Seism. Soc. Am,67(3):713-724.
    [90]Langston C A,1977b. The effect of planar dipping structure on source and receiver responses for constant ray parameter. Bull. Seism. Soc. Am,67(4):1029-1050.
    [91]Langston C A,1979. Structure under mount rainier, Washington, infered from teleseismic body waves. J. Geophys. Res,84(B9):4749-4762.
    [92]Langston C A,1987. Depth of faulting during, the 1968 Meckering, Australia, earthquake sequence determined from waveform analysis of local seismograms. J. Geophys. Res,92(B11):11561-11574.
    [93]Langston C A,1996. The SsPmp phase in regional wave propagation. Bull. Seism. Soc. Am,86(1A):133-143.
    [94]Langston C A,2003. Local Earthquake Wave Propagation through Mississippi Embayment Sediments, Part I:Body-Wave Phases and Local Site Responses. Bull. Seism. Soc. Am,93(6):2664-2684.
    [95]Lanza V, Spallarossa D, Cattaneo M et al.,1999. Source parameters of small events using constrained deconvolution with empirical Green's functions. Geophys. J. Int, 137:651-662.
    [96]Last R J, Nyblade A A, Langston C A et al.,1997. Crustal structure of the East African Plateau from receiver functions and Rayleigh wave phase velocities. J. Geophys. Res,102(B11):24469-24483.
    [97]Lawrence J F and Wiens D A,2004. Combined Receiver-Function and Surface Wave Phase-Velocity Inversion Using a Niching Genetic Algorithm:Application to Patagonia. Bull. Seism. Soc. Am,94(3):977-987.
    [98]Lay T and Wallace T C,1995.'Modern global seismology. New York:Academic Press.
    [99]Ligorria J P and Ammon C J,1999. Iterative deconvolution and receiver function estimation. Bull. Seism. Soc. Am,89(5):1395-1400.
    [100]Liu Q Y, Polet J, Komatitsch D et al,2004. Spectral-element moment tensor in-versions for earthquakes in southern California. Bull. Seism. Soc. Am,94(5):1748-1761.
    [101]Lohman R B, Simons M and Savage B,2002. Location and mechanism of the Little Skull Mountain earthquake as constrained by satellite radar interferometry and seismic waveform modeling. J. Geophys. Res,107(B6).
    [102]Ma S T and Atkinson G M,2006. Focal Depths for Small to Moderate Earthquakes (mN≥2.8) in Western Quebec, Southern Ontario, and Northern New York. Bull. Seism. Soc. Am,96(2):609-623.
    [103]Magistrale H, Day S, Clayton R W et al.,2000. The SCEC southern California reference three-dimensional seismic velocity model version 2. Bull. Seism. Soc. Am,90(6B):S65-S76.
    [104]McGarr A,1991. Observations Constraining Near-Source Ground Motion Estima-ted From Locally Recorded Seismograms. J. Geophys. Res,96(B10):16495-16508.
    [105]McGuire J J,2004. Estimating the finite source properties of small earthquake ruptures. Bull. Seism. Soc. Am,94(2):377-393.
    [106]McGuire J J, Zhao L and Jordan T J,2001. Teleseismic inversion for the second-degree moments of earthquake space-time distributions. Geophys. J. Int,145:661-678.
    [107]McKenzie D P,1969. The relationship between fault plane solutions for earth-quakes and the directions of the principal stresses. Bull. Seism. Soc. Am,59:591-601.
    [108]Mendiguren J A,1977. Inversion of surface wave data in source mechanism studies. J. Geophys. Res,82(5):889-894.
    [109]Michael A J,1984. Determination of stress from slip data:faults and folds. J. Geophys. Res,89:11517-11526.
    [110]Michael A J,1987. The use of focal mechanisms to determine stress:A control study. J. Geophys. Res,92:357-368.
    [111]Michael A J,1991. Spatial variations in stress within the 1987 Whittier Narrows, California, aftershock sequence:new techniques and results. J. Geophys. Res, 96(B4):6303-6319.
    [112]Mori J,1991. Estimates of velocity structure and source depth using multiple P waves from aftershocks of the 1987 Elmore Ranch and Superstition Hills, Califor-nia, earthquakes. Bull. Seism. Soc. Am,81(2):508-523.
    [113]Mori J,1993. Fault plane determinations for three small earthquakes along the San Jacinto Fault, California:Search for cross faults. J. Geophys. Res,98(B10):17711-17722.
    [114]Mori J,1996. Rupture directivity and slip distribution of the M 4.3 foreshock to the 1992 Joshua Tree earthquake, Southern California. Bull. Seism. Soc. Am, 86(3):805-810.
    [115]Mori J and Helmberger D,1996. Large-amplitude Moho reflections (SmS) from Landers aftershocks, southern California. Bull. Seism. Soc. Am,86(6):1845-1852.
    [116]Murphy J R and Barker B W,2006. Improved Focal-Depth Determination through Automated Identification of the Seismic Depth Phases pP and sP. Bull. Seism. Soc. Am,96(4A):1213-1229.
    [117]Okal E A and Geller R J,1979. On the observability of isotropic seismic sources:The July 31,1970 Colombian earthquake. Phys. Earth Planet. Inter-iors,18(3):176-196.
    [118]Owens T J and Crosson R S,1988. Shallow structure effects on broadband tele-seismic P waveforms. Bull. Seism. Soc. Am,78(1):96-108.
    [119]Owens T J, Taylor S R and Zandt G,1983. Isolation and enhancement of the response of local seismic structure from teleseismic P waveforms. Technical Report.
    [120]Owens T J and Zandt G,1985. The response of the continental crust-mantle boundary observed on broadband teleseismic receiver functions. Geophys. Res. Lett,12(10):705-708.
    [121]Owens T J, Zandt G and Taylor S R,1984. Seismic evidence for an ancient rift beneath the Cumberland Plateau, Tennessee:A detailed analysis of broadband teleseismic P waveforms. Bull. Seism. Soc. Am,89(B9):7783-7795.
    [122]Ozalaybey S, Louis S J and Savage M K,1995. Receiver function inversion using genetic algorithms. Proceedings of the 3rd Golden West international Conference on Intelligent Systems. Kluwer Academic Publishers, page.
    [123]Ozalaybey S, Savage M K, Sheehan A F et al.,1997. Shear-wave velocity structure in the northern Basin and Range province from the combined analysis of receiver functions and surface waves. Bull. Seism. Soc. Am,87(1):183-199.
    [124]Patton H J,1980. Reference point equalization method for determining the source and path effects of surface waves. J. Geophys. Res,85(B2):821-848.
    [125]Patton H J and Aki K,1979. Bias in the estimate of seismic moment tensor by the linear inversion method. Geophys. J. R. Astron. Soc,59(3):479-495.
    [126]Patton H J and Zandt G,1991. Seismic moment tensors of western U.S. earthquakes and implication for the tectonic stress field. J. Geophys. Res, 96(B11):18245-18259.
    [127]Pavlov V M,1994. On non-uniqueness of the inverse problem for a seismic source-II. Treatment in terms of polynomial moments. Geophys. J. Int,119:487-496.
    [128]Phinney R A,1964. Structure of the Earth's crust from spectral behavior of long-period body waves. J. Geophys. Res,69(14):2997-3017.
    [129]Prieto G A, Shearer P M, Vernon F L et al.,2004. Earthquake source scaling and self-similarity estimation from stacking p and s spectra. J. Geophys. Res, 109:B08310.
    [130]Rau R J, Wu F T and Shin T C,1996. Regional Network focal mechanism deter-mination using 3D velocity model and SH/P amplitude ratio. Bull. Seism. Soc. Am,86(5):1270-1283.
    [131]Richter C F,1935. An instrumental earthquake magnitude scale. Bull. Seism. Soc. Am,25:1-32.
    [132]Rivera H K L,2004. Static and Dynamic Scaling Relations for Earthquakes and Their Implications for Rupture Speed and Stress Drop. Bull. Seism. Soc. Am, 94(1):314-319.
    [133]Rivera L and Cisternas A,1990. Stess tensor and fault plane solutions for a population of earthquakes. Bull. Seism. Soc. Am,80:600-614.
    [134]Romanowicz B and Guillemant P,1984. An experiment in the retrieval of depth and source mechanism of large earthquakes using very long-period Rayleigh-wave data. Bull. Seism. Soc. Am,74(2):417-437.
    [135]Romanowicz B and Suarez G,1983. On an improved method to obtain the moment tensor and depth of earthquakes from the amplitude spectrum of Rayleigh waves. Bull. Seism. Soc. Am,73(6A):1513-1526.
    [136]Romney C,1957. Seismic waves from the Dixie Valley-Fairview Peak earthquakes. Bull. Seism. Soc. Am,47(4):301-319.
    [137]Ryberg T and Weber M,2000. Receiver function arrays:a reflection seismic approach. Geophys. J. Int,141(1):1-11.
    [138]Saikia C K,1992. Numerical Study of Quarry Generated Rg as a Discriminant for Earthquakes and Explosions:Modeling of Rg in Southwestern New England. J. Geophys. Res,97(B7):11057-11072.
    [139]Saikia C K,2000. A method for path calibration using regional and teleseismic broadband seismograms:application to the 21 May 1997 Jabalpur, India earth-quake (Mw5.8). Curr. Sci,79(9-10):1301-1315.
    [140]Saikia C K, Pitarka A and Ichinose G A,2006. Effects of Irregular Structure of the Mississippi Embayment on Ground-Motion Amplification. Bull. Seism. Soc. Am,96(4A):1448-1473.
    [141]Saikia C K, Woods B B and Thio H K,2001. Calibration of the regional crustal waveguide and the retrieval of source parameters using waveform modeling. Pure and Applied Geophysics,158(7):1301-1338.
    [142]Saito M,1967. Excitation of free oscillations and surface waves by a point source in a vertically heterogeneous earth. J. Geophys. Res,72:3689-3699.
    [143]Sambridge M,1998. Exploring multidimensional landscapes without a map. In-verse Problems,14(3):427-440.
    [144]Sandvol E, Seber D, Calvert A et al.,1998. Grid search modeling of receiver functions:Implications for crustal structure in the Middle East and North Africa. J. Geophys. Res,103(B11):26899-26917.
    [145]Satoh T,2006. Inversion of Qs of Deep Sediments from Surface-to-Borehole Spec-tral Ratios Considering Obliquely Incident SH and SV Waves. Bull. Seism. Soc. Am,96(3):943-956.
    [146]Savage B and Helmberger D V,2004. Site response from incident Pnl waves. Bull. Seism. Soc. Am,94:357-362.
    [147]Scholz C H,2002. The mechanics of earthquakes and faulting. New York:Cam-bridge Univ. Press.
    [148]Shedlock K M and Roecker S W,1987. Elastic wave velocity structure of the crust and upper mantle beneath the North China basin. J. Geophys. Res,92(B9):9327-9350.
    [149]Shibutani T, Sambridge M and Kennett B,1996. Genetic algorithm inversion for receiver functions with application to crust and uppermost mantle structure beneath Eastern Australia. Geophys. Res. Lett,23(14):1829-1832.
    [150]Shudofsky G N,1985. Source mechanisms and focal depths of East African earth-quakes using Rayleigh-wave inversion and body-wave modelling. Geophys. J. R. Astron. Soc,83(3):563-614.
    [151]Silver P G and Jordan T H,1983. Total-moment spectra of fourteen large earth-quakes. J. Geophys. Res,88(B4):3273-3294.
    [152]Somerville P G,1993. Engineering applications of strong ground motion simula-tion. Tectonophysics,218(1-3):195-219.
    [153]Somerville P G, Collins N, Abrahamson N et al.,2001. Earthquake source scaling and ground motion attenuation relations for the central and eastern United States. Report to the U.S. Geological Survey, Grant No.99H.QGR0098.
    [154]Somerville P G and Yoshimura J,1990. The influence of critical Moho Reflections on strong ground motions recorded in San Francisco and Oakland during the 1989 Loma Prieta Earthquake. Geophys. Res. Lett,17(8):1203-1206.
    [155]Song X J and Helmberger D V,1997. Northridge aftershocks, a source study with TERRAscope data. Bull. Seism. Soc. Am,87(4):1024-1034.
    [156]Song X J and Helmberger D V,1998. Pseudo Green's functions and waveform tomography. Bull. Seism. Soc. Am,88(1):304-312.
    [157]Spence W,1980. Relative epicenter determination using P-wave arrival-time dif-ferences. Bull. Seism. Soc. Am,70(1):171-183.
    [158]Stein S and Wiens D A,1986. Depth determination for shallow teleseismic earth-quakes:Methods and results. Rev. Geophys.,24(4):806-832.
    [159]Stoneley R,1931. On deep focus earthquakes. Gerlands Beit. Geophys,29:417-435.
    [160]Tan Y,2006. Broadband Waveform Modeling over a Dense Seismic Network. Ph.D. thesis, California Institute of Technology, Pasadena, CA, USA.
    [161]Tan Y and Helmberger D V,2007. A New Method for Determining Small Ear-thquake Source Parameters Using Short-Period P Waves. Bull. Seism. Soc. Am, 97(4):1176-1195.
    [162]Tan Y and Helmberger D V,2010. Rupture directivity of the 2003 Big Bear sequence. Bull. Seism. Soc. Am, Accepted.
    [163]Tan Y, Song T A, Wei S J et al.,2010. Surface Wave Path Corrections and Source Inversions in southern California. Bull. Seism. Soc. Am, Accepted.
    [164]Tan Y, Zhu L P, Helmberger D V et al.,2006. Locating and modeling regional earthquakes with two stations. J. Geophys. Res,111:B01306.
    [165]Templeton D, Rodgers A, Helmberger D V et al.,2008. Comparison of the cut-and-paste and full moment tensor methods for estimating earthquake source pa-rameters. Eos, Transactions, American Geophysical Union,89(53,Suppl.).
    [166]Thio H K and Kanamori H,1995. Moment-tensor inversions for local earthquakes using surface waves recorded at TERRAscope. Bull. Seism. Soc. Am,85(4):1021-1038.
    [167]Tian X B, Wu Q J, Zhang Z J et al.,2005. Joint imaging by teleseismic converted and multiple waves and its application in the INDEPTH-Ⅲ passive seismic array. Geophys. Res. Lett,32:L21315.
    [168]Tsai Y B and Aki K,1969. Simultaneous determination of the seismic moment and attenuation of seismic surface waves. Bull. Seism. Soc. Am,59(1):275-287.
    [169]Tsai Y B and Aki K,1970a. Precise Focal Depth Determination from Amplitude Spectra of Surface Waves. J. Geophys. Res,75(29):5729-5744.
    [170]Tsai Y B and Aki K,1970b. Source mechanism of the Truckee, California, earth-quake of September 12 1966. Bull. Seism. Soc. Am,60(4):1199-1208.
    [171]Tsai Y B and Aki K,1971. Amplitude Spectra of Surface Waves from Small Earthquakes and Underground Nuclear Explosions. J. Geophys. Res,76(17):3940-3952.
    [172]Uski M, Hyvonena T, Korjaa A et al.,2003. Focal mechanisms of three earthquakes in Finland and their relation to surface faults. Tectonophysics,363(1-2):141-157.
    [173]Venkataraman A, Mori J, Kanamori H et al.,2000. Fine structure of the rupture zone of the Apirl 26 and 27,1997, Northridge aftershocks. J. Geophys. Res, 105(B8):19085-19093.
    [174]Vidal A and Munguia L,1991. Local magnitude and source parameters for ear-thquakes in the Peninsular Ranges of Baja California, Mexico. Bull. Seism. Soc. Am,81(6):2254-2267.
    [175]Vinnik L P,1977. Detection of waves converted from P to SV in the mantle. Phys. Earth Planet. Interiors,15(1):39-45.
    [176]Waldhauser F and Ellsworth W L,2000. A double-difference earthquake location algorithm:method and application to the Northern Hayward Fault California. Bull. Seism. Soc. Am,90(6):1353-1368.
    [177]Wallace T C and Helmberger D V,1982. Determining source parameters of moderate-size earthquakes from regional waveforms. Phys. Earth Planet. Interiors, 30(2-3):185-196.
    [178]Wang C Y and Huangfu G,2004. Crustal structure in Tengchong Volcano-Geothermal Area, western Yunnan, China. Tectonophysics,380(1-2):69-87.
    [179]Wei S J, Zhan Z W, Helmberger D V et al.,2010. Rapid regional centroid solution, submitted to BSSA.
    [180]Wen L X and Helmberger D V,1997. Propagational corrections for basin structure: Landers earthquake. Bull. Seism. Soc. Am,87(3):782-787.
    [181]Wiggins R A,1969. Monte Carlo Inversion of Body-Wave Observations. J. Geo-phys. Res,74(12):3171-3181.
    [182]Wu C and Takeo M,2004. An intermediate deep earthquake rupturing on a dip-bending fault:Waveform analysis of the 2003 Miyagi-ken Oki earthquake. Geophys. Res. Lett,31:L24619.
    [183]Wu Q J, Li Y H, Zhang R Q et al,2007a. Receiver Functions from Autoregressive Deconvolution. Pure and Applied Geophysics,164(11):2175-2192.
    [184]Wu Q J, Li Y H, Zhang R Q et al.,2007b. Wavelet modelling of broad-band receiver functions. Geophys. J. Int,170(2):534-544.
    [185]Yan J P and Wang Y B,2008. Modeling seismic wave propagation in heterogeneous medium using overlap domain pseudospectral method. Acta Seismologica Sinica, 21(1):46-57.
    [186]Yuan X H, Ni J, Kind R et al.,1997. Lithospheric and upper mantle structure of southern Tibet from a seismological passive source experiment. J. Geophys. Res, 102(B12):27491-27500.
    [187]Zandt G and Ammon C J,1995. Continental crust composition constrained by measurements of crustal Poisson's ratio. Nature,374:152-154.
    [188]Zandt G, Myers S C and Wallace T C,1995. Crust and mantle structure across the Basin and Range-Colorado Plateau boundary at 37°N latitude and implications for Cenozoic extensional mechanism. J. Geophys. Res,100(B6):10529-10548.
    [189]Zhang W and Chen X F,2006. Traction image method for irregular free sur-face boundaries in finite difference seismic wave simulation. Geophys. J. Int, 167(1):337-353.
    [190]Zhang X K, Yang Y C, Zhao P et al.,1994. Three-dimension seismic transmis-sion experiment in the Luanxian earthquake region of North China :tomogra-phic determination of the upper and middle crust structure. Chinese J. Geophys, 37(6):759-766.
    [191]Zhao L, Chen P and Jordan T H,2006. Strain Green tensor, reciprocity, and their applications to seismic source and structure studies. Bull. Seism. Soc. Am, 96(5):1753-1763.
    [192]Zhao L S and Helmberger D V,1991. Broadband modelling along a regional shield path, Harvard recording of the Saguenay earthquake. Geophys. J. Int,105:301-312.
    [193]Zhao L S and Helmberger D V,1993. Source retrieval from broadband regional seismograms:Hindu Kush region. Phys. Earth Planet. Interiors,78:69-95.
    [194]Zhao L S and Helmberger D V,1994. Source estimation from broadband regional seismograms. Bull. Seism. Soc. Am,84:91-104.
    [195]Zhao L S and Helmberger D V,1996. Regional moments,energy levels, and a new discriminant. Pure and Applied Geophysics,146(2):281-304.
    [196]Zheng T Y, Zhao L and Chen L,2005. A detailed receiver function image of the sedimentary structure in the Bohai Bay Basin. Phys. Earth Planet. Interiors, 152(3):129-143.
    [197]Zhu L, Helmberger D V, Saikia C K et al,1997. Regional waveform Calibration in the Pamir-Hindu Kush region. J. Geophys. Res,102(B10):22799-22813.
    [198]Zhu L P and Helmberger D V,1996. Advancement in source estimation techniques using broadband regional seismograms. Bull. Seism. Soc. Am,86(5):1634-1641.
    [199]Zhu L P and Kanamori H,2000. Moho depth variation in southern California from teleseismic receiver functions. J. Geophys. Res,105(B2):2969-2980.
    [200]Zhu L P and Rivera L A,2002. A note on the dynamic and static displacements from a point source in multilayered media. Geophys. J. Int,148(3):619-627.
    [201]Zhu L P, Tan Y, Helmberger D V et al.,2006. Calibration of the Tibetan Plateau Using Regional Seismic Waveforms. Pure and Applied Geophysics,163(7):1193-1213.
    [202]Zonno G and Kind R,1984. Depth determination of North Italian earthquakes using Grafenberg data. Bull. Seism. Soc. Am,74(5):1645-1659.
    [203]丁志锋,曾融生,1990.京津唐地区震源深度分布初探.地震学报,12(3):242-247.
    [204]丁志锋,武岩,王辉等,2008.2008年汶川地震震源区横波分裂的变化特征.中国科学D辑,38(12):1600-1604.
    [205]万柯松,倪四道,曾祥方等,2009.汶川大地震中的应急地震学.中国科学D辑,39(1):1-10.
    [206]万柯松,倪四道,赵里,2010.用有限频率法确定四川盆地速度结构.成都海峡汶川地震研讨会论文集.
    [207]于湘伟,陈运泰,王培德,2003.京津唐地区中上地壳三维P波速度结构.地震学报,25(1):1-14.
    [208]任克新,邹立晔,刘瑞丰等,2004.用sPn计算内蒙地震的震源深度.地震地磁观测与研究,25(2):24-31.
    [209]刁桂苓,张四昌,孙佩卿等,2006.2006年7月4日文安5.1级地震.地震地质,28(3):497-502.
    [210]刘启元,Kind R,李顺成,1996.接收函数复频谱比的最大或然性估计及非线性反演.地球物理学报,39(4):502-513.
    [211]刘启元,Kind R,李顺成,1997.中国数字地震台网的接收函数及其非线性反演.地球物理学报,40(3):356-367.
    [212]刘春,吴忠良,蒋长胜,2009.汶川地震序列中较大深度余震的一种可能的直接观测证据.中国地震,25(2):113-122.
    [213]刘福田,曲克信,吴华等,1986.华北地区的地震层面成像.地球物理学报,29(5):442-449.
    [214]吕坚,苏金蓉,靳玉科等,2008.汶川8.0级地震序列重新定位及其发震构造初探.地震地质,30(4):917-925.
    [215]吴庆举,曾融生,1998.用宽频带远震接收函数研究青藏高原的地壳结构.地球物理学报,41(5):669-679.
    [216]吴庆举,李永华,张瑞青等,2007.用多道反褶积方法测定台站接收函数.地球物理学报,50(3):791-796.
    [217]吴庆举,田小波,张乃铃,2003.用Wiener滤波方法提取台站接收函数.中国地震,19(1):41-47.
    [218]吴建平,明跃红,张恒荣等,2005.2002年夏季长白山天池火山区的地震活动研究.地球物理学报,48(3):621-628.
    [219]吴建平,黄媛,张天中,2009.汶川Ms 8.0级地震余震分布及周边区域P波三维速度结构研究.地球物理学报,52(2):320-328.
    [220]周蕙兰,杨毅,2003.接收函数反演上地幔速度结构和间断面的剥壳遗传算法.地球物理学报,46(3):382-389.
    [221]嘉世旭,齐诚,王夫运,2006.首都圈地壳网格化三维结构.地球物理学报,48(6):1316-1324.
    [222]四川油气区编写组,1989.四川省油气区地质志.北京:石油工业出版社.
    [223]四川省地质矿产局,1991.四川省区域地质志.北京:地质出版社.
    [224]孙建宝,沈正康,徐锡伟,2008.汶川Ms 8.0地震InSAR形变观测及初步分析.地震地质,30(3):790-795.
    [225]孙玮,刘树根,秦川等,2009.川中磨溪与龙女寺雷口坡组构造特征及油气成藏差异性.成都理工大学学报(自然科学版),36(6):654-661.
    [226]孙若昧,刘福田,1995.京津唐地区地壳结构与强震的发生:I.P波速度结构.地球物理学报,38(5):599-607.
    [227]张先康,杨玉春,赵平,1994.唐山滦县震区的三维地震透射研究中、上地壳速度层析成像.地球物理学报,37(6):759-766.
    [228]张先康,王椿镛,1996.延庆-怀来地区地壳细结构-利用深地震反射剖面.地球物理学报,39(3):356-364.
    [229]张国民,汪素云,李丽,2002.中国大陆地震震源深度及其构造含义.科学通报,47(9):663-668.
    [230]张国民,马宏生,王辉等,2004.中国大陆活动地块与强震活动关系.中国科学D辑,34(7).
    [231]张培震,徐锡伟,闻学泽,2008.2008年汶川8.0级地震发震断裂的滑动速率、复发周期和构造成因.地球物理学报,51(4):1066-1073.
    [232]张瑞青,吴庆举,李永华等,2008.汶川中强余震震源深度的确定及其意义.中国科学D辑,38(10):1234-1241.
    [233]徐锡伟,吴卫民,张先康,2002.首都圈地区地壳最新构造变动与地震.北京:科学出版社.
    [234]徐锡伟,闻学泽,叶建青,2008.汶川Ms 8.0地震地表破裂带及其发震构造.地震地质,30(3):597-629.
    [235]房明山,杜安陆,董孝平等,1995.用sPn震相测定近震震源深度.地震地磁观测与研究,16(5):13-18.
    [236]朱艾斓,徐锡伟,刁桂苓等,2008.汶川Ms 8.0级大地震及其余震序列重定位研究.地震地质,30(3):759-767.
    [237]李松林,邓宏钊,张先康等,2001.多条人工地震测深剖面资料联合反演首都圈三维地壳结构.地球物理学报,44(3):360-368.
    [238]李永华,吴庆举,安张辉,2006.青藏高原东北缘地壳S波速度结构与泊松比及其意义.地球物理学报,49(5):1359-1368.
    [239]杨晓平,1999. 龙门山断裂带南段错断晚更新世以来地层的证据. 地震地质,21(4):341-345.
    [240]杨智娴,陈运泰,郑月军等,2003.双差地震定位法在我国中西部地区地震精确定位中的应用.中国科学D辑,33(增刊):129-134.
    [241]洪星,叶雯燕,邵平荣等,2006.台湾海峡南部一次5.0级地震的sPn震相分析.地震地磁观测与研究,27(1):26-31.
    [242]王椿镛,王贵美,林中洋,1993.用深地震方法研究邢台地震区地壳细结构.地球物理学报,36(4):445-452.
    [243]王椿镛,韩渭宾,吴建平等,2003.松潘-甘孜造山带地壳速度结构.地震学报,25(3):229-241.
    [244]胡家富,朱雄关,夏静瑜等,2005.利用面波和接收函数联合反演滇西地区壳幔速度结构.地球物理学报,48(5):1069-1076.
    [245]许力生,陈运泰,1997.用数字化宽频带波形资料反演共和地震的震源参数.地震学报,19(2):113-128.
    [246]许力生,陈运泰,2004.从全球长周期波形资料反演2001年11月14日昆仑山口地震时空破裂过程.中国科学D辑,34(3):256-264.
    [247]许卫卫,郑天愉,2002.接收函数方法及研究进展.地球物理学进展,17(4):605-613.
    [248]许卫卫,郑天愉,2005.渤海湾盆地北西盆山边界地区泊松比分布.地球物理学报,48(5):1077-1084.[249]贺传松,王椿镛,吴建平,2003.五大连池火山区地壳上地幔速度结构的接收函数反演.地震学报,25(2):128-135.
    [250]贺传松,王椿镛,吴建平,2004a.用远震接收函数研究滇西地区的深部结构.地震学报,26(3).
    [251]贺传松,王椿镛,吴建平,2004b.腾冲火山区S波速度结构研究接收函数反演.地震学报,26(1).
    [252]赵珠,范军,郑斯华等,1997.龙门山断裂带地壳速度结构和震源位置的精确修定.地震学报,19(6):615-622.
    [253]赵珠,陈农,1995.龙门山断裂带四川北段震源位置的精确修定.四川地震,(4):19-30.
    [254]郑勇,马宏生,吕坚,2009.汶川地震强余震(Ms≥5.6)的震源机制解及其与发震构造的关系.中国科学D辑,39(4):1-14.[255]金安蜀,刘福田,孙永智,1980.北京地区地壳和上地幔的三维P波速度结构.地球物理学报,23(2):172-182.[256]陈九辉,刘启元,李顺成,2009.汶川Ms 8.0地震余震序列重新定位及其地震构造研究.地球物理学报,52(2):390-397.
    [257]陈颙,1978.震源机制一致性作为描述地震活动性的新参数. 地球物理学报,21(2):140-159.
    [258]马保起,苏刚,候治华等,2005.利用岷江阶地的变形估算龙门山断裂带中段晚第四纪滑动速率.地震地质,27(2):234-242.
    [259]马宗晋,张家声,刘国栋,1990.大陆多震层研究现状和讨论.地震地质,12(3):262-264.
    [260]马杏垣,丁国瑜,高文学,1989.中国岩石圈动力学地图集.北京:中国地图出版社.
    [261]马淑田,姚振兴,1998.1996年5月3日内蒙古包头西Ms 6.4级地震的震源机制研究.地球物理学报,41(6):795-803.
    [262]马淑田,陈会忠,1998.1998年1月10日河北省张北-尚义Ms 6.2地震震源机制的初步研究.地球物理学报,41(5):724-728.
    [263]高星,王卫民,姚振兴,2005.中国及邻近地区地壳结构.地球物理学报,48(3):591-601.
    [264]高立新,刘芳,赵蒙生等,2007.用sPn震相计算震源深度的初步分析与应用.西北地震学报,29(3):213-244.
    [265]黄媛,吴建平,张天中等,2008.汶川8.0级大地震及其余震序列重定位研究.中国科学D辑,38(10):1242-1249.
    [266]黄金莉,赵大鹏,2005.首都圈地区地壳三维P波速度细结构与强震孕育的深部构造环境.科学通报,50(4):348-355.
    [267]齐诚,赵大鹏,陈颙,2006.首都圈地区地壳P波和S波三维速度结构及其与地震的关系.地球物理学报,49(3):805-815.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700