用户名: 密码: 验证码:
c-Abl,雌激素受体β调控内皮型一氧化氮合成酶的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
前言
     雌激素及雌激素受体(ER)与女性心血管疾病密切相关。ER主要存在ERa和ERp两种亚型。ERp在调节血脂代谢、抗氧化应激损伤、改善血管内皮功能、抑制动脉粥样斑块形成、舒缩血管、减少心脏缺血再灌注损伤等方面起重要作用。ERp在人体内主要分布于心血管系统、中枢神经系统、免疫系统、胃肠道,肾脏和肺组织。人血管平滑肌细胞及内皮细胞、心肌细胞均发现有功能性ERp存在,在动脉血管壁内层和中层细胞中都有ERp。多种心血管系统病理生理调控过程中都有ERp的参与。大量的实验室基础研究发现ERp在高血压、血管内皮功能障碍、左心室肥厚、心肌梗死、心力衰竭等心血管疾病的发生、发展过程中起重要作用。
     NOS(一氧化氮合成酶)系统包括三种不同的亚型:神经型一氧化氮合成酶(nNOS)、诱导型一氧化氮合成酶(iNOS)、内皮型一氧化氮合成酶(eNOS)。NO通过激活eNOS在内皮细胞产生;而激活的内皮细胞、炎性细胞、巨噬细胞、心肌细胞、血管平滑肌细胞则通过iNOS产生NO。NO是一种气体信号分子,也是一种内皮源性的血管舒张因子,参与心血管系统的广泛病理生理过程,在心肌细胞、内皮细胞、血管平滑肌细胞和炎症细胞之间的相互作用中起重要作用。NO抑制缺血再灌注损伤,抑制炎症,抗氧化应激损伤,对抗心肌梗死损伤,阻止左心室重塑,但过量的NO和氧化应激活性氧(ROS)共存则对心血管系统存在损伤性作用。
     c-Abl (cellular-Abelson gene)是Abelson鼠白血病病毒v-abl原癌基因在细胞内的同源基因,是一个高度保守的基因,c-Abl是非受体酪氨酸激酶。在正常生理状态下,c-Abl可定位于细胞核、细胞质、线粒体、内质网等多种亚细胞结构,并与胞内信号受体、激酶、磷酸酶、细胞周期调节因子、转录因子、细胞骨架蛋白、核孔蛋白、蛋白酶体亚基等多种分子发生相互作用。其主要的生物学功能是参与细胞周期和细胞凋亡调控,并在氧化应激和DNA损伤修复过程中发挥重要作用。
     研究已证明ERa可使eNOS启动子活性增强从而上调eNOS表达活性。ERβ的DNA结合区域与ERa有96%的同源性,配体结合区有55%的同源性。c-Abl可通过其SH3、SH2结构域介导蛋白间的相互作用。其中SH3结构域能特异性识别富含脯氨酸的PXXP(P代表脯氨酸,X代表任意氨基酸)序列。对ERβ的序列进行了研究,发现ERβ存在PXXP模体,而具有PXXP模体的蛋白可能与c-Abl发生相互作用。据此我们假设c-Abl可与ERβ相结合,ERβ可以上调eNOS表达;c-Abl可促进ERβ对eNOS表达的上调作用,并通过实验初步证实这一假设。
     实验方法
     1、我们设计人ERβ, eNOS启动子报告基因引物,PCR扩增基因,酶切,连接载体,转化感受态大肠杆菌,PCR扩增后测序,构建Flag-ERβ载体及eNOS启动子报告基因载体。
     2、转化GST-SH2\GST-SH3质粒到大肠杆菌感受态细胞,制备了GST\GST-SH2和GST-SH3交联的GSH珠子。转染Flag-ER(3于293T细胞,裂解细胞,与GST、GST-SH2和GST-SH3交联的GSH珠子孵育后行GST pull down实验。应用抗-Flag抗体行Western blot检测,明确c-Abl的SH3及SH2结构域能否与ERp在体外相互结合。Flag-ERβ, Myc-cAbl共转染于真核细胞,抗-Flag抗体交联的琼脂糖珠子行免疫共沉淀检测,Western blot检测,明确二者可否在真核细胞中结合。
     3、Flag-ERβ、Myc-cAbl共转染后,用抗Tyr-P抗体交联的琼脂糖珠子行免疫共沉淀,应用抗Tyr-P抗体及抗Flag抗体免疫印迹检测ERβ可否被c-Abl磷酸化。
     4、将PRL, ERE-Luc, Flag-ERp, Myc-c-Abl质粒共转染,按照Promega公司试剂盒说明书进行荧光素酶活性测定,探讨cAbl对ERp调节的下游基因转录的影响。
     5、将PRL、pGL2-eNOS-Lu、Flag-ERp、Myc-c-Abl、贡粒共转染,荧光素酶活性测定来探讨ERβ对eNOS转录活性的影响,以及c-Abl对其的调控。
     6、lag-ERβ、Myc-c-Abl质粒共转染于内皮细胞系EA.hy926中,RTPCR及Western blot检测ERβ对eNOS表达的影响及及c-Abl对其的调控。
     结果和结论
     1、成功构建了eNOS启动子报告基因载体及ERβ真核表达载体。
     2、ERβ与c-Abl体外、真核细胞内存在相互作用而形成复合物。
     3、c-Abl可使ERβ磷酸化。
     4、在293T细胞中Myc-c-Ab1能够使ERE-Luc:报道基因的转录活性增强2.22倍。加入STI571, ERE-Luc报道基因的转录活性增强1.04倍。在EA.hy926细胞中Myc-c-Abl能够使ERE-Luc报道基因的转录活性增强1.83倍,加入STI571后ERE-Luc报道基因的转录活性增强1.01倍。说明c-Abl可上调ERp转录活性。
     5、在293T细胞中结果示Flag-ERβ能够使pGL2-eNOS-Luc报道基因的转录活性增强2.76倍,Myc-cAbl与Flag-ERβ共转染组使pGL2-eNOS-Luc报道基因的转录活性增强4.89倍。Myc-cAbl与Flag-ERβ共转染组加入STI571使pGL2-eNOS-Luc报道基因的转录活性增强2.87倍。在内皮细胞系EA.hy926中重复了这一实验,得到了类似的结果,Flag-ERβ能够使pGL2-eNOS-Luc报道基因的转录活性增强3.13倍,Myc-cAbl与flag-ERβ共转染组使pGL2-eNOS-Luc报道基因的转录活性增强5.72倍,Myc-cAbl与Flag-ERβ共转染组加入STI571使pGL2-eNOS-Luc报道基因的转录活性增强2.95倍。ERβ可增加eNOS转录活性,c-Abl可促进ERβ增加eNOS转录活性的作用,这种作用可被STI571抑制。
     6、ERp增加eNOS表达,c-Abl促进ERp增加eNOS表达。
     讨论
     在机体环境中,蛋白质分子发挥重要作用,其中蛋白-蛋白之间的相互作用在蛋白转运、信号传导、免疫识别、细胞调控等多种生命活动中起关键作用。我们的研究发现c-Abl与ERp在体外通过c-Abl的SH3结构域相结合,二者可在真核细胞内存在相互作用而形成复合物,ERp磷酸化并上调ERp转录活性,人内皮细胞系EA.hy926中ERp上调eNOS转录活性、增加eNOS表达,c-Abl促进这种作用。这提示内皮细胞内可能存在c-Abl—ERp—eNOS信号转导通路。这有助于更深入的认识cAbl, ERβ, eNOS在心血管系统中的相互作用;更有助于明确其与相关蛋白及信号转导通路的相互作用;对于心血管系统疾病发生中的血管张力调节、氧化应激、缺血再灌注损伤、内皮功能不良、心肌细胞凋亡和坏死等方面的研究具有一定意义;可能对于心血管疾病的基因靶向治疗提供思路。当然c-Abl与ERβ及eNOS相关作用的具体信号转导通路还未知,我们相信随着基础及临床研究的系统与深入,将有助于继续认识雌激素及其受体在心血管系统中的作用机制,为女性心血管疾病的防治进一步提供理论依据。
Preface
     Estrogen and estrogen receptor (ER) are closely related with cardiovascular disease in women. ER involves ERa and ERα. ERβplay an important role in many aspects such as regulate lipid metabolism, anti-oxidative stress injury, improve endothelial function, inhibit the formation of arterial plaque, modulate relaxation and contraction of blood vessels and reduce cardiac ischemia-reperfusion injury. ERβin the human body mainly exist in the cardiovascular system, central nervous system, immune system, gastrointestinal tract, kidney and lung tissue. It was found to have functional ERβexist in human vascular smooth muscle cells, endothelial cells and cardiac cells. Researchers found that ERβplay an important role in hypertention, vascular endothelial dysfunction, left ventricular hypertrophy, myocardial infarction, heart failure and many other cardiovascular diseases in a large number of laboratory and clinical study.
     NOS Includes three different subtypes:nNOS, eNOS and iNOS. NO is produced in endothelial cells by activating eNOS. The activated endothelial cells, inflammatory cells, macrophages, cardiac cells, vascular smooth muscle cells produce NO through iNOS. NO is a gaseous signal molecule, is also a vascular endothelium-derived relaxing factor involved in pathophysiology of the cardiovascular system. NO play an important role in the interaction of myocardial cells, endothelial cells, vascular smooth muscle cells and inflammatory cells. NO reduce ischemia-reperfusion injury, inhibit inflammation, reduce myocardial infarction injury, prevent left ventricular remodeling. However, excessive NO co-existing with reactive oxygen species (ROS) damage to the cardiovascular system.
     c-Abl(cellular-Abelson gene) is the homologous gene of proto-oncogene v-abl. C-Abl is a highly conserved gene, and also a non-receptor tyrosine kinases. Under normal physiological conditions, c-Abl may be located in the nucleus, cytoplasm, mitochondria, endoplasmic reticulum and other subcellular structures.c-Abl can interact with intracellular signal receptor, kinase, phosphatase, cell cycle regulators, transcription factors, cytoskeletal proteins, nuclear pore proteins and proteasome subunits. Its main biological function is involved in cell cycle and apoptosis regulation, oxidative stress and DNA damage repair.
     It has been demonstrated that ERa can enhance eNOS promoter activity and thus increase eNOS expression.ERβandERa have 96% homology in DNA-binding domain and 55% homology in ligand-binding domain.C-Abl mediated protein-protein interactions with its SH3, SH2 domain. Its SH3 domain can specifically recognize proline-rich PXXP sequence(P refers to proline, X refers to any amino acid).We studied the sequence of ERβand found there has PXXP motif. And protein with the PXXP motif may interact with c-Abl. Accordingly, we assume that c-Abl may combine with ERβ, ERβmay up-regulate eNOS expression, c-Abl may promote the up-regulation. We tried to confirm this preliminary hypothesis through experiments.
     Methods
     1. We designed ERβprimer or eNOS promoter reporter gene primer, amplified gene using PCR, cutted it with enzymeO, connected with vector, transformed it to competent E. coli, PCR again, and sequenced it. We constructed Flag-ERβvector and eNOS promoter reporter gene vector.
     2. We transformed GST-SH2 and GST-SH3 plasmid into competent E. coli, prepared GST, GST-SH2 and GST-SH3 beads cross-linked GSH. We transfected Flag-ERβinto 293T cells, lysed cells, incubated it with GST, GST-SH2, and GST-SH3 cross-linked GSH beads,then completed GST pull down experiments. We used anti-Flag antibody in western blot test to identify whether SH3 or SH2 domains of c-Abl can combine with ERP in vitro. Then we co-transfected Flag-ERβand Myc-cAbl in ukaryotic cells, used anti-Flag cross-linked agarose beads in co-immunoprecipitation, did Western blot detection to detect whether it can combine with each other in eukaryotic cells.
     3. We co-transfected Flag-ERβand Myc-cAbl,used anti-Tyr-P cross-linked agarose beads in co-immunoprecipitation, did Western blot detection with anti-Tyr-P or anti-Flag to detect whether ERβcan be c-Abl phosphorylated.
     4. The PRL, ERE-Luc, Flag-ERβ, Myc-c-Abl plasmids were transfected, according to Promega's kit instructions to determine the luciferase activity to explore how cAbl regulate ERβdownstream gene transcription.
     5. The PRL, pGL2-eNOS-Luc, Flag-ERp, Myc-c-Abl plasmids were transfected, according to Promega's kit instructions to determine the luciferase activity to explore how ERP regulate eNOS transcription and how cAbl regulate it.
     6. We cotransfected Flag-ERβ, Myc-c-Abl plasmids into the endothelial cells, RTPCR and Western blot were used to detect how ERP regulate eNOS expression and how cAbl regulate it.
     Result and conclusion
     1. The eNOS promoter reporter gene vector and ERβeukaryotic expression vector were successfully constructed.
     2. ERβinteract with c-Abl and combine it to form complex in vitro and in eukaryotic cells.
     3. ERβcan be phosphorylated by c-Abl.
     4. Myc-c-Abl can make ERE-Luc reporter gene transcription activity increase 2.22 fold in the 293T cells.After adding STI571, ERE-Luc reporter gene transcription activity increased 1.04 fold.
     In EA.hy926 cells Myc-c-Abl can make ERE-Luc reporter gene transcription activity increase 1.83 fold. After adding STI571, ERE-Luc reporter gene transcription activity was increased 1.01 fold.
     5. In 293T cells Flag-ERβcan make eNOS promter-Luc reporter gene transcription activity increase 2.76-fold. In Myc-cAbl and Flag-ERβcotransfected group, eNOS promter-Luc reporter gene transcription activity was enhanced 4.89 fold. After adding STI571, eNOS promter-Luc reporter gene transcription activity was increased 2.87 fold.
     In EA.hy926 cells Flag-ERβcan make eNOS promter-Luc reporter gene transcription activity increase 3.13fold. In Myc-cAbl and Flag-ERβcotransfected group, eNOS promter-Luc reporter gene transcription activity was enhanced 5.72 fold. After adding STI571, eNOS promter-Luc reporter gene transcription activity was increased 2.95 fold.
     6. ERP increased eNOS expression and c-Abl promotes this effect.
     Discussion
     In the body environment, protein molecules play an important role including protein-protein interactions in protein transport, signal transduction, immune recognition, cell regulation and other life activities.Our research found that ERP interact with SH3 of c-Abl in vitro and they combine to form complex in eukaryotic cells. ERP can be phosphorylated by c-Abl and c-Abl enhanced ERp transcriptional activity. ERP increases eNOS transcriptional activity and c-Abl promotes it. ERβincreased eNOS expression and c-Abl promotes this effect in EA.hy926 cells. This suggests that there may exist c-Abl-ERβ-eNOS signaling pathway in endothelial cells. It helps we have a better understanding of cAbl, ERβ, eNOS interactions in the cardiovascular system; and have a easier way to clear its interactions with related proteins and signal transduction pathway. Our research has a certain significance in cardiovascular diseases including vascular tone regulation, oxidative stress, ischemia-reperfusion injury, endothelial dysfunction, myocardial apoptosis and necrosis etc.It may be targeted for gene therapy of cardiovascular disease. Although the specific signal transduction pathways of c-Abl, ERβand eNOS are unknown. With the basic and clinical research progressing in depth, we believe that it will contribute to the understanding of estrogen and estrogen receptor in the mechanisms of cardiovascular diseases and provide further theoretical basis for prevention and treatment of cardiovascular disease in women.
引文
1 Kitler ME. Coronary disease:are there gender differences. Eur Heart J.1994; 15:409-417.
    2 Stampfer M J, Colditz G A, Willett WC, et al. Postmenopausal estrogen therapy and cardiova-scular disease. New Eng J. Med.1991; 325:756-762.
    3 Mendelsohn M. Mechanisms of estrogen action in the cardiovascular system. J Steroid Biochem Mol Biol.2000; 74:337-343.
    4 Gabel SA, Walker VR, London RE, et al. Estrogen receptor beta mediates gender differences in ischemia/reperfusion injury. J Mol Cell Cardiol.2005; 38(2):289-297.
    5 Skavdahl M, Steenbergen C, Clark J, et al. Estrogen receptor-beta mediates male-female differences in the development of pressure overload hypertrophy. Am J Physiol Heart Circ Physiol.2005; 288(2):H469-476.
    6 Enmark E, Pelto Huikko M, Grandien K, et al. Human estrogen receptorp-gene structure, chromosomal, localization, and expression pattern. J clin Endocrinol Metab.1997; 82:4258-4265.
    7 Adams JY, Leav I, Lau KM, et al. Expression of estrogen receptor beta in the fetal, neonatal, and prepubertal human prostate.Prostate.2002; 52(1):69-81.
    8 Kian M, Rogatsky I, Tzagarakis-Foste C, et al. Estradiol and selective estrogen receptor modulators differentially regulate target genes with estrogen receptors a and (3. Mol Biol Cell 2004; (15):1262-1272.
    9 Li L C, Yeh C, Nojima D, et al. Cloning and characterization of human estrogen receptor β promoter. Biochem Biophys Res Commun.2000; 275:682-689.
    10 Liu M M, Albanese C, Anderson C M, et al. Opposing action of estrogen receptors a and β on cyclin D1 gene expression J Biol Chem.2002; 277:24353-24360.
    11 Levin E R. Estrogen receptor-β and the cardiovascular system.TRENDS in Endocrinology and Metabolism.2002; 13:185-186.
    12 Zhu Y, Bian Z, Lu P, et al. Abnormal vascular functionand hypertension in mice deficient in estrogen receptor p. Science.2002; 295:505-508.
    13 Chan SH, Wang LL, Wang SH, et al. Differential cardiovascular responses to blockade of nNOS or iNOS in rostral ventrolateral medulla of the rat. Br J Pharmacol.2001; 133:606-614.
    14 Nordmeyer J, Eder S, Mahmoodzadeh S, et al. Upregulation of myocardial estrogen receptors in human aortic stenosis.Circulation.2004; 110(20):3270-3275.
    15 Babiker FA, Lips D, Meyer R, et al. Estrogen receptor beta protects the murine heart against left ventricular hypertrophy. Arterioscler Thromb Vasc Biol.2006; 26(7):1524-1530.
    16 16 Pelzer T, Loza PA, Hu K, et al. Increased mortality and aggravation of heart failure in estrogen receptor-β knockout mice after myocardial infarction.Circulation.2005; 111: 1492-1498.
    17 Mahmoodzadeh S, Eder S, Nordmeyer J, et al.Estrogen receptor alpha up-regulation and redistribution in human heart failure. FASEB.2006; 20(7):926-934.
    18 Lee TM, Su SF, Tsai CC, et al. Cardioprotective effects of 17 beta-estradiol produced by activation Of mitochondrial ATP-sensitive Kchannels in canine hearts. J Mol CellCardiol. 2000; 32:1147-1451.
    19 Nordmeyer J, Eder S, Mahmoodzadeh S,et al. Upregulation of myocardial estrogen receptors in human aortic stenosis.Circulation.2004; 110(20):3270-3275.
    20 Davis KL, Martin E, Turko IV, et al. Novel effects of nitric oxide. Annu Rev Pharmacol Toxicol.2001; 41:203-236.
    21 Bolli R, Dawn B, and Xuan OYT. Role of the JAK-STATpathway in protection against myocardial ischemia-reperfusion injury. Trends Cardiovasc Med.2003; 13:72-79.
    22 Bolli R, Manchikalapudi S, Tang XL, et al. The protective effect of late preconditioning against myocardial stunning in conscious rabbits is mediated by nitric oxide synthase. Evidence that nitric oxide acts both as a trigger and as a mediator of thelate phase of ischemic preconditi-oning. Circ Res.1997; 81:1094-1107.
    23 Ferdinandy P and Schulz R. Nitric oxide, superoxide, and peroxynitrite in myocardial ischaemia-reperfusion injury and preconditioning. Br J Pharmacol.2003; 138:532-543.
    24 Horinaka S, Kobayashi N, Mori Y, et al. Expression of inducible nitric oxide synthase, left ventricular function and remodeling inDahl salt-sensitive hypertensive rats. Int J Cardiol.2003; 91:25-35.
    25 Kalinowski L, Dobrucki LW, Brovkovych V, et al. Increased nitric oxide bioavailability in endothelial cells contributes to the pleiotropic effect of cerivastatin. Circulation.2002; 105: 933-938.
    26 Landmesser U, Engberding N, Bahlmann FH, et al. Statin-induced improvement of endothelial progenitor cell mobilization, myocardial neovascularization,left ventricular function, and survival afterexperimental myocardial infarction requires endothelial nitric oxide synthase. Circulation.2004; 110:1933-1939.
    27 Lauer N, Suvorava T, Ruther U, et al. Critical involvement of hydrogen peroxide in exercise-induced up-regulation of endothelial NO synthase. Cardiovasc Res.2005; 65:254-262.
    28 Laufs U, La Fata V, Plutzky J, and Liao JK. Upregulation of endothelial nitric oxide synthase by HMG CoA reductase inhibitors. Circulation.1998; 97:1129-1135.
    29 Matsuhisa S, Otani H, Okazaki T, et al. Angiotensin Ⅱ type 1 receptor blocker preserves tolerance to ischemia-reperfusion injury in Dahl salt-sensitive rat heart.Am J Physiol Heart Circ Physiol.2008; 294:H2473-2479.
    30 Abu-Soud HM, Stuehr DJ. Nitric oxide synthases reveal a role for calmodulin in controlling electron transfer. Proc Natl Acad Sci USA.1993; 90:10769-10772.
    31 Barton M, Haudenschild CC, d'Uscio LV, et al. Endothelin ETA receptor blockade restores NO-mediated endothelial function and inhibits atherosclerosis in apolipoprotein E-deficient mice. Proc Natl Acad Sci USA 1998;95:14367-14372.
    32 Bedard K, Krause KH. The NOX family of ROSgenerating NADPH oxidases:physiology and pathophysiology.Physiol Rev.2007; 87:245-313.
    33 Esper RJ, Nordaby RA, Vilarino JO, et al. Endothelial dysfunction:A comprehensive appraisal. Cardiovasc Diabetol 2006; 5:4.
    34 Forstermann U. Janus-faced role of endothelial NO synthase in vascular disease:Uncoupling of oxygen reduction from NO synthesis and its pharmacological reversal. Biol Chem.2006; 387:1521-1533.
    35 Palmer RM, Ferrige AG, and Moncada S. Nitric oxide release accounts for the biological activity of endotheliumderived relaxing factor. Nature.1987; 327:524-526.
    36 Shiva S, Oh JY, Landar AL, et al. Nitroxia:The pathological consequence of dysfunction in the nitric oxidecytochrome oxidase signaling pathway. Free Radic BiolMed.2005; 38:297-306.
    37 Sun J, Steenbergen C, Murphy E. S-nitrosylation:NO related redox signaling to protect against oxidative stress.Antioxid Redox Signal.2006; 8:1693-1705.
    38 Cao C, Leng YM, Liu X et al. Catalase is regulated by ubiquitination and proteosomal degrada-tion. Role of the c-Abl and Arg tyrosine kinases. Biochemistry.2003; Vol.42: 10348-10353.
    39 Dai Z, Pendergast A M. Abi-2, a novel SH3-containing protein interacts with the c-Abl tyrosine kinase and modulates c-Abl transforming activity. Genes Dev.1995;9:2569-2582.
    40 Baskaran R, Dahmus M E, Wang J Y J. Tyrosine phosphorylation of mammalian RN Apolyme-rase II carboxyl-terminal domain. Proc Natl Acad Sci.1993; 90:167-171.
    41 Barila D, Superti-Furga G. An intramolecular SH3-domain interaction regulates c-Abl activity. Nat Genet.1998; 18:280-282.
    42 CourtneyKD, Grove M, Vandongen H, et al. Localization and phosphorylation of Abl-interactor proteins, Abi-1 and Abi-2, in the developing nervous system. Mol Cell Neurosci. 2000; 16:244-257.
    43 BOurton E A, Plattner R, Pendergast A M. Abl tyrosine kinases are required for infection by Shigella flexneri. EMBO J.2003:22,5471-5479.
    44 Dorey K, Engen JR, Kretzschmar J et al. Phosphorylation and structure-based functional studies reveal a positive and a negative role for the activation loop of the c-Abl tyrosine kinase. Oncogene.2001; 20:8075-8084.
    45 Deutsch E, Dugray A, AbdulKarim B et al. Bcr-Abl down-regulates the DNA repair protein DNA-PKcs. Blood.2001; 97,7:2084-2090.
    46 Kumar S, Bharti A, Mishra NC et al. Targeting of the c-Abl tyrosine kinase to mitochondria in the necrotic cell death response to oxidative stress. JBiol Chem.2001; 276,20:17281-17285.
    47 Pendergast AM. The Abl family kinases:mechanisms of regulation and signaling. Adv Cancer Res.2002; 85:51-100.
    48 Tsutsumi S, Zhang X, Takata K,et al. Differential regulation of the inducible nitric oxide synthase gene by estrogen receptors 1 and 2.J Endocrinol.2008; 199(2):267-273.
    49 Chen Z, Yuhanna IS, Galcheva-Gargova Z, et al. Estrogen receptor alpha mediates the nongenomic activation of endothelial nitric oxide synthase by estrogen J Clin Invest.1999; 103: 401-406.
    50 Kakui K, Itoh H, Sagawa N, et al. Augmented endothelial nitric oxide synthase (eNOS) protein expression in human pregnant myometrium:possible involvement of eNOS promoter activation by estrogen via both estrogen receptor (ER)alpha and ERbeta. Mol Hum Reprod. 2004; 10(2):115-122.
    51 Nakayama M, Yasue H, Yoshimura M, et al.T-786--->C mutation in the 5'-flanking region of the endothelial nitric oxide synthase gene is associated with coronary spasm.Circulation.1999; 99 (22):2864-2870.
    52 Dai Z, Pendergast A M. Abi-2, a novel SH3-containing protein interacts with the c-Abl tyrosine kinase and modulates c-Abl transforming activity. Genes Dev.1995; 9:2569-2582.
    53 Karantzoulis-Fegaras F, Antoniou H, Lai S L,et al. Characterization of the human endothelial nitric-oxide synthase promoter.) J. Biol. Chem.1999; 274:3076-3093.
    54 Miyahara K, Kawamoto T, Sase K Yui Y, et al. Cloning and structural characterization of the human endothelial nitric-oxide-synthase gene. Eur J Biochem.1994; 223:719-726.
    55 Kian Tee M, Rogatsky I, Tzagarakis-Foster C,et al. Estradiol and selective estrogen receptor modulators differentially regulate target genes with estrogen receptors a and β.Mol Biol Cell 2004; (15):1262-1272.
    56 Coyne C B, Bergelson J M. Virus-induced Abl and Fyn kinase signals permit coxsackievirus entry through epithelial tight junctions. Cell.2006; 124:119-131.
    57 Bredt DS. Endogenous nitric oxide synthesis:biological functions and pathophysiology. Free radical research.1999; 31:577-596.
    58 Otani H. The role of nitric oxide in myocardial repair and remodeling.Antioxid Redox Signal. 2009; 11(8):1913-1928.
    59 Hendgen-Cotta UB, Merx MW, Shiva S, et al. Nitrite reductase activity of myoglobin regulates respiration and cellular viability in myocardial ischemia-reperfusion injury.Proc Natl Acad Sci USA.2008; 105(29):10256-10261.
    60 Wang M, Wang Y, Weil B,et al Estrogen receptor beta mediates increased activation of PI3K/Akt signaling and improved myocardial function in female hearts following acute ischemia.Am J Physiol Regul Integr Comp Physiol.2009; 296(4):R972-978.
    61 Pluk H, Dorey K and Superti-Furga G. Autoinhibition of c-Abl. Cell.2002; 108:247-259.
    62 Woodring P J, Hunter T, Wang J Y. Inhibition of c-Abl tyrosine kinase activity by filamentous actin. J Biol Chem.2001; 276:27104-27110.
    63 Reeves P M, Bommarius B, Lebeis S, et al. Disabling poxvirus pathogenesis by inhibition of Abl-family tyrosine kinases. Nat Med.2005; 11:731-739.
    64 Hofmann F, Ammendola A, Schlossmann J. Risingbehind NO:cGMP-dependent protein kinases. J Cell Sci.2000; 113:1671-1676.
    65 Kaga S, Zhan L, Matsumoto M, et al. Resveratrol enhances neovascularization in the infarcted rat myocardium through the induction of thioredoxin-1, hemeoxygenase-1 and vascular endothelial growth factor. J Mol Cell Cardiol.2005; 39:813-822.
    66 Satoh M, Fujimoto S, Haruna Y, et al. NAD(P)H oxidase and uncoupled nitric oxide synthase are major sources of glomerular superoxide in rats with experimental diabetic nephropathy. Am J Physiol Renal Physiol.2005; 288:F1144-1152.
    67 Shiva S, Oh JY, Landar AL, et al. Nitroxia:The pathological consequence of dysfunction in the nitric oxidecytochrome coxidase signaling pathway. Free Radic Biol Med.2005;38:297-306.
    68 Liu LH. Defective endothelium-dependent relaxation of vascular smooth muscle and endothelial cell Ca2+signaling in mice lacking sarco(endo)plasmic reticulum Ca2+-ATPase isoform 3. J Biol Chem.1997; 272:30538-30545.
    69 Weih M K, Weikert S, Freyer D, et al. Chemiluminescence detection of nitric oxide production from rat cerebral cortical endothelial cells in culture. Brain Res.1998; 2:175-182.
    70 Lagrange A H, Ronnekleiv O K, Kelly MJ. Modulation of G protein coupled receptors by an estrogen receptor that activates protein kinase A. Mol Pharmacol.1997; 51:605-612.
    71 Farhat M Y, Lavigne M C, Ramwell P W. The vascular protective effects of estrogen. FASEB J. 1996; 10:615-624.
    1 M.E. Kitler, Coronary disease:are there gender differences, Eur Heart J.1994; 15:409-417.
    2 GG. Kuiper, E. Enmark, M. Pelto-Huikko, et al. Cloning of a novel receptor expressed in rat prostate and ovary, Proc. Natl. Acad. Sci. U.S.A.1996; 93:5925-5930.
    3 GG Kuiper, B. Carlsson, K. Grandien, et al. Comparison of the ligand binding specificityand transcript tissue distribution of estrogen receptoraandp. Endocrinology.1997; 138:863-870.
    4 Enmark E, Pelto Huikko M, Grandien K, et al. Human estrogen receptorβ-gene structure, chromosomal, localization, and expression pattern. J clin Endocrinol Metab.1997; 82:4258-4265.
    5 Enmark E, Gustafsson JA. Oestrogen receptors-an overview. J Intern Med.1999; 246(2): 133-8.
    6 Adams JY, Leav I, Lau KM, et al. Expression of estrogen receptor beta in the fetal, neonatal, and prepubertal human prostate. Prostate.2002; 52(1):69-81.
    7 Pais V, Leav I, Lau KM, et al. Estrogen receptor-beta expression in human testicular germ cell tumors.Clin Cancer Res.2003; 9(12):4475-82.
    8 Rao BR.Isolation and characterization of an estrogen binding protein which may integrate the plethora of estrogenic actions in non-reproductive organs. J Steroid Biochem Mol Biol.1998; 65:3-41.
    9 KowalskiAA, Graddy LG, Vale-Cruz DS, et al. Molecular cloning of porcine estrogen receptor-beta complementary DNAs and developmental expression in periimplantation embryos. Biol Reprod.2002; 66(3):760-9.
    10 Bardin A, Hoffmann P, Boulle N, et al. Involvement of estrogen receptor β in ovarian carcinogenesis.Cancer Res 2004;64:5861-9.
    11 Bjornstrom L, Sjoberg M. Mechanisms of estrogen receptor signaling:convergence of genomic and nongenomic actions on target genes. Mol Endocrinol 2005; 19:833-42.
    12 Brandenberger AW, Tee MK, Jaffe R B. Estrogen receptor a (ER-a) and β (ER-β) mRNAs in normal ovary ovarian serous cystadenocarcinoma and ovarian cancer cell lines: down-regulation of ER-β in neoplastic tissues. J Clin Endocrinol Metab.1998; 83:1025-8.
    13 Brzozowski A. M, Pike A, Dauter Z, et al. Molecular basis of agonism and antagonism in the oestrogen receptor. Nature 1997; 389:753-8.
    14 Carroll, J.S, Brown M. Estrogen receptor target gene:an evolving concept. Mol Endocrinol. 2006; 20:1707-14.
    15 Delaunay F, Pettersson K, Tujague M. Functional differences between the amino-terminal domains of estrogen receptors a and β.Mol Pharmacol.2000; 58:584-90.
    16 Galluzzo P, Caiazza F, Moreno S, et al. Role of ER beta palmitoylation in the inhibition of human colon cancer cell proliferation. Endocr Relat Cancer.2007; 14:153-67.
    17 Hall J M, Couse J F, Korach K S. The multifaceted mechanisms of estradiol and estrogen receptor signaling J Biol Chem.2001; 276:36869-72.
    18 Hirata S, Shoda T, Kato J, et al. The multiple untranslated first exons system of the human estrogen receptor beta (ER beta) gene.J Steroid Biochem Mol Biol.2001 Jul; 78(1):33-40.
    19 Kato S, Endoh H, Masuhiro Y, et al. Activation of the estrogen receptor through phosphorylation by mitogen-activated protein kinase Science 1995; 270:1491-4.
    20 Kian Tee M, Rogatsky I, Tzagarakis-Foster C, et al. Estradiol and selective estrogen receptor modulators differentially regulate target genes with estrogen receptors a and β. Mol Biol Cell 2004; (15):1262-1272.
    21 Li L C, Yeh C C, Nojima D, et al. Cloning and characterization of human estrogen receptor β promoter. Biochem Biophys Res Commun.2000; 275:682-689.
    22 Liu, M M, Albanese C, Anderson C M, et al. Opposing action of estrogen receptors a and β on cyclin D1 gene expression J Biol Chem.2002; 277:24353-60.
    23 Barrett-Connor E, Grady D. Hormone replacement therapy, heart disease, and other considerations. Annu. Rev. PublicHealth.1998; 19:55-60.
    24 Grady D, Rubin S M, Petitti D, et al.Therapy to prevent disease and prolong life in postmenopausal women. Ann Intern Med.1992; 117:1016-19.
    25 Byington RP, Furberg CD, Herrington DM, et al.Effect of estrogen plus progestin on progression of carotid atherosclerosis in postmenopausal women with heart disease HERS B-mode substudy.Arterioscler Thromb Vasc Biol.2002; 22(10):1692-1697.
    26 Colditz, G A, Willett W C, Stampfer MJ, et al. Menopause and the risk of coronary heart disease in women. N Engl J Med.1987; 316:1105-10.
    27 Haynes S G, Feinleib M. Women, work and coronary heart disease:prospective findings from the Framingham heart study. Am J Public Health.1980; 70:133-37.
    28 Engin-Ustun Y, Ustun Y, Meydanli MM, et al. Effects of intranasal 17beta-estradiol and raloxifene on lipid profile and fibrinogen in hypercholesterolemic postmenopausal women:aandomized placebo-controlled clinical trial. Gynecol Endocrinol.2006; 22(12): 676-679.
    29 Castelo-Branco C, Palacios S, Vazquez F, et al. Effects on serum lipid and leptin levels of three different doses of norethisterone continuously combined with a fixed dose of 17beta-estradiol for nasal administration in postmenopausal women:a controlled, double-blind study. Fertil Steril.2007; 88(2):383-389.
    30 Nozaki M, Ogata R, Koera K, et al. Changes in coagulation factors and fibrinolytic components of postmenopausal women receiving continuous hormone replacement therapy. Climacteric.1999; 2:124-28.
    31 Demirol A, Baykal C, Kirazli S, et al. Effects of hormone replacement on hemostasis in spontaneous menopause.Menopause.2001; 8(2):135-140.
    32 Miller VM, Jayachandran M, Owen WG. Ageing, oestrogen, platelets and thrombotic risk. Clin Exp Pharmacol Physiol.2007; 34(8):814-821.
    33 Nordmeyer J, Eder S, Mahmoodzadeh S, et al. Upregulation of myocardial estrogen receptors in human aortic stenosis.Circulation.2004; 110(20):3270-3275.
    34 Babiker FA, Lips D, Meyer R, et al. Estrogen receptor beta protects the murine heart against left ven-tricular hypertrophy.Arterioscler Thromb Vasc Biol.2006; 26(7):1524-30.
    35 Zhu Y, Bian Z, Lu P, et al. Abnormal vascular functionand hypertension in mice deficient in estrogen receptor β.Science.2002; 295:505-8.
    36 Skavdahl M, Clark J, Murphy E, et al. Estrogen receptor 2 to beta diatesmale female differences in the development of pressure overload hypertrophy. Am J Physiol Heart Circ Physiol.2005; 288(2):469-76.
    37 Gangar KF, Vyas S, Whitehead M, et al. Pulsatility index in internal carotidartery in relation to transdermal oestradiol and time since menopause. Lancet.1991; 338-39.
    38 Pelzer T, Loza PA, Hu K, et al. Increased mortality and aggravation of heart failure in estrogen receptor-β knockout mice after myocardial infarction.Circulation.2005; 111:1492-98.
    39 Mahmoodzadeh S, Eder S, Nordmeyer J, et al.Estrogen receptor alpha up-regulation and redistribution in human heart failure. FASEB.2006; 20(7):926-34.
    40 Collins P, Beale C. The Cardioprotective Role of HRT:A Clinical Update, New York: Parthenon Publishing.1996.
    41 Saito S, Motomura N, Lou H, et al. Specific effects of estrogen on growth factor and major histocompatibility complex class II antigen expression in rat aortic allograft. Thorac. Cardiovasc Surg.1997; 114:803-08.
    42 Kim J, Kim J Y, Song K S, et al. Epigenetic changes in estrogen receptor, gene in atherosclerotic cardiovascular tissues and in-vitro vascular senescence.Biochim Biophys Acta 2007; 1772-80.
    43 Lee TM, Su SF, Tsai CC, et al. Cardioprotective effects of 17 beta-estradiol produced by activation Of mitochondrial ATP-sensitive Kchannels in canine hearts. J. Mol. Cell. Cardiol. 2000; 32:1147-51.
    44 Squadrito, F, Altavilla D, Squadrito G, et al.17Beta-oestradiol reduces cardiac leukocyte accumulation in myocardial ischaemia reperfusion injury in rat. Eur J Pharmacol.1997; 335: 185-193.
    45 Zhai, P, Eurell T E, Cotthaus R, et al. Effect of estrogen on global myocardial ischemia-reperfusion injury in female rats. Am J Physiol Heart Circ Physiol.2000; 279:H2766.
    46 McNulty, P H, Jagasia D, Whiting J M, et al. Effect of 6-wk estrogen withdrawal or replacement on myocardial ischemic tolerance in rats. Am J Physiol Heart Circ Physiol.2000; 278:H1030-38.
    47 Christian RC, Liu PY, Harrington S, et al. Intimal estrogen receptor, but not ERa expression, is correlated with coronary calcification and atherosclerosis in pre-and postmenopausal women.J Clin Endocrinol Metab.2006; 91(7):2713-20.
    48 Babiker FA, Lips D, Meyer R, et al. Estrogen receptor beta protects the murine heart against left ventricular hypertrophy. Arterioscler Thromb Vasc Biol.2006; 26(7):1524-30.
    49 Davis KL, Martin E, Turko IV, et al. Novel effects of nitric oxide. Annu Rev Pharmacol Toxicol.2001; 41:203-236.
    50 Bolli R, Dawn B, and Xuan YT. Role of the JAK-STATpathway in protection against myocardial ischemia-reperfusion injury. Trends Cardiovasc Med.2003; 13:72-79.
    51 Bolli R, Manchikalapudi S, Tang XL, et al. The protective effect of late preconditioning against myocardial stunning in conscious rabbits is mediated by nitric oxide synthase. Evidence that nitric oxide acts both as a trigger and as a mediator of thelate phase of ischemic preconditioning. Circ Res.1997; 81:1094-1107.
    52 Ferdinandy P and Schulz R. Nitric oxide, superoxide, and peroxynitrite in myocardial ischaemia-reperfusion injury and preconditioning. Br J Pharmacol.2003; 138:532-543.
    53 Horinaka S, Kobayashi N, Mori Y, et al. Expression of inducible nitric oxide synthase, left ventricular function and remodeling inDahl salt-sensitive hypertensive rats. Int J Cardiol.2003; 91:25-35.
    54 Kalinowski L, Dobrucki LW, Brovkovych V, et al. Increased nitric oxide bioavailability in endothelial cells contributes to the pleiotropic effect of cerivastatin. Circulation.2002; 105: 933-938.
    55 Landmesser U, Engberding N, Bahlmann FH, et al. Statin-induced improvement of endothelial progenitor cell mobilization, myocardial neovascularization, left ventricular function, and survival afterexperimental myocardial infarction requires endothelial nitric oxide synthase. Circulation.2004; 110:1933-1939.
    56 Lauer N, Suvorava T, Ruther U, et al. Critical involvement of hydrogen peroxide in exercise-induced up-regulation of endothelial NO synthase. Cardiovasc Res.2005; 65:254-262.
    57 Laufs U, La Fata V, Plutzky J, and Liao JK. Upregulation of endothelial nitric oxide synthase by HMG CoA reductase inhibitors. Circulation.1998; 97:1129-1135.
    58 Matsuhisa S, Otani H, Okazaki T, et al. Angiotensin II type 1 receptor blocker preserves tolerance to ischemia-reperfusion injury in Dahl salt-sensitive rat heart. Am J Physiol Heart Circ Physiol.2008; 294:H2473-2479.
    59 Abu-Soud HM, Stuehr DJ. Nitric oxide synthases reveal a role for calmodulin in controlling electron transfer. Proc Natl Acad Sci USA.1993; 90:10769-10772.
    60 Barton M, Haudenschild CC, d'Uscio LV, et al. Endothelin ETA receptor blockade restores. NO-mediated endothelial function and inhibits atherosclerosis in apolipoprotein E-deficient mice. Proc Natl Acad Sci USA 1998; 95:14367-14372.
    61 Bedard K, Krause KH. The NOX family of ROSgenerating NADPH oxidases:physiology and pathophysiology.Physiol Rev.2007; 87:245-313.
    62 Forstermann U. Janus-faced role of endothelial NO synthase in vascular disease:Uncoupling of oxygen reduction from NO synthesis and its pharmacological reversal. Biol Chem.2006; 387:1521-1533.
    1 Dai Z, Pendergast A M. Abi-2, a novel SH3-containing protein interacts with the c-Abl tyrosine kinase and modulates c-Abl transforming activity. Genes Dev.1995; 9:2569-82.
    2 Baskaran R, Dahmus M E, Wang J Y J. Tyrosine phosphorylation of mammalian RNA polymerase II carboxyl-terminal domain. Proc Natl Acad Sci.1993; 90:11,167-71.
    3 Barila D, Superti-Furga G An intramolecularSH3-domain interaction regulates c-Abl activity. Nat Genet.1998:18,280-282.
    4 Boggon T J, Eck M J. Structure and regulation of Src family kinases. Oncogene.2004; 23: 7918-27.
    5 Burton E A, Plattner R, Pendergast A M. Abl tyrosine kinases are required for infection by Shigella f lexneri. EMBO J.2003:22,5471-79.
    6 Brasher B B, Van Etten R A. c-Abl has high intrinsic tyrosine kinase activity that is stimulated by mutation of the Src homology 3 domain and by autophosphorylation at two distinctregulatory tyrosines. J Biol Chem.2000; 275,35631-37.
    7 Bromann, P A, Korkaya H, Courtneidge S A. The interplay between Src family kinases and receptor tyrosine kinases. Oncogene.2004; 23,7957-68.
    8 Courtney K D, Grove, M., Vandongen, H., Vandongen, A., LaMantia, A.-S., and Pendergast, A. M. (2000). Localization and phosphorylation of Abl-interactor proteins, Abi-1 and Abi-2, in the developing nervous system. Mol. Cell. Neurosci.16,244-257.
    9 Cicchetti P, Mayer B J, Thiel G, et al. Identification of a protein that binds to the SH3 region of Abl and is similar to Bcr and GAP-rho. Science.1992; 257:803-6.
    10 Dorey K, Engen J, Kretzschmar J, et al. Phosphorylation and structure-based functional studies reveal a positive and a negative role for the activation loop of the c-Abl tyrosine kinase. Oncogene 2001; 208075-84.
    11 Hantschel O, Nagar B, Guettler S, et al. A myristoyl phosphotyrosine switch regulates c-Abl. Cell.2003; 112:845-57.
    12 Ikeguchi A, Yang H Y, Gao G Inhibition of v-Abl transformation in 3T3 cells overexpressing different forms of the Abelson interactor protein Abi-1. Oncogene 2001; 20:4926-34.
    13 Ito Y, Pandey P, Mishra N, et al. Targeting of the c-Abl tyrosine kinase to mitochondria in endoplasmic reticulum stress-induced apoptosis. Mol Cell Biol.2001; 21:6233-42.
    14 Kain K H, Klemke R L. Inhibition of cell migration by Abl family tyrosine kinases through uncoupling of Crk-CAS complexes. J Biol Chem.2001; 276:185-92.
    15 Coyne C B, Bergelson J M. Virus-induced Abl and Fyn kinase signals permit coxsackievirus entry through epithelial tight junctions. Cell.2006; 124:119-131.
    16 Kain K H and Klemke R L. Inhibition of cell migration by Abl family tyrosine kinases through unc oupling of Crk-CAS complexes. J Biol Chem.2001; 276:16185-192.
    17 Koleske A J, Gifford A M, Scott M L, et al.. Essential roles for the Abl and Arg tyrosine kinases in neurulation. Neuron.1998; 21:1259-72.
    18 Hantschel O, Nagar B, Guettler S, et al. A myristoyl phosphotyrosine switch regulates c-Abl. Cell.2003; 112:845-57.
    19 Boyle S N, Michaud G A, Schweitzer B, et al. A critical role for cortactin phosphorylation by Abl-family kinases in PDGF-induced dorsal-wave formation.Curr Biol.2007; 17:445-51.
    20 Chiariello M, Marinissen M J, Gutkind J S. Regulation of c-myc expression by PDGF through Rho GTPases. Nat Cell Biol.2001; 3:580-86.
    21 Plattner R, Kadlec L, DeMali K A, et al. c-Abl is activated by growth factors and Src family kinases and has a role in the cellular response to PDGF.Genes Dev.1999; 13:2400-11.
    22 Plattner R, Irvin B J, Guo S, et al. A new link between the c-Abl tyrosine kinase and phosphoinositide signalling through PLC-yl. Nat Cell Biol.2003; 5:309-19.
    23 Olivera A, Edsall L, Poulton S, et al. Platelet-derived growth factor-induced activation of Sphingosine kinase requires phosphorylation of the PDGF receptor tyrosine residue responsible for binding of PLCy. FASEB J.1999; 13:1593-1600.
    24 Woodring P J, Hunter T, Wang J Y. Regulation of F-actin-dependent processes by the Abl family of tyrosine kinases. J Cell Sci.2003; 116:2613-26.
    25 Wang S, Wilkes M C, Leof E B, et al. Imatinib mesylate blocks a non-Smad TGF-β pathway and reduces renal fibrogenesis in vivo. FASEB J.2005; 19:1-11.
    26 Yang L, Lin C, Liu Z R. P68 RNA helicase mediates PDGF-induced epithelial esenchymal transition by displacing axin from β-catenin. Cell.2006;127:139-55.
    27 27 Veracini, L., Franco, M., Boureux, A., Simon, V, Roche, S. and Benistant, C. Two distinct pools of Src family tyrosine kinases regulate PDGF-induced DNA synthesis and actin dorsal ruffles. J Cell Sci.2006; 20:2921-34.
    28 Sirvent A, Boureux A, Simon V, et al. The tyrosine kinase Abl is required for Src-transforming activity in mouse fibroblasts and human breast cancer cells. Oncogene.2007; 26:7313-23.
    29 Stanglmaier M, Warmuth M, Kleinlein, et al.The interaction of the Bcr-Abl tyrosine kinase with the Src kinase Hck is mediated by multiple binding domains. Leukemia.2003; 17: 283-89.
    30 Thomas S M, Brugge J S. Cellular functions regulated by Src family kinases. Annu Rev. Cell Dev. Biol.1997; 13:513-609.
    31 Wilkes M C and Leof E B. Transforming growth factor βactivation of c-Abl is independent of receptor internalization and regulated by phosphatidylinositol 3-kinase and PAK2 in mesenchymal cultures. J Biol Chem.2006; 281:27846-854.
    32 Zrihan-Licht S, Avraham S, Jiang S, et a/.Coupling of RAFTK/Pyk2 kinase with c-Abl and their role in the migration of breast cancer cells. Int J Oncol.2004; 24:153-59.
    33 Tanis K Q, Veach D, Duewel H S, et al. Two distinct phosphorylation pathways have additive effects on Abl family kinase activation. Mol Cell Biol.2003; 23:3884-396.
    34 Srinivasan D, Plattner R. Activation of Abl tyrosine kinases promotes invasion of aggressive breast cancer cells.Cancer Res.2006; 66:5648-55.
    35 Pendergast A M. The Abl family kinases:mechanisms of regulation and signaling. Adv Cancer Res.2002; 85:51-100.
    36 Sossey-Alaoui K, Li X, Cowell J K. c-Abl-mediated phosphorylation of WAVE3 is required for lamellipodia formation and cell migration. J BiolChem.2007; 282:26257-65.
    37 Stuart J R, Gonzalez F H, Kawai H, et al. c-Abl interacts with the WAVE2 signaling complex to induce membrane ruffling and cell spreading. J Biol Chem.2006; 281:31290-97.
    38 Pluk H, Dorey K and Superti-Furga G. Autoinhibition ofc-Abl. Cell.2002; 108:247-59.
    39 Sini P, Cannas A, Koleske A J, et al.Abl-dependent tyrosine phosphorylation of Sos-1 mediates growth-factor-induced Rac activation. Nat Cell Biol.2004; 6:268-74.
    40 Woodring P J, Hunter T, Wang J Y. Inhibition of c-Abl tyrosine kinase activity by filamentous actin. J Biol Chem.2001; 276:27104-110.
    41 Woodring P J, Litwack E D, O'Leary D D, et al. Modulation of the F-actin cytoskeletonby c-Abl tyrosine kinase in cell spreading and neurite extension.J Cell Biol.2002; 156:879-92.
    42 Reeves P M, Bommarius B, Lebeis S, et al. Disabling poxvirus pathogenesis by inhibition of Abl-Ofamily tyrosine kinases.Nat Med.2005; 11:731-39.
    43 Srinivasan D, Sims J T, Plattner R. Aggressive breast cancer cells are dependent on activated Abl kinases for proliferation, anchorage-independent growth and survival. Oncogene.2008; 27: 1095-105.
    44 44. Ting A Y, Kain K H, Klemke R L, et al. Genetically encoded fluorescent reporters of protein tyrosine kinase activities in living cells. Proc Natl Acad Sci.2001; 98:15003-08.
    45 Zipfel P A, Zhang W, Quiroz M, et al. Requirement for Abl kinases in T cell receptor signaling. CurrBiol.2004; 14:1222-31.
    46 Ushio-Fukai M, Zuo L, Ikeda S, et al. cAbl tyrosine kinase mediates reactive oxygen species-and caveolin-dependent AT1 receptor signaling in vascular smooth muscle:role in vascular hypertrophy. Circ Res.2005; 97:829-36.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700