用户名: 密码: 验证码:
黄土区流域径流对水土保持措施响应的时空变化特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄河中游的黄土高原是世界上土壤侵蚀最严重的地区之一。严重的水土流失不仅使当地的生态环境恶化,也使黄河下游泥沙量增加,严重影响下游地区的生态安全。为遏制水土流失,提高降水利用效率,从上世纪50年代起,我国在黄土高原开展了大规模的水土保持工作,这些水保措施的实施减少了入黄泥沙量,同时也对河川径流产生了很大的影响。本文以黄土高原丘陵沟壑区的10条流域为研究对象,通过对比分析,研究了河川径流及其组分对水土保持措施的时间响应特征和流域间的差异性。研究结果对黄土高原生态恢复、水保设施布设、黄河水资源安全等实际问题,都有指导和借鉴意义。本研究的主要结论如下:
     (1)比较分析了三种自动基流分割方法PART法、滤波法、滑动最小值法在黄土高原丘陵沟壑区的适用性,从分割后基流指数的稳定性及基流过程的合理性,认为滤波法适合本区基流分割。
     (2)研究区内基流占总径流量的比重较大,近50年平均基流指数在37%-64%之间。受水土保持措施的影响,研究区河流基流量随时间呈明显的下降趋势,基流指数则随时间呈现出阶段性增加趋势。基流的年内分配受融雪及降雨等气候因素的影响呈现出3月、8月两个高峰。在大规模水土保持活动影响下,月基流量在各年代间表现出减少趋势,且以夏、秋季变化最为明显。
     (3)以芦河为例定量分析了水土保持措施对径流的影响程度。相对于治理前,芦河流域年总径流、年地表径流及年基流量分别减少60%、66%和56%,水土保持措施对芦河流域年总径流、年地表径流减少的影响比例分别为81%和89%。水土保持措施的实施削减了洪峰流量,使径流的月变化更为平稳,径流过程也趋于均匀化。
     (4)应用小波方法分析了黄土丘陵沟壑区河川径流的时间变化规律及其影响因素。结果表明,通过db3小波趋势分析表明,流域年降水及年总径流、地表径流、基流都有不同程度的下降趋势,径流下降趋势更明显。运用Morlet小波对流域水文序列进行多时间尺度分析,认为流域降水、总径流及径流组分都存在显著的周期性,周期集中在30-31a、21-26a、9-14a、3-4a等时间尺度附近,降水序列与径流序列主导周期的不同,径流序列的局域性周期变化特征表现出水土保持措施实施的影响。
     (5)受水土保持治理开始的时间、措施的空间配置、治理面积和流域下垫面等因素的影响,不同流域径流对水土保持措施的响应存在很大的差异,年总径流及地表径流的相对减少量范围分别在7%-51%、6%-50%之间。但在黄土丘陵区水土保持拦蓄的地表径流均不能对流域地下径流产生补偿效应。
     (6)通过分析不同流域径流系数的变化初步探讨了流域面积大小对径流效应的影响,结果表明,径流系数在不同尺度的流域上对流域面积的响应不同,受水土保持措施影响后径流系数的变化主要受治理程度的影响,与流域面积的关系不明显。
The Loess Plateau in the middle reaches of the Yellow River of China is the most erosive area in the world. Severe soil erosion not only aggravates the fragile ecological environment, but also produces large amounts of sediment which deposits on the lower reaches of Yellow River, raises the riverbed, and threatens the security of that region. Since the 1950s a great number of soil conservation measures have been implemented to reduce soil erosion and increase rainfall use efficiency in the Loess Plateau. These measures are very successful and reduced sediment by 3.0×108 t yr-1 from the Loess Plateau to the Yellow River from 1970 to 1996. Meanwhile, they have resulted in great changes in streamflow regime.
     In this dissertation, 10 watersheds which are located in hilly and gully area of Loess Plateau were chosen as the research object. The impacts of conservation measures on runoff were analyzed from temporal and spatial scales. It could be useful to understand and evaluate the function of soil conservation measures which have been implemented, and guide the future construction of ecological resoration in this region. The main conclusions of this study are as follows:
     (1) Applicability of three kinds of methods, named PART, digital filter technique and smoothed minima method which all belong to automatic baseflow separations, were compared. It was concluded that the separation results of digital filtering technique was relatively stable, and the baseflow process preferable conforms to the characteristics of baseflow recession.
     (2)The baseflow accounted for a larger proportion of the total runoff, the average baseflow index was between 37% -64% for the 10 catchments. Strong downward trends were detected in the baseflow volumes which was affected by conservation measures, while the baseflow indices showed increasing trend in stages. Monthly baseflow displayed two peaks in March and August which were benefited from snowmelt and precipitation, and under the influence of large-scale conservation activities, decreasing trend was showed between the ages, with the most obvious changes occurring in summer and autumn.
     (3) Based on 50-year rainfall, runoff data of Lu River, the influence of soil and water conservation on runoff was analyzed. Compared with pre-treatment, annual runoff, surface runoff and baseflow were reduced by 60%, 66% and 56% respectively. Results showed that contribution rate of conservation measures was 81% and 89% for the annual total runoff and surface runoff changes. Conservation measures reduced the peak flow, so that the monthly change in runoff was more stable, runoff process also tended to homogenization.
     (4) By applying wavelet transform, the tendency and periodic variations of flow series and impact factors were studied. The standardized time series were decomposed by Multi-Resolution Analysis (MRA) using the db3 wavelet function. The reconstruction of the lowest frequency part showed the flow series descended more rapidly than precipitation. Continuous wavelet transform (CWT) was carried out to identify the periodic variation of the precipitation and flow series using the complex valued Morlet function. Results showed that all 4 series had significant periodicity which concentrated in the 30-31a, 21-26a, 9-14a, and 3-4a. But the dominant period for precipitation and flow series was different, localization of periodic variations exhibited the influence of conservation measures on runoff changes.
     (5) Responses of runoff to conservation measures were not consistent among 10 watersheds because of the differences in many factors, such as beginning time of soil and water conservation, spatial allocation of conservation measures, controlling area and underlying surfaces. But the similarity was that the surface runoff which were intercepted and stored by conservation measures did not compensate the amount of baseflow.
     (6) Through analyzing runoff coefficients changes in different catchments, impacts of catchment size on runoff effects were discussed preliminary. Results showed that the responses of runoff coefficient differed with different catchment area range. The change of runoff coefficient was mainly affected by the control degrees of soil and water conservation, its relationship with catchment size may be not significant. Keywords: Conservation measures, runoff, different scale, watersheds of the Loess Pleateau.
引文
[1]王礼先.对加速黄土高原水土流失治理的几点认识[J].中国水土保持, 1999, 11:9-11.
    [2]吴钦孝.黄土高原植被建设与持续发展[M].北京:科学出版社, 1998, 88-89.
    [3] 0’Callagll JR. Land use: The interaction of economics, ecology and hydrology. Chapman & Hall, 1996, London.
    [4] Conway D. Understanding the hydrological impacts of land-cover and land-use change. IHDP Update, 2001(1):5-6.
    [5] Crooks S, Davies H. Assessment of land use change in the Thames Catchment and its effect on the flood regime of the river [J]. Phys. Chem. Earth. 200l, 26, (7, 8): 583-591.
    [6] Niehoff D, Fritsch U, Bronstert A, et al. Land-use impacts on storm-runoff generation: scenarios of land-use change and simulation of hydrological response in a meso-scale catchment in SW-Germany [J]. Journal of Hydrology, 2002, 267: 80-93.
    [7] Batelaan O, Smedt De F, Triest L. Regional groundwater discharge: phreatophyte mapping, groundwater modeling and impact analysis of land-use change [J]. Journal of Hydrology, 2003, 275: 86-108.
    [8] DeFries R, Eshleman KN. Land-use change and hydrologic processes: a major focus for the future [J]. Hydrological Processes, 2004, (18): 2183-2186.
    [9] Vorosmarty CJ, Green P, Salisbury J, et al. Global water resources: vulnerability from climate change and population growth [J]. Science, 2000, (289): 284-288.
    [10]周广胜,王玉辉.土地利用/覆盖变化对气候的反馈作用[J].自然资源学报, 1999, 14(4):318-322.
    [11]史培军,宫鹏,李晓兵,等.土地利用/土地覆盖变化研究的方法与实践[M].北京:科学出版社, 2000.
    [12] Bronstert A, Niehoff D, Buerger G. Effects of climate and land-use change on storm runoff generation: present knowledge and modeling capabilities [J]. Hydrological Processes, 2002, (16): 509-529.
    [13] Calder IR. Hydrologic effects of land use change [A].In: Maidment DR. Handbook of Hydrology [C].McGraw-Hill, New York, 1993. 1-13, 50.
    [14] Bewket W, Sterk G. Dynamics in land cover and its effect on stream flow in the Chemoga watershed, Blue Nile basin, Ethiopia [J]. Hydrological Process, 2005, 19: 445-458.
    [15]郝芳华,陈利群,刘昌明,等.土地利用变化对产流和产沙的影响分析[J].水土保持学报, 2004, 18(3):5-8.
    [16]马雪华.森林水文学[M].北京:中国林业出版社, 1993.
    [17]陈丽华.森林水文研究[A].林业译丛[M].北京:中国林业版社, 1989.
    [18]周晓峰.正确评价森林与水的关系[Z].香山会议论文, 2000.
    [19]金栋梁.森林对水文要素的影响[J].人民长江, 1989(1):28~35.
    [20]中国林学会考察组.华北地区森林涵养水源考察报告[J].山西林业科技动态, 1982.
    [21] Hibbert AR. Forest treatment effects on water yield [A]. In:Sopper WE, Lull HW. Int. Symp. For. Hydrol. [C]. Pergamon, Oxford, 1967, 813.
    [22] Bosch JM, Hewlett JD. A review of catchment of experiments to determine the effects of vegetation changes on water yield and evapotranspiration [J]. Journal of Hydrology, 1982(55):3~23.
    [23] Sahin V, Hall MJ. The effects of afforestation and deforestation on water yields [J]. Journal of Hydrology, 1996, (178): 293-309.
    [24] Bruijnzeel LA. Hydrology of moist forests and the effects of conversion: A state of knowledge review [R].IHP-UNESCO Humid Tropical Programme, Paris, France, 1990.
    [25]刘昌明,钟俊襄.黄土高原森林对年径流影响的初步分析[J].地理学报, 1978, 33(2):112-126.
    [26]刘世荣,温远光等.中国森林生态系统水文生态功能规律[M].北京:中国林业出版社,1996.
    [27] Huang MB, Zhang L, Gallichand J. Runoff responses to afforestation in a watershed of the Loess Plateau, China [J]. Hydrological Processes, 2003,17: 2599-2609.
    [28]刘昌明.黄河流域水循环演变若干问题的研究[J].水科学进展, 2004, 15(5):608-614.
    [29]王红闪,黄明斌,张橹.黄土高原植被重建对小流域水循环的影响[J].自然资源学报, 2004, 19(3):344-350.
    [30]王礼先.植被建设与保护对水资源保护利用的作用[Z].香山会议论文, 2000.
    [31]马雪华.岷江上游森林的采伐对河流流量和泥沙悬移质的影响[J].自然资源, 1980, (3):78-87.
    [32]刘向东,苏宁虎,等.六盘山森林水文生态功能评价[A].见:全国森林水文学术讨论会文集[C].北京,测绘出版社, 1989.
    [33]高甲荣,肖斌,等.国外森林水文研究进展述评[J].水土保持学报, 2001, 5(15):60-64.
    [34]许炯心.长江上游干支流的水沙变化及其与森林破坏的关系[J].水利学报, 2000, (1):72-80.
    [35] Schulze R. E. Modelling Hydrological Responses to Land Use and Climate Change: A Southern African Perspective[J]. Ambio. 2000, 29(1): 12-22.
    [36] De Roo A. P. J., Odijk M., Schmuck G., Koster E., Lucieer A.. Assessing the effects of land use changes on floods in the meuse and oder catchment[J]. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere. 2001, 26(7-8): 593-599.
    [37] Calder IR.Land use impacts on water resources.In:Land Water Linkages in Rural Watersheds.Electronic Workshop, 18 September- 27 October 2000, Background Paper No1.FAO, Rome.
    [38]焦菊英,王万忠,李靖,等.黄土高原丘陵沟壑区淤地坝的减水减沙效益分析[J].干旱区资源与环境, 2001, 15(1):78-83.
    [39]汤立群,陈国祥.水利水保措施对黄土地区产流模式的影响研究[J].人民黄河, 1995, (1):19-22.
    [40]汤立群,陈国祥.水土保持减水减沙效益计算方法研究[J].河海大学学报, 1999, 27(1):79-84.
    [41]池宸星,郝振纯,王玲,等.黄土区人类活动影响下的产汇流模拟研究[J].地理科学进展, 2005, 24(3):101-108.
    [42]杨涛,张鹰,陈界仁,等.基于数字平台的黄河多沙粗沙区分布式水文模型研究——以黄河岔巴沟流域为例[J].水利学报, 2005, 36(4):456-459.
    [43]傅伯杰,陈利顶,马克明.黄土丘陵区小流域土地利用变化对生态环境的影响——以延安市羊圈沟流域为例[J].地理学报, 1999, 54(3):241-246.
    [44]孟庆华,傅伯杰,邱扬.黄土丘陵沟壑区不同土地利用方式的径流及磷流失研究[J].自然科学进展, 2002, 12(4):393~397.
    [45]汪岗,范昭.黄河水沙变化研究[M].郑州:黄河水利出版社.2002.
    [46] Huang MB, Zhang L. Hydrological responses to conservation practices in a catchment of the Loess Plateau, China [J]. Hydrological Processes, 2004, 18: 1885-1898.
    [47] Mu XM, Zhang L, McVicar TR, et al. Analysis of the impact of conservation measures on stream flow regime in catchments of the Loess Plateau, China [J]. Hydrological Processes, 2007, 21(16): 2124-2134.
    [48]穆兴民,王飞,李靖等.水土保持措施对河川径流影响的评价方法研究进展[J].水土保持通报, 2004, 24(3):73-78.
    [49] Potter KW. Hydrologic impacts of changing land management practices in a moderate-sized agricultural catchment [J]. Water Resources Research, 1991, 27(5): 845-855.
    [50] Nagasaka A, Nakamura F. The influences of land-use changes on hydrology and riparian environment in a northern Japanese landscape [J]. Landscape Ecology, 1999, 14: 543-556.
    [51]穆兴民,王文龙.黄土高塬沟壑区水土保持对小流域地表径流的影响[J].水利学报, 1999 (2) : 71-75.
    [52]中野秀章(李云森译).森林水文学[M].北京:中国林业出版社, 1983.
    [53]张胜利,于一鸣.水土保持减水减沙效益计算方法[M].北京:中国环境科学出版社, 1994.
    [54]黄锡荃.水文学[M].北京:高等教育出版社, 1993.
    [55] Burt TP, Swank WT. Flow frequency responses to hardwood-to-grass conversion and subsequent succession [J]. Hydrological Processes, 1992, 6(2):179-188.
    [56] Linsley RK, Crawford NH. Computation of a synthetic stream-flow record on a digital computer [J]. Hydrological Sciences Bulletin, 1960, 51: 526-538.
    [57] Abbott MB, Bathurst JC, et al.. Introduction to the European Hydrological System– Systeme Hydrologique Europeen,‘SHE’, 1: History and Philosophy of a Physically-Based, Distributed Modelling System [J]. Journal of Hydrology, 1986, 87 (1-2): 45-49.
    [58] Bathurst JC, O’Connell PE. Future of distributed modeling: The Systeme Hydrologique Europeen. Hyrological Processess, 1992, 6(3): 265-277.
    [59] Beven KJ, Kirkby MJ. A physically based, variable contributing area model of basin hydrology [J]. Hydrological Sciences Bulletin, 1979, 24: 43-69.
    [60] Arnold JG, Williams JR, Srinivasan R. SWAT, soil and water assessment tool [R]. Temple: USDA-ARS, Grassland, Soil and Water Research Laboratory, 1994.
    [61] Morris EM. Forecasting flood flows in grassy and forested basins using a deterministic distributed mathematical model [A]. Hydrological Forecasting [C]. 1980, IAHS Publication 129, 247-255.
    [62]李兰,郭生练.流域水文分布动态参数反问题模型[A].中国水利学会优秀论文集[C].宜昌:中国三峡出版社, 2000:48-54.
    [63]郭生练,熊立华,杨井,等.基于DEM的分布式流域水文物理模型[J].武汉水利电力大学报, 2000, 33(6):1-5.
    [64] Bloschl G, Sivapalan M. Scale issues in hydrological modeling: A review [J]. Hydrological Processes, 1995, 9: 251-290.
    [65]夏军.水文尺度问题[J].水利学报, 1993, 5:32-37.
    [66]李长兴.论流域水文尺度化和相似性[J].水利学报, 1995, 1:40-47.
    [67]刘昌明,孙睿.水循环的生态学方面:土壤-植被-大气系统水分能量平衡研究进展[J].水科学进展, 1999, 10(3):251-259.
    [68] Levin SA. 1992. The problem of pattern and scale in ecology [J].Ecology, 73(6): 1943-1967.
    [69]常学礼,赵爱芬,李胜功.生态脆弱带的尺度与等级特征[J].中国沙漠, 1999, 19(2):115-119.
    [70]吕一河,傅伯杰.生态学中的尺度及尺度转换方法[J].生态学报, 2001, 21(12):2096 - 2105.
    [71]沈泽昊.山地森林样带植被-环境关系的多尺度研究[J].生态学报, 2002, 22(4):461- 470.
    [72] Hillel D, Elrick DE. Scaling in soil physics: principles and applications [J]. Soil Science Society of America Journal, 1990, 25: 122-143.
    [73]王飞,李锐,杨勤科.土壤侵蚀研究的尺度转换[J].水土保持研究, 2003, 10(2):9-12.
    [74]徐文彬.浅谈推算和预测宏观尺度土壤N2O释放量的方法[J].土壤通报, 2000, 31(2):91-95.
    [75] Dooge JCI. Looking for hydrologic laws [J]. Water Resources Research, 1986, 22(9): 46s~58s.
    [76] Schulze R. Transcending scales of space and time in impact studies of climate change on agro hydrological responses [J]. Agriculture, Ecosystems and Environment, 2000, 82: 185-212.
    [77]钟晔,金昌杰,裴铁璠.水文尺度转化探讨[J].应用生态学报, 2005, 16(8):1537-1540.
    [78]傅国斌,李丽娟,刘昌明.遥感水文应用中的尺度问题[J].地球科学进展, 2001, 16(6):755-760.
    [79]郭生练,刘春蓁.大尺度水文模型及其与气候模型的联接耦合研究[J].水利学报, 1997, 7:37-41.
    [80] Xia Jun. Research reports of the 3rd International workshop on River Flow Forecasting:(Ⅰ) Linear System Approach; (Ⅱ) Nonlinear System Approach; (Ⅲ) Summary and Analysis. 1989, UCG, Ireland.
    [81]邬建国.景观生态学——格局、过程、尺度与等级[M].北京:高等教育出版社, 2000, 62-153, 181-184.
    [82] Turner MG, Garder RH. Quantitative methods in landscape ecology: An Introduction [A]. In: Turner MG. (ed). Quantitative methods in landscape ecology [C]. NewYork: Springer-Verlag, 1991, 13-14.
    [83]傅伯杰,陈利顶,马克明等.景观生态学原理与应用[M].北京:科学出版社, 2000, 16-41, 202-236.
    [84]刘新仁.大尺度水文模拟若干问题的探讨[A].见:淮河流域能量与水文循环研究[C].北京:气象出版社, 1999.
    [85] Bashford KE, Beven KJ, Young PC. Observational data and scale-dependent parameterizations: Explorations using a virtual hydrological reality [J]. Hydrological Processes, 2002, 16: 293-312.
    [86]吴险峰,刘昌明.流域水文模型研究的若干进展[J].地理科学进展, 2002, 21(4):341-348.
    [87] Connolly RD, Silburn DM. Distributed parameter hydrology model (ANSWERS) applied to a range of catchment scales using rainfall simulator dataⅡ. Application to spatially uniform catchments [J]. Journal of Hydrology, 1995, 172:105-125.
    [88] Ciarapica L, Todini E. TOPKAPI: A model for the representation of the rainfall-runoff process at different scales [J]. Hydrological Processes, 2002, 16: 207-229.
    [89]王东升,汤鸿霄,栾兆坤.分形理论及研究方法[J].环境科学学报, 2001, S1:10-16.
    [90]夏军.水文非线性系统理论与方法[M].武汉:武汉大学出版社, 2002.
    [91]丁晶,王文圣.水文相似和尺度分析[J].水电能源科学, 2004, 3:27-29.
    [92]崔锦泰.小波分析导论[M].西安:西安交通大学出版社, 1995.
    [93]蒋晓辉,刘昌明,黄强.黄河上中游天然径流多时间尺度变化及动因分析[J].自然资源学报, 2003, 18(2):142-147.
    [94]夏军,左其亭.国际水文科学研究的新进展[J].地球科学进展, 2006, 3:256-261.
    [95]年福华,李新.中国干旱区地理水文研究概述[J].干旱区地理, 2000, 23(1):91-95.
    [96] Gupta VK, Waymine E. Multiscaling properties of special rainfall and river flow distribution [J]. Journal of Geophysical Research, 1990, 95(3):1999-2009.
    [97] Gupta VK, Mesa OJ, Dawdy DR. Multiscaling theory of flood peaks: Regional quantile analysis [J]. Water Resources Research, 1994, 30(12):3405-3421.
    [98] Kiersch B. land-use impacts on water resources: a literature review [M]. In: Proceedings Electronic Workshop: Land-water linkages in rural watersheds, FAO land and Water Bulletin 9, F AO, Rome. 2000.
    [99] Joel A, Messing I, Seguel O, et al. Measurement of surface water runoff from plots of two different sizes [J]. Hydrological Processes, 2002, 16: 1467-1478.
    [100] Van de Giessen NC, Stomph TJ, de Ridder N. Scale effects of hortonian overland flow and rainfall–runoff dynamics in a West African catena landscape [J]. Hydrological Processes. 2000, 14: 165–175.
    [101] Stomph TJ, De Ridder N, Steenhuis TS, et al. Scale effects of horthonian overland flow and rainfall–runoff dynamics: laboratory validation of a process based model [J]. Earth SurfaceProcesses and Landforms. 2002, 27: 847–855.
    [102] Cammeraat LH. A review of two strongly contrasting geomorphological systems within the context of scale. Earth Surface Processes and Landforms, 2002, 27(11): 1201–1222.
    [103] Cerdan O, Bissonnais YL, Govers G, et al. Scale effect on runoff from experimental plots to catchments in agricultural areas in Normandy [J]. Journal of Hydrology, 2004, 299: 4-14.
    [104]李长兴,沈晋.考虑土壤特性空间变异的流域产流模型[J].水利学报, 1989, 10:1-8.
    [105]刘国纬.水文循环的大气过程[M].北京:科学出版社, 1997, 66-240.
    [106]王文圣,丁晶,向红莲.水文时间序列多时间尺度分析的小波变换法[J].四川大学学报(工程科学版),2002,34(6):14-17.
    [107]黄委中游水文水资源局.黄河中游水文(河口镇至龙门区间)[M].郑州:黄河水利出版社,2005.
    [108]张军政,惠养瑜.清涧河水沙变化分析[J].中国水土保持,1994,11:21-26.
    [109]刘振民.屈产河的开发与利用[J].山西水土保持科技,1987,(3).
    [110]田永宏,张庆伟,马生祥.佳芦河流域水土保持措施减水减沙效益分析[J].中国水土保持,1996,6:22-27.
    [111]蔡名扬.黄河中游大理河地区输沙过程的估算模式[J].河海大学学报,1994,22(4): 14-20.
    [112]冉大川,柳林旺,赵力仪等.黄河中游河口镇至龙门区间水土保持与水沙变化[M].郑州:黄河水利出版社,2000.
    [113]张晓萍,董冰让,李锐等.黄河中游河龙区间土地利用与林地覆被格局变化研究[J].水土保持学报,2007,21(5): 163-166.
    [114] Mann HB. Non-parametric tests against trend [J]. Econometrica, 1945, 13: 245-259.
    [115] Kendall MG. Rank Correlation Measures. Charles Griffin, London, Britain. 1975.
    [116]潘承毅,何迎晖.数理统计的原理与方法[M].上海:同济大学出版社,1992.
    [117] Gan TY. Hydroclimatic trends and possible climatic warming in the Canadian Prairies [J]. Water Resources Research, 1998, 34(11): 3009-3015.
    [118] Ercan K, Serdar K. Trend analysis of streamflow in Turkey [J]. Journal of Hydrology, 2004, 289: 128-144.
    [119] WMO: Climatic Change, T.N. 1966,79,64.
    [120] Sen PK. Estimates of the regression coefficient based on Kendall’s tau. Journal of the American Statistical Association, 1968, 63: 1379-1389.
    [121] Yang D, Li C, Hu H, et al. Analysis of water resources variability in the Yellow River of China during the last half century using historical data [J]. Water resources research, 2004, 40, W06502, doi:10.1029/2003WR002763.
    [122] Von Storch H. Misuses of statistical analysis in climate research [A]. In: von Storch H, Navarra A (Eds.). Analysis of Climate Variability: Applications of Statistical Techniques [C]. Springer, Berlin, 1995.
    [123] Burn DH, Elnur MA Hag. Detection of hydrologic trends and variability [J]. Journal ofHydrology, 2002, 255:107-122.
    [124]祝青林,张留柱,于贵瑞等.近30年黄河流域降水量的时空演变特征[J].自然资源学报,2005,20(4):477-482.
    [125]刘春玲,许友鹏,张强.长江三角洲地区气候变化趋势及突变分析[J].曲阜师范大学学报,2005,31(1):109-114.
    [126]刘昌明,郑红星.黄河流域水循环要素变化趋势分析[J].自然资源学报,2003,18(2):129-135.
    [127]李广源,陈子年,徐韵娟.河流水质时间序列暂态成分分析[J].水文,1998,50-53.
    [128]许全喜,石国钰,陈泽方.长江上游近期水沙变化特点及其趋势分析[J].水科学进展,2004,15(4):420-426.
    [129]黄川,娄霄鹏,刘元元.金沙江流域泥沙演变过程及趋势分析[J].重庆大学学报(自然科学版),2002,25(1):21-23.
    [130] Pettitt A. A nonparametric approach to the change-point problem [J]. Applied Statistics, 1979, 28: 1126-135.
    [131]王国庆.气候变化对黄河中游水文水资源影响的关键问题研究[D].河海大学,2006.
    [132] Foster HA. Duration curves [J]. American Society of Civil Engineers Transactions, 1934, 99: 1 21321 267.
    [133] Vogel R M, Fennessey N M. Flow Duration Curves I: A New Interpretation and Confidence Intervals [J]. Journal of Water Resources Planning and Management, 1994, 120 (4) : 2102215.
    [134] Smakhtin V U. A Concept of Pragmatic Hydrological Time Series Modeling and Its Application in South African Context [M]. NinthSouth African National Hydrology Symposium, 1999: 1211.
    [135] Best A E, Zhang L. Development of a model for predicting the changes in flow duration curves due to altered land use conditions [J]. Hydrological Process, 2004, 18: 1 88521 898.
    [136]景可,申元村.黄土高原水土保持对未来地表水资源影响研究[J].中国水土保持,2002,1:12-14.
    [137]王玲,夏军,张学成.无定河20世纪90年代入黄水量减少成因分析[J].应用基础与工程科学学报,2006,14(4):463-469.、
    [138]戴明英.黄河中游支流基流的分割及特性分析[J].人民黄河,1996,10:40-43.
    [139] Smakhtin V U. Low flow hydrology: a review [J]. Journal of Hydrology, 2001, 240: 147-186.
    [140]陈利群,刘昌明,李发东.基流研究综述[J].地理科学进展,2006,25(1):1-15.
    [141] Chow Ven Te. Handbook of Applied Hydrology [M]. New York: Mc-Graw Hill, 1964.
    [142]顾慰祖.水文学基础[M].北京:水利电力出版社,1984.
    [143]叶镇国.土木工程水文学[M].北京:人民交通出版社,2000.
    [144]詹道江,叶守泽.工程水文学[M].北京:中国水利水电出版社,2000,77-78.
    [145]陈利群,刘昌明,郝芳华等.黄河源区气候对径流的影响分析[J].地学前缘,2006,13(5):321-329.
    [146] Wittenberg H. Baseflow recession and recharge as nonlinear storage process [J]. Hydrological Processes, 1999, 13(5):715-726.
    [147] Neitsch S L, Arnold J G, Kiniry J R. Soil and water assessment tool theoretical documentation[R]. Texas, Texas GSWRL Report, 2002.
    [148]熊立华,郭生练.采用非线性水库假设的基流分割方法及应用[J].武汉大学学报(工学版),2005,38(1):27-29.
    [149]杨桂莲,郝芳华,刘昌明等.基于SWAT模型的基流估算及评价—以洛河流域为例[J].地理科学进展,2003,22(5):463-471。
    [150] Sloto RA, Crouse MY. HYSEP: A computer program for streamflow hydrograph separation and analysis [R]. U.S. Geological Survey, Water-resources investigations report 96-4040. 1996.
    [151] Rutledge AT. Computer programs for describing the recession of ground-water discharge and for estimating mean ground-water recharge and discharge from streamflow records-update [R]. U.S. Geological Survey, Water-resources investigations report 98-4148. 1998.
    [152] Nathan RJ,McMahon T A. Evaluation of automated techniques for baseflow and recession analyses [J]. Water Resources Research,1990,26:1465-1473.
    [153] Institute of Hydrology. Low flow studies [R]. Wallingford, Oxon, United Kingdom, report No.3, 12-19.
    [154] Wahl KL, Wahl T L. Determining the flow of Comal Springs at New Braunfels, Texas [A]. Texas Water’95, American Society of Civil Engineers[C]. San Antonio, Texas, August 6-17, 1995: 77-86.
    [155] Eckhardt K. A comparison of baseflow indices, which were calculated with seven different baseflow separation methods [J]. Journal of Hydrology, 2008, 352: 168-173.
    [156] Barnes B S. The structure of discharge recession curves [J]. Transactions of American Geophysical Union, 1939, 20(4): 721-725.
    [157] Arnold J G,Allen P M. Automated methods for estimating baseflow and ground water recharge from streamflow records [J]. Journal of the American Water Resources Association, 1999, 35(2): 411-424.
    [158] Santhi C, Allen P M, Muttiah RS, et al. Regional estimation of baseflow for the conterminous United States by hydrologic landscape regions [J]. Journal of Hydrology, 2008, 351: 139-153.
    [159] Arnold J G,Allen P M,Muttiah R, et al. Automated base flow separation and recession analysis techniques [J]. Ground Water, 1995, 33(6): 1010-1018.
    [160] Neff BP, Day SM, Piggott AR, et al. Base flow in the Great Lakes [R]. US Geological Survey Scientific Investigations Report 2005- 5217.
    [161]左海凤,武淑林,邵景力等.山丘区河川基流BFI程序分割方法的运用与分析——以汾河流域河岔水文站为例[J].水文,2007,27(1):69-71.
    [162]钱云平,蒋秀华,金双彦,张培德.黄河中游黄土高原河川基流特点及变化分析[J].地球科学与环境学报,2004,26(2):88-91.
    [163]黄国如.流量过程线的自动分割方法探讨[J].灌溉排水学报,2007,26(1):73-78.
    [164] Lacey GC, Grayson RB. Relating baseflow to catchment properties in south-eastern Australia [J]. Journal of Hydrology,1998,204: 231-250.
    [165] Chen YZ, Luk SH. Sediment sources and recent changes in the sediment load of the Yellow River, China. In Proceedings 5th International Soil Conservation Conference, January 1988, Bangkok. Department of Land Development: Bangkok, 1989,312-323.
    [166]冉大川,刘斌,王宏.水土保持措施对黄河减水减沙作用的分析[J].中国水土保持,2002,10:35-36.
    [167]唐克丽,郑粉莉,史德明.土壤侵蚀研究回顾与展望[J].土壤学报,1989,26(3):226-233.
    [168]刘斌,冉大川,罗全华,等.北洛河流域水土保持措施减水减沙作用分析[J].人民黄河,2001,23(2):12-14.
    [169]王宏,秦百顺,马勇,等.渭河流域水土保持措施减水减沙作用分析[J].人民黄河,2001,23(2):19-21.
    [170]景可,郑粉莉.黄土高原水土保持对地表水资源的影响[J].水土保持研究,2004,11(4):11-13.
    [171]徐建华,李雪梅,王志勇.黄土高原水土保持生态建设耗水量宏观分析[J].人民黄河,2003,25(10):21-22.
    [172] Saghafian B, Farazjoo H, Bozorgy B, Yazdandoost F. Flood intensification due to changes in land use. Water Resources Management, 2008, 22:1051-1067.
    [173] Smith RE, Scott DF. The effects of afforestation on low flows in various regions of South Africa [J]. Water SA, 1992, 18(3), 185-194.
    [174] Bonell M, Balek J. Recent scientific developments and research needs in hydrological processes [A], in: Bonell M, Hufschmidt M, Gladwell J, (eds), Hydrology and Water Management in the Humid Tropics[C], Cambridge University Press, Cambridge, UK, 1993.
    [175] Sandstr?m K. Modeling the effects of rainfall variability on groundwater recharge in semi-arid Tanzania [J]. Nordic Hydrology, 1995, 26: 313-330.
    [176]陈仁升,康尔泗,杨建平等.甘肃河西地区近50年气象和水文序列的变化趋势[J].兰州大学学报(自然科学版),2002,38(2): 163-170.
    [177]姚治君,管彦平,高迎春.潮白河径流分布规律及人类活动对径流的影响分析[J].地理科学进展,2003,22(6): 599-606.
    [178]戴明英.无定河水沙变化、水文法计算对比分析[A].汪岗,范昭.黄河水沙变化研究[C].第一卷(下册).郑州,黄河水利出版社,2002:991-1009.
    [179]张胜利,李倬,赵文林,等.黄河中游多沙粗沙区水沙变化原因及发展趋势[M].郑州,黄河水利出版社,1998:39-59.
    [180] Li LJ, Zhang L, Wang H, etc. Assessing the impact of climate variability and human activities on streamflow from the Wuding River basin in China [J]. Hydrological Processes, 2007,21: 3485-3491.
    [181]穆兴民.黄土高原水土保持对河川径流及土壤水文的影响[D].杨凌:西北农林科技大学,2002.
    [182]刘昌明,张学成.黄河干流实际来水量不断减少的成因分析[J].地理学报,2004,59(3):323-330.
    [183] Xu CY, Singh VP. A review on monthly water balance models for water resources investigations. Water Resources Management,1998,12: 31-50.
    [184] Huang M, Gallichand J. Use of the SHAW model to assess soil water recovery after apple trees in the gully region of the Loess Plateau, China. Agricultural Water Management, 2006,85:67-76.
    [185]王文圣,丁晶,李跃清.水文小波分析[M ].北京:化学工业出版社,2005.
    [186] Kumar P, Foufoula-Georgiou E. A multi-component decomposition of spatial rainfall fields 1. Segregation of large-and small-scale features using Wavelet transforms [J]. Water Resources Research, 1993, 29(8): 2515-2532.
    [187]邓自旺,林振山,周晓兰.西安市近50年来气候变化多时间尺度分析[J].高原气象,1997,16 (1):81-93.
    [188]杨辉,宋亚山.华北地区水资源多时间尺度分析[J].高原气象,1999,18 (4):496-507.
    [189]谢庄,曹鸿兴,李慧,等.近百余年北京气候变化的小波特征[J].气象学报,2000,58 (3):362-369.
    [190]姚建群.连续小波变换在上海近100年降水分析中的应用[J].气象学报,2001,27 (1):20-24.
    [191]蒋晓辉,刘昌明,黄强.黄河上中游天然径流多时间尺度变化及动因分析[J].自然资源学报,2003,18(2):142-147.
    [192]杨志峰,李春晖.黄河流域天然径流量突变性与周期性特征[J].山地学报,2004,22(2):140-146.
    [193]张强,陈桂亚,许崇育,等.长江流域水沙周期特征及可能影响原因[J].水科学进展,2009,20(1):80-85.
    [194]薛小杰,蒋晓辉,黄强,等.小波分析在水文序列趋势分析中的应用[J].应用科学学报,2002,20(4):426-428。
    [195]刘建梅,王安志,裴铁璠等.杂谷脑河径流趋势及周期变化特征的小波分析[J].北京林业大学学报,2005,27(4):49-55.
    [196]李贤彬,丁晶,李后强.水文时间序列的子波分析法[J].水科学进展,1999,10(6):144-149.
    [197]王文圣,袁鹏,丁晶.小波分析及其在日流量过程随机模拟中的应用[J].水利学报,2000,11:43-48.
    [198]李贤彬,丁晶,李后强.基于子波变换序列的人工神经网络组合预测[J].水利学报,1999,2:1-5.
    [199]王秀杰,费守明.小波分析方法在水文径流模拟中的应用[J].水电能源科学,2007,25(6):1-4.
    [200]胡昌华,李国华,刘涛,等.基于Matlab 6.X的系统分析与设计[M].西安:西安电子科技大学出版社, 2004.
    [201]张利平,朱存稳,夏军.华北地区降水变化的多时间尺度分析[J].干旱区地理,2004,27(4): 548-552.
    [202]孙卫国,程炳岩,李荣.黄河源区径流量与区域气候变化的多时间尺度相关[J].地理学报,2009,64(1):117-181.
    [203]张晓萍.黄河中游河龙区间土地利用/覆被变化对河川径流影响研究[D].中国科学院水土保持与生态环境研究中心,2007.
    [204] Gan TY. Reducing vulnerability of water resources of Canadian Prairies to potential droughts and possible climate warming. Water Resources Management,2000,14: 111-135.
    [205] Xu CY. Modelling the effects of climate change on water resources in central Sweden. Water Resources Management,2000,14: 177-189.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700