用户名: 密码: 验证码:
裂隙单斜介质地震波场正演模拟及AVO特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,裂缝性油气藏研究已经成为一个重要的勘探新领域。裂隙性油气藏具有储层规模小,非均质和各向异性效应都很强的特点,一般的地震勘探方法很难识别,因而增大了勘探难度。在油气田开发的过程中,裂隙的破坏和生成是影响采收率的关键因素,同样也增加了油气田开采的难度。本文对弹性单斜各向异性介质和粘弹单斜各向异性介质做了模拟研究,分析裂隙填充物分别为空气和水的地震波场快照。为了更进一步研究裂隙在局部小尺度上具有极强非均质和各向异性效应对地震波的影响,本文以Von Karman型随机裂隙单斜介质为研究对象,裂隙填充物分别为空气和水两种介质,模拟了背景纵波速度、裂隙方位角、裂隙分布密度随标准差连续变化时的一系列井间地震记录,对不同地震波不同分量进行了研究,利用相关系数分别研究了上述模型井间地震记录的线性相关性、相像程度。对于裂隙储层,方位各向异性AVO被用来识别和预测裂缝及其发育带,并利用PP波、PS波反射系数对单裂隙的介质和裂隙性单斜介质进行AVO分析对比,发现随着方位角、入射角的变化,单裂隙介质、双裂隙介质的方位各向异性有一定的差异。这些研究对裂隙的识别和预测有很重要的意义。
Recently, people found that oil and gas resources are extremely rich in cracks of underground reserves. Exploration and development of the oil and gas in cracks is the main method of improving oil and gas production. Cracks exist widely in subsurface, which is one of the main causes of subsurface anisotropy and heterogeneity, and also the theoretical starting point of this paper.
     For underground anisotropic media, for the purpose of understanding the ground rules and characteristics of seismic wave propagation in anisotropic media, from simple to complex, domestic and foreign scientists build a lot of theoretical medium model according to the characteristics of underground media, such as TI, TTI, HTI, orthotropy, monoclinic media, etc, to solve the wave equation for each model and give the stiffness coefficient matrix of the anisotropic medium model and gain the phase velocity and group velocity of various types anisotropic media model. Through forward modeling of these models, research and analysis of seismic wave field, we found that the theoretical model of seismic wave field is a very good description of certain real subsurface seismic response and geological structure. However, the complexity of the subsurface medium is difficult to imagine, the same is the distribution and developed zones of fracture, especially the anisotropy of cracks inducement. The presence of cracks produces a strong scattering effect on seismic wave, and small-scale fracture affects the reservoir heterogeneity and anisotropy strongly, which produce huge disturbance to the seismic waves. So the general method of seismic exploration can hardly identify, which increases the difficulty of exploration. Because of the detachment of oil and gas and the changes of environmental factors, such as pressure, and also, reservoir fractures are damaged and new fractures are created, which are the key factors affecting harvest ratio. To learn fissure oil, gas seismic wave field characteristics and seismic attributes, forward modeling is necessary to do the work, so choosing a theoretical model for forward modeling of medium is critical. By comparison, we found that monoclinic anisotropy fissure medium model is a good one theoretically, and the parameters of this model are relatively complete, including the velocity and density of longitudinal and transverse wave of isotropic medium, distribution density, aspect ratio and the fracture angle of the two fractures, and the velocity and density of longitudinal and transverse wave of fracture filling. We found that it is a better model to simulate oil and gas fracture reservoir.
     This article first used higher order staggered-grid finite difference method to forward model by the air and water crack filling respectively, which is the complete fracture of the monoclinic anisotropic medium fissure of elastic and viscoelastic anisotropic media. The observation angle is 0°of 2 three-dimensional component forward modeling, and we can get four models snapshots of the wave field. Through comparative analysis with the complete flexibility and viscoelastic monoclinic medium seismic data of the same crack filling cracks, we found that the different crack fillings affect the qP waves and the qS differently, and a viscoelastic factor increases the energy dissipation of seismic waves much more.
     As the cracks in the local small scale have highly heterogeneous and anisotropic effect, which can hardly be identified by general exploration methods. General deterministic parameters model is difficult to describe the medium with such characteristics. To understand this small-scale anisotropy of the non-homogeneous, the introduction of the theory of random media is a good way. Combining with Thomsen random medium theory, we use a smooth space of zero mean random process to describe the heterogeneity of small-scale fractured media. In the small scale, we use a few statistics to describe the space disturbance of elastic medium parameters for a detailed study on seismic wave field characteristic of non-homogeneous and anisotropic.
     To further study the non-homogeneous and anisotropic of this fracture of the small scale, we combine the crack monoclinic media with the random theory, and choose the random fractured monoclinic anisotropic medium of Von Karman type as the research object to randomly deal with the three parameters of the model background rate, fracture density and fracture angle, so as to get three random theory models of cracks parameters. Through three-dimensional anisotropic wave equation making two-dimensional three-component anisotropic equation, we use the higher order staggered-grid finite-difference seismic numerical modeling method to do the two-dimensional three-component well seismic modeling for the three random crack parameters model of the standard deviation's changes from 1%-18%. Well seismic is higher resolution, which is the great means to understand the fine structure of underground media, we can study the underground small scale media of non-uniformity and anisotropy. For a more detailed analysis of internal links of these seismic data to find out the fractured nature of monoclinic media information of these data, this paper uses the correlation coefficient in statistics to analyze the series of simulation data between wells in these three parameters. After that the seismic wave Z component is more sensitive than the X component to the subsurface heterogeneity and anisotropy. While seismic waves are in random media propagation, the seismic waves changes degree of the fracture rock physical parameters with the standard deviation will be affected by crack filling. When the cracks are filled with air, the order of the influence degree is the background velocity, crack density and crack angle. When the cracks are filled with water, the order of the influence degree is the background velocity, crack angle and crack density. On study of reservoir fracture, in accordance with different sensitivities of ground anisotropy each component, using multi-dimensional and multi-component seismic exploration technology helps us understand the underground media properties and fractured rock heterogeneity more dentally. Through the analysis of the correlation coefficient curve, we can affectively compare the similarity on the simulation records. For the selected three fractures parameters of this thesis, the curve changes of correlation coefficient are not the same, and X component and Z component of the trend are also different. Heterogeneity of the background medium is still the main factor effecting seismic response and the forefront in fractured oil and gas reservoirs of wave field. Based on the fracture reservoir studies, the heterogeneity of background medium is the prerequisite to ensure the reliability of the results. So whatever we study the fractured oil and gas reservoir seismic wave response or the reservoir fracture heterogeneity in the oil and gas reservoirs production, the models in this paper are available as a useful reference.
     For the research of fractured reservoir, identification and prediction fractures and development zones is also one of the important purposes. This paper uses reflectance formula of PP and PS waves of azimuthal anisotropy to study, analyze, and compare HTI media and monoclinic anisotropic medium. We found that, with the changes of azimuth angle and incidence angle, monoclinic anisotropy of fractured media model is weaker than a single fracture, and PS wave is more sensitive to the fracture anisotropy. The presence of cracks causes the fundamental difference of the dielectric anisotropy at different azimuth. These studies on the identification and prediction of fracture have important significance.
引文
[1]何雨丹,魏春光.裂缝型油气藏勘探评价面临的挑战及发展方向[J].地球物理学进展,2007,22(2):537-543.
    [2]Tsvankin I. Anisotropic parameters and P-wave velocity for orthorhombic media[J]. Geophysics,1997,62(4):1292-1309.
    [3]Grechka V, Contreras P, Tsvankin I. Inversion of normal moveout for monoclinic media[J]. Geophys.Prosp,2000,48(3):577-602.
    [4]Thomsen L. Weak elastic anisotropy [J]. Geophysics,1986,51(10):1954-1966.
    [5]Carcione J M. Staggered mesh for the anisotropic and viscoelastic wave equation[J]. Geophysics,1999,64(6):1863-1866.
    [6]Carcione J M. Effects of vector attenuation on AVO of offshore reflections [J]. Geophysics,1999,64(3):815-819.
    [7]Carcione J M. Reflection and transmission of qP-qS plane waves at a plane boundary between viscoelastic transversely isotropic media[J]. Geophysical Journal International,1997,129(3):669-680.
    [8]Carcione J M. A model for seismic velocity and attenuation in petroleum source rocks[J]. Geophysics,2000,65(4):1080-1092.
    [9]Carcione J M. Wave fields in real media:Wave propagation in anisotropic, anelastic and porous media[M]. California:Pergamon,2001.
    [10]Carcione J M. Wave propagation in anisotropic linear viscoelatic media:theory and simulated wavefields[J]. Geophysical Journal International,1990,101(3): 739-750.
    [11]Carcione J M. Constitutive model and wave equations for linear, viscoelastic, anisotropic media[J]. Geophysics,1995,60(22):537-548.
    [12]Zhu Y, Tsvankin I. Plane-wave attenuation anisotropy in orthorhombic media[J]. Geophysics,2007,72(1):9-19.
    [13]Zhu Y, Tsvankin I, Dewangan P, et al. Physical modeling and analysis of P-wave attenuation anisotropy in transversely isotropic media[J]. Geophysics,2007,72(1):1-7.
    [14]Zhu Y, Tsvankin I, Vasconcelos I. Effective attenuation anisotropy of thin-layered media[J]. Geophysics,2007,72(5):93-106.
    [15]Zhu Y, Tsvankin I. Plane-wave propagation in attenuative transversely isotropic media[J]. Geophysics,2006,71(2):17-30.
    [16]Aminzadeh F. Future geophysical technology trends[J]. The Leading Edge,1996, 15(6):739-742.
    [17]Crampin S. Effective anisotropic elastic constants for wave propagation through cracked solids[J]. Geophys J Roy Astr Soc,1984,76(1):135-145.
    [18]Love A E H. A Treatise on the Mathematical Theory of Elasticity[M]. New York:Dover Publications,1944:643.
    [19]Rudzki M P. Parametric Representation of the Elastic Wave in Anisotropic Media[M]. Cracow:Presented to the Academy of Sciences,1911.
    [20]Stoneley R. The seismological implications of aeolotropy in continental structure [J]. Geophysical Journal of the Royal Astronomical Society,1949,5(3): 343-353.
    [21]Krey K H. A theorem concerning anisotropy of stratified media and its significance for reflection seismics[J]. Geophysical Prospecting,1956,4(3): 294-302.
    [22]Bruggeman G D A. Berechnung verschiedener physikalischer konstanten von heterogenen substanzen[J]. Annalen der Physik,1935,416(7):636-664.
    [23]Ricker, Norman. The form and laws of propagation of seismic wavelets[J]. Geophysics,1953,18(1):10-40.
    [24]Mccollum B, Snell F A. A symmetryof sound velocity in stratified formations [J]. Journal of Applied Physics,1947,2:174-185.
    [25]Auld B. Acoustic Fields and Waves in Solids[M]. New York, London, Sidney, Toronto:John Wiley and Sons,1973.
    [26]Hudson A J. Overall properties of a cracked solid[J]. Math Proc Camb phil Soc,1980,88(2):371-384.
    [27]Hudson A J. A higher order approximation to the wave propagation constants for a cracked solid[J]. Geophys J R Astr Soc,1986,87(1):265-274.
    [28]Hudson A J. Wave speeds and attenuation of elastic waves in material containing cracks[J]. Geophys J R Astr Soc,1981,64(1):133-150.
    [29]Cerveny V, Hron F. The ray series method and dynamic ray tracing system for three-dimensional inhomogeneous media[J]. Bull. Seismol. Soc. Amer,1980, 70(1):47-77.
    [30]Crampin S, Mcgonigle R, Ando M. Extensive-dilatancy anisotropy beneath Mount Hood, Oregon, and the effect of aspect ratio on seismic velocities through aligned cracks[J]. J.Geophys. Res,1986,91(B12):12703-12710.
    [31]Helbig K. Elliptical anisotropy-Its significance and meaning[J]. Geophysics, 1983,48(7):825-832.
    [32]Helbig K. Discussion on "The reflection, refraction and diffraction of waves in media with elliptical velocity dependence" by F. K. Levin[J]. Geophysics,1979, 44(5):987-990.
    [33]Helbig K. Foundations of anisotropy for exploration seismics[M]. California: Pergamon,1994.
    [34]Tsvankin I, Thomsen L. Non-hyperbolic reflection moveout in anisotropic media[J]. Geophysics,1994,59(8):1290-1304.
    [35]Tsvankin I. Reflection moveout and parameter estimation for horizontal transverse isotropy[J]. Geophysics,1997,62(2):614-629.
    [36]Tsvankin I, Thomsen L. Inversion of reflection traveltimes for transverse isotropy[J]. Geophysics,1995,60(4):1096-1108.
    [37]Ruger A. P-wave reflection coefficients for transversely isotropic models with vertical and horizontal axis of symmetry[J]. Geophysics,1997,62(3):713-722.
    [38]Ruger A. Variation of P-wave reflectivity with offset and azimuth in anisotropic media[J]. Geophysics,1998,63(3):935-947.
    [39]Bakulin A, Grechka A, Tsvankin I. Estimation of fracture parameters from reflection seismic data-Part I:HTI model due to a single fracture set[J]. Geophysics,2000,65(6):1788-1802.
    [40]Bakulin A, Grechka A, Tsvankin I. Estimation of fracture parameters from reflection seismic data-Part Ⅱ:Fractured models with orthorhombic symmetry [J]. Geophysics,2000,65(6):1803-1817.
    [41]Bakulin A, Grechka V, Tsvankin I. Estimation of fracture parameters from reflection seismic data-Part Ⅲ:Fractured models with monoclinic symmetry [J]. Geophysics,2000,65(6):1818-1830.
    [42]Grechka V, Pech A, Tsvankin I. Parameter estimation in orthorhombic media using multicomponent wide-azimuth reflection data[J]. Geophysics,2005,70(2): 1-8.
    [43]Grechka V, Pech A, Tsvankin I. P-wave stacking-velocity tomography for VTI media[J]. Geophysical Prospecting,2002,50(2):151-168.
    [44]Grechka V, Pech A, Tsvankin I. Multicomponent stacking-velocity tomography for transversely isotropic media[J]. Geophysics,2002,67(5):1564-1574.
    [45]Tsvankin I. Properties of evanescent waves in anisotropic media[J]. Journal of Seismic Exploration,2008,17(2-3):237-251.
    [46]Cerveny V, Psencik I. Plane waves in viscoelastic anisotropic media-Ⅱ[J]. Numerical examples, Geophysical Journal International,2005,161(1):213-229.
    [47]Cerveny V, Psencik I. Plane waves in viscoelastic anisotropic media-I[J]. Numerical examples, Geophysical Journal International,2005,161(1):197-212.
    [48]Ohanian V, Snyder T M, J C M. Weak elastic anisotropy by perturbation theory[J]. Geophysics,2006,71(3):45-58.
    [49]何樵登,熊维纲.应用地球物理教程-地震勘探[M].北京:地质出版社,1991.
    [50]何樵登,张中杰.3D横向各向同性介质中的体波[J].石油地球物理勘探,1990,25(2):137-147.
    [51]何樵登,张中杰.横向各向同性介质中地震波及其数值模拟[M].长春:吉林大学出版社,1996.
    [52]冯德益.地震波理论与应用[M].北京:地震出版社,1988.
    [53]陈颙.地壳岩石的力学性能—理论基础与实验方法[M].北京:地震出版社,1988.
    [54]姚陈,王培德,陈运泰.卢龙地区S波偏振与上地壳裂隙各向异性[J].地球物理学报,1992,35(2):305-315.
    [55]郑治真,刘元壮.提取慢S波初至的自适应方法及S波分裂在地震趋势估计中的应用研究[J].中国地震,1994,10(增刊):1-8.
    [56]席道瑛,陈林.岩石各向异性参数研究[J].物探化探计算技术,1994,16(1):1-21.
    [57]董敏煜,汪和杰.EDA介质中弹性波VSP模拟和横波双折射分析[C],1992中国地球物理学会第八届学术年会论文集,1992.
    [58]徐中信,张中杰.各向异性介质中利用弹性参数进行岩性勘探的设想[J].石油物探,1988,27(2):67-80.
    [59]季玉新.用地震资料监测裂缝性油气藏的方法[J].勘探地球物理进展,2002,
    [133]Bortfeld R. Approximations to the Reflection and Transmission Coefficients of Plane Longitudinal and Transverse WAVES [J]. Geophysical Prospecting,1961, 9(4):485-502.
    [134]Ostrander W J. Plane-wave reflection coefficients for gas sands at nonnormal angles of incidence [J]. Geophysics,1984,49(10):1648-1673.
    [135]Shuey R T. A simplification of the Zoeppritz equations[J]. Geophysics,1985, 50(4):609-614.
    [136]Rutherford S R, Williams R H. Amplitude-versus-offset variations in gas sands[J]. Geophysics,1989,54(6):680-688.
    [137]孙鹏远.多属性AVO分析及弹性参数反演方法研究[D].长春:吉林大学地球探测科学与技术学院,2004.
    [138]孙鹏远,孙建国,卢秀丽.P-SV波AVO分析[J].石油地球物理勘探,2003,38(2):131-135.
    [139],Castagna J P, Bstzle M L, Kan T K. Rock physics-the link between rock properties and AVO response[M]. Offset-dependent reflectivity-Theory and practice of AVO anomalies, SEG,1993,135-171.
    [140]Dasgupta R, Roger C A. Estimation of Q from surface seismic reflection data[J]. Geophysics,1998,63(6):2120-2128.
    [141]Ekren B O, Ursin B. True-amplitude frequency-wavenumber constant-offset migration[J]. Geophysics,1999,64(3):915-924.
    [142]Mirko V D B, Smit D. Amplitude analysis of isotropic P-wave reflections [J]. Geophysics,2006,71(6):C93-C103.
    [143]Causse E, Riede M, van Wijngaarden A J, et al. Amplitude analysis with an optimal model-based linear AVO approximation:Part Ⅰ:Theory[J]. Geophysics, 2007,72(3):C59-C69.
    [144]Causse E, Riede M, van Wijngaarden A J, et al. Amplitude analysis with an optimal model-based linear AVO approximation:Part Ⅱ:Field data example[J]. Geophysics,2007,72(3):C71-C79.
    [145]Qian Z P, Li X Y, Chapman M. Azimuthal variations of PP-and PS-wave attributes:A synthetic study[J]. SEG Technical Program Expanded Abstracts, 2007,26(1):184-188.
    [146]Thomsen L. Reflection seismology over azimuthally anisotropic media[J]. Geophysics,1988,53(3):304-313. Salton Trough/Basin and Range transition zone and constraints on magmatism during rifting[J]. Geophys.Res,1996,101(B12):27883-27897.
    [119]Frankel A, Clayton W R. A finite-difference simulation of wave propagation in two-dimensional random media[J]. Bulletin of the Seismological Society of America,1984,74(6):2167-2186.
    [120]Ikelle T L, Yung K S.2-D random media with ellipsoidal autocorrelation functions[J]. Geophysics,1993,58(9):1359-1372.
    [121]Kneib G, Kerner C. A ccurate and efficient seismic modeling in random media[J]. Geophysics,1993,58(4):576-588.
    [122]奚先,姚姚.二维横向各向同性弹性随机介质中的波场特征[J].地球物理学进展,2004,19(4):924-932.
    [123]奚先,姚姚.二维随机介质及波动方程正演模拟[J].石油地球物理勘探,2001,36(5):546-552.
    [124]奚先,姚姚.随机介质模型的模拟与混合型随机介质[J].地球科学-中国地质大学学报,2002,27(1):67-71.
    [125]奚先,姚姚.二维粘弹性随机介质中的波场特征分析[J].地球物理学进展,2004,19(3):608-615.
    [126]奚先,姚姚.非平稳随机介质模型[J].石油地球物理勘探,2005,40(1):71-75.
    [127]Bohlen T. Parallel finite-difference modeling of seismic wave scattering in 3-D elastic random media[J]. SEGTechnical Program Expanded Abstracts,2001,71: 1147-1150.
    [128]Bohlen T. Parallel 3-D viscoelastic finite difference seismic modeling[J]. Computers & Geosciences,2002,28(8):887-899.
    [129]陈可洋.三维随机建模方法及其波场模拟分析[J].勘探地球物理进展,2009,32(5):315-321.
    [130]雍运动.三维粘弹随机介质地震波场并行模拟研究[D].长春:吉林大学地球探测科学与技术学院,2007.
    [131]安艺敬一,理查兹P.G.定量地震学理论和方法[M].北京:地震出版社,1986.
    [132]Koefoed O. On the Effect of Poisson's Ratios of Rock Strata on the Reflection Coefficients of Plane WAVES[J]. Geophysical Prospecting,1955,3(4):381-387.
    [104]韩文功,李红梅,杨云岭,等.济阳坳陷岩芯弹性和物性参数的实验室测量及分析[J].石油物探,1997,36(1):21-27.
    [105]王新红,许振中,曾德钊,等.稠油热采的地震监测试验[J].石油地球物理勘探,1992,27(2):294-302.
    [106]云美厚,易维启,陈卫军,等.薄互层油藏注水地震监测理论研究[J].石油地球物理勘探,1999,34(6):723-732.
    [107]陈小宏.四维地震数据的归一化方法及实例处理[J].石油学报,1999,20(6):22-26.
    [108]庄东海,肖春燕,许云,等.四维地震资料处理及其关键[J].地球物理学进展,999,14(2):33-43.
    [109]庄东海,许云,乌达巴拉.四维地震及其实施要求[J]. OIL&GAS GEOLOGY, 999,20(4):360-364.
    [110]Aki K. Analysis of the Seismic Coda of Local Earthquakes as Scattered Waves[J]. Geophysics,1969,74(4):615-631.
    [111]De H M V, Bumidge R, Chang H W. Wave propagation with tunnelingin a highly discontinuous layered medium[J]. Wave Motion,1991,13(4):307-329.
    [112]Godfrey R, Muir F, Rocca F. Modeling seismic impedance with Markovchains [J]. Geophysics,1980,45(9):1351-1372.
    [113]Kerner C. Anisotropy in sedimentary rocks modeled as random media[J]. Geophysics,1992,57(4):564-576.
    [114]Frankel A, Clayton W R. Finite-difference simulation of seismic scattering: Implications for the propagation of short-period seismic waves in the crust and models of crustal heterogeneity[J]. Journal of Geophysical Research,1986, 91(B6):6465-6489.
    [115]Stanke E F, Burridge R. Comparison of spatial and ensemble averaging methods applied to wave propagation in finely layered media[C]. Expanded Abstracts of 60th Annual Internat SEG Mtg,1990:1062-1065.
    [116]Levander A R, Gibson V B. Wide-angle seismic reflections from two dimensional target zones[J]. Geophys.Res,1991,96(B6):10251-10260.
    [117]Leary P C. Quantifying crustal fracture heterogeneity by seismic scattering [J]. Geophys. J.Int,1995,122(1):125-142.
    [118]Larkin S P, Levander A. A deterministic and stochastic velocity model for the
    [88]Wang Z J, Nur A. Wave velocities in hydrovarbon-satruated rocks:Experimental results[J]. Geophysics,1990,55(6):723-733.
    [89]Boulanger A, Aderson R N, He W, et al.4D seismic:The fourth dimension in reservoir management Part1 [J]. World Oil,1997,218(3):43-48.
    [90]Boulanger A, Aderson R N, He W, et al.4D seismic:The fourth dimension in reservoir management Part2[J]. World Oil,1997,218(4):69-76.
    [91]Boulanger A, Aderson R N, He W, et al.4D seismic:The fourth dimension in reservoir management Part3[J]. World Oil,1997,218(6):113-119.
    [92]Boulanger A, Aderson R N, He W, et al.4D seismic:The fourth dimension in reservoir management Part4[J]. World Oil,1997,218(7):109-115.
    [93]Boulanger A, Aderson R N, He W, et al.4D seismic:The fourth dimension in reservoir management Part5[J]. World Oil,1997,218(9):75-79.
    [94]Boulanger A, Aderson R N, He W, et al.4D seismic:The fourth dimension in reservoir management Part5[J]. World Oil,1997,218(10):112-113,
    [95]Lumley D E. the next wave in reservoir monitoring:the instrumented oil field[J]. The Leading Edge,2001,20(6):640-648.
    [96]Lumley D E, Behrens R A, Wang Z. Assessing the technical risk of a 4-D seismic project[J]. The Leading Edge,1997,16(9):1287-1292.
    [97]Rickett J, Lumley D A. A cross equalization processing flow for off the shelf 4-D seismic data[C]. Expanded Abstracts of 68th Annual Internat SEG Mtg,1998:16-19.
    [98]Landro M. Discrimination between pressure and fluid saturation changes from time lapse seismic data[C]. Expanded Abstracts of 68th Annual Internat SEG Mtg,1999:1651-1654.
    [99]刘雯林.油气田开发地震技术[M].北京:石油工业出版社,1996.
    [100]傅长生.储层预测技术研究与进展[M].北京:石油工业出版社,1998.
    [101]蔺景龙,吉寿松,云美厚.油田开发应用地球物理[M].北京:石油工业出版社,1996.
    [102]王新红,李梦庚,李增印,等.稠油岩心纵波速度变化规律的实验[J].石油地球物理勘探,1994,29(5):642-649.
    [103]刘祝萍,吴小薇,楚泽涵.岩石声学参数的实验测量及研究[J].地球物理学报,1994,37(5):659-666.
    [73]董渊,杨慧珠.利用P波层间时差确定裂缝性地层的各向异性参数[J].石油地球物理勘探,1999,34(5):520-525.
    [74]刘洋,魏修成.三维反射纵波旅行时监测裂隙[J].石油地球物理勘探,1999,34(6):607-613.
    [75]黄绪德,郭正吴.致密砂岩裂缝气藏的地震预测[J].石油物探,2000,39(2):2-3.
    [76]季玉新.裂缝储层预测技术及应用[J].天然气工业,2007,27(增刊A):420-423.
    [77]陈佳梁,兰素清,王昌杰.裂缝性储层的预测方法及应用[J].勘探地球物理进展,2004,27(1):35-40.
    [78]姬美兰,赵旭亚,岳淑娟,等.裂缝性泥岩油气藏勘探方法[J].断块油气田,2002,9(3):19-22.
    [79]黄全华,曹文江,李士伦.复杂裂缝性油气藏裂缝系统储量的早期预测[J].西南石油学院报,2000,22(1):20-24.
    [80]杜启振,杨慧珠.裂缝性地层粘弹性地震多波波动方程[J].物理学报,2004,53(8):2801-2806.
    [81]桂志先,段天友,易远元,等.裂缝性储层纵波地震监测方法研究[J].石油天然气学报,2007,29(4):75-80.
    [82]杜志先,贺振华,孙小庆.基于Hudson理论的裂隙参数对纵波的影响[J].江汉石油学院学报,2004,26(1):45-48.
    [83]冉志兵,郑小川,谭修中,等.复杂油气藏裂缝型储层参数定量评价方法[J].西南石油大学学报,2009,31(6):32-36.
    [84]孙建国.时延地震的现状及发展方向[J].石油物探译丛,1999,2:1-24.
    [85]赵改善.油藏动态监测技术的发展现状与展望:时延地震[J].勘探地球物理进展,2005,28(3):157-168.
    [86]Greaves R J, Fulp T J, Head P I. Three-dimensionalseismic monitoring of an enhanced oil recovery project[C]. Expanded Abstracts of 53 Annual Internat SEGMtg,1998:476-479.
    [87]Nur A. Critical porosity:A key to relating physical properties to porosity in rocks[J]. The leading Edge,1998,17(3):357-362. 25(5):28-35.
    [60]孙晶梅.储层地球物理研究的深入发展[C].北京:石油工业出版社,1999.85-86.
    [61]王炳章.勘探地球物理方法技术的最新进展-第68届SEG年会暨'98国际展览会综述[J].石油地球物理勘探,1999,34(4):465-483.
    [62]Ramos ACB, Davis T L.3-D AVO analysis and modeling applied to fracture detection in coaled methane reservoirs[J]. Geophysics,1997,62(6):1683-1695.
    [63]曹均,贺振华,黄德济,等.储层孔(裂)隙的物理模拟与超声波实验研究[J].地球物理学进展,2004,19(2):386-391.
    [64]Fritz D A, Belsher T W. New exploration concept for the Edwards and Sligomargins of cretaceous of onshore Texas[J]. AAPG Bulletin,2000,84(7): 905-922.
    [65]Bahorich M, Farmer S L.3-D Seismic Discontinuity for Fault s and Stratigraphic Features:The Coherence Cube[J]. The Leading Edge,1995,14(10): 1053-1058.
    [66]Neves F A, Zahrani M S, Bremkamp S W. Dectection of potential Fractures and Small Faults Using Seismic Attributes [J]. The Leading Edge,2004,23(9): 903-906.
    [67]王恩利.基于各向异性的复合介质弹性波场模拟与特征分析[D].长春:吉林大学地球探测科学与技术学院,2008.
    [68]Lynn H. B.犹它州Bluebell-Altamont油田裂隙气藏P波和S波方位各向异性响应[J].石油物探译丛,2000,2:30-47.
    [69]Mallick S., Craft K. L., Lanrent J.利用纵波地震资料确定方位各向异性主方向[J].山地地震勘探,1998,22(1):64-83.
    [70]Mallick S, Craft K L, Meister L J, et al. Determination of the principal directions of azimuthal anisotropy from P-wave seismic data[J]. Geophysics, 998,63(2):692-706.
    [71]高希勤,侯安宁,白俊辉,等.利用P波源三分量VSP检测裂缝[J].石油地球物理勘探,1998,33(1):109-117.
    [72]朱庆杰,王波.轮南奥陶系裂缝研究的综合定量方法[J].石油地球物理勘探,1999,34(2):181-189.
    [147]Thomsen L. Weak anisotropic reflections[C]. J. P. Castagna and M. M. Backus,eds.:SEG,1993.
    [148]Thomsen L. Understanding seismic anisotropy in exploration and exploitation [C]. Tulsa, OK:SEG and EAGE,2002.
    [149]Thomsen L. Poisson was not a geophysicist[J]. The Leading Edge,1990,9(12): 27-29.
    [150]Thomsen L. Elastic anisotropy due to aligned cracks in porous rock[J]. Geophys. Prosp,1.995,43(6):805-829.
    [151]Katahara K W. Effective isotropic rock properties to simulate AVO response in anisotropic media[J]. SEG Technical Program Expanded Abstracts,2001,20(1): 320-322.
    [152]Haase A B. Spherical wave AVO modeling of converted waves in isotropic media[J]. SEG Technical Program Expanded Abstracts,2004,23(1):263-266.
    [153]Mahmoudian F, Margrave G F. Three parameter AVO inversion with PP and PS data using offset binning[J]. SEG Technical Program Expanded Abstracts,2004, 23(1):240-243.
    [154]Michael C K, Charles M S, Raymond D C. Quantitative AVO Analysis[J]. SEG Technical Program Expanded Abstracts,2005,24(1):273-276.
    [155]Devault B, Thomas L D, Tsvankin I, et al. Multicomponent AVO analysis, Vacuum field, New Mexico[J]. Geophysics,2002,67(3):701-710.
    [156]Gumble J E, Gaiser J E. Characterization of layered anisotropic media from prestack PS-wave-reflection data[J]. Geophysics,2006,71(5):D171-D182.
    [157]Dewangan P, Tsvankin I. Velocity-independent layer stripping of PP and PS reflection traveltimes[J]. Geophysics,2006,71(4):U59-U65.
    [158]Behura J, Tsvankin I. Small-angle AVO response of PS-waves in tilted TI media[J]. SEG Technical Program Expanded Abstracts,2005,24(1):206-209.
    [159]Behura J, Tsvankin I. Small-angle AVO response of PS-waves in tilted transversely isotropic media[J]. Geophysics,2006,71(5):C69-C79.
    [160]Li Y Y, Xu Y, Leong H. Azimuthal AVO inversion (AVOZI) in full elastic property determination (FEDP) of fractured resevoirs (HTI media)[J]. SEG Technical Program Expanded Abstracts,2001,20(1):265-268.
    [161]David M R, Roger Y A. Fracture orientation determination in sedimentary rocks using multicomponent ground-penetrating radar measurements [J]. The Leading Edge,2007,26(8):1010-1016.
    [162]Tsvankin I. Seismic signatures and analysis of reflection data in anisotropic media[M]. New York:Elsevier Science,2001.
    [163]Tsvankin I. Moveout analysis for transversly isotropic media with a tited symmetry axis[J]. Geophys. Prosp,1997,45(3):479-512.
    [164]Tsvankin I. P-wave signatures and notation for transversely isotropic media[J]. An overview:Geophysics,1996,61(2):467-483.
    [165]Lynn H B, Bates C R, Simon K M, et al. The effects of azimuthal anisotropy in P-wave 3-D seismic[C]. Expanded Abstracts of 65th Annual Internat SEG Mtg,1995:723-730.
    [166]Lynn H B, Beckham W. P-wave azimuthal variations in attenuation, amplitude, and velocity in 3-D field data:Implications for mapping horizontal permeability anisotropy[C]. Expanded Abstracts of 68th Annual Internat SEG Mtg,1998: 193-196.
    [167]Ruge A, Tsvankin I. Azimuthal variation of AVO response for fractured reservoirs[C]. Expanded Abstracts of 65th Annual Internat SEG Mtg,1995: 1103-1106.
    [168]Ruger A. Reflection coefficients and azimuthal AVO analysis in anisotropic media[D]. Colorado:Colorado School of Mines,1996.
    [169]Ruger A. Using AVO for fracture detection:analytic basis and practical solutions[J]. The Leading Edge,1997,16(10):1429-1438.
    [170]Riige A. Analytic insight into shear-wave AVO for fractured reservoirs[C]. Proceedings of 7IWSA, special SEG volume on seismic anisotropy, Internat. Workshop on Seismic Anisotropy,1998.
    [171]Perez M, Grechka V, Michelena R J. Fracture detection in a carbonate reservoir using a variety of seismic methods[J]. Geophysics,1999,64(4):1266-1276.
    [172]Perez M. Detection of fracture orientation using azimuthal variation of P-wave AVO response[C]. M.S. thesis, Massachusetts Inst. Of Technology,1997.
    [173]Perez M, Gibson R. Detection of fracture orientation using azimuthal variation of P-wave AVO responses:Barinas field (Venezuela)[C]. Expanded Abstracts of 66th Annual Internat SEG Mtg,1996:1353-1356.
    [174]Ramos A C B, Castagna J P. Useful approximations for converted-wave AVO[J]. Geophysics,2001,66(6):1721-1734.
    [175]Maxim V, Cherepanov M V, Nefedkina T N. Analytic description of PS wave reflection in weakly anisotropic media[J]. SEG Technical Program Expanded Abstracts,2004,23(1):191-194.
    [176]刘前坤.方位各向异性介质AVO与弹性波阻抗研究[D].长春:吉林大学地球探测科学与技术学院,2008.
    [177]王德利,何樵登.裂隙型单斜介质中弹性系数的计算及波的传播特性研究[J].吉林大学学报(地球科学版),2002,32(2):91-96.
    [178]Grechka A, Tsvankin I. Velocity analysis of converted waves based on the hyperbolic moveout equation:The RTM method[C]. SEG,2000.
    [179]Carcione J M, Helle H B. Numerical solution of the poro viscoelastic wave equation on a staggered mesh[J]. J.Comput.Phys,1999,154(2):520-527.
    [180]Samec P, Blangy P J. Viscoelastic attenuation, anisotropy, and AVO[J]. Geophysics,1992,57(3):441-450.
    [181]Stovas A, Ursin B. Reflection and transmission responses of layered transversely isotropic viscoelastic media[J]. Geophysical Prospecting,2003,51(5):447-477.
    [182]牟永光,裴正林.三维复杂介质地震数值模拟[M].北京:石油工业出版社,2005.
    [183]Virieux J. P-SV wave propagation in heterogeneous media, Velocity stress finite difference method[J]. Geophysics,1986,51(4):889-901.
    [184]王德利,何樵登,韩立国.裂隙型单斜介质中多方位地面三分量记录模拟[J].地球物理学报,2005,48(2):386-393.
    [185]董良国.一阶弹性波动方程交错网格高阶差分解法[J].地球物理学报,2000,43(3):411-419.
    [186]Carcione J M, Helle H, Zhao T. Effects of attenuation and anisotropy on reflection amplitude versus offset[J]. Geophysics,1998,63(5):1652-1658.
    [187]Martinez R J, Ortega A A, Mcmechan G A.3-D seismic modeling for cracked media:shear-wave splitting at zero offset[J]. Geophysics,2000,65(1):211-221.
    [188]Chen, H. Anisotropic effects upon amplitude-vs-offset response in realistic earth models[D]. The University of Oklahoma,2000.
    [189]Chen H, Brown R L, Castagna J P. AVO for one-and two-fracture set models[J]. Geophysics,2005,70(2):C1-C5.
    [190]Vavrycuk V, Psencik I, PP-wave reflection coefficients in weakly anisotropic elastic media[J]. Geophysics,1998,63(6):2129-2141.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700