用户名: 密码: 验证码:
抚育间伐对针叶人工林凋落物分解的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以华北地区常见针叶树种油松、华北落叶松为研究对象,探讨2树种凋落物分解动态变化以及间伐强度对凋落物分解过程的影响,为提高人工林林分质量,丰富和完善抚育间伐理论提供参考。本研究在北京延庆县营盘村周边山地设置样地,在同一龄级4种密度下交互放置凋落袋,测定油松、华北落叶松有机、无机养分动态变化过程,了解间伐对针叶凋落物分解速率的影响,同时调查间伐通过改变林下地被、土壤性质的情况及其对凋落物分解的影响。通过主成分分析等统计方法,综合分析影响凋落物分解的主导因子,以及调控凋落物分解的密度效应。结果表明:
     (1)油松针叶凋落物分解周期为11.77-17.69年,华北落叶松针叶凋落物分解周期为9.01-13.25年。针叶凋落物在秋季分解率最大,初始N含量、C/N比是制约2树种针叶凋落物前期分解速率的主导因子。
     (2)通过轮置分解法,研究同一凋落物质量在不同间伐强度下无机养分释放的差异性。凋落物初始养分含量越高,能够缩短凋落物养分积累释放的时间,尤以氮元素最为明显。间伐对凋落物分解的影响表现为随着间伐强度的增大,养分积累释放波动幅度很大,其中以夏季-秋季表现最为显著。
     (3)针叶凋落物分解速率与林下灌草多样性、养分积累量均有不同程度的显著相关性,灌木层作用尤为突出。林下凋落层厚度与分解速率呈极显著负相关,相关系数油松为-0.621,华北落叶松为-0.758。
     (4)4种土壤酶活性均以夏季活性最高,凋落物分解过程中5种无机养分的释放与不同土壤酶活性呈现不同程度的相关性。同时,养分之间的积累和释放也相互影响相互制约,尤其以Ca元素最为突出,与N、P、K元素呈极显著正相关。
     (5)对不同间伐强度下影响凋落物分解因子进行主成分分析可知,24、32年油松凋落物质量(初始C、N含量)、灌草多样性及林下死地被层对凋落物分解影响较大。40年油松则以凋落物质量因子、草本层多样性指数影响最大。立地条件为Ⅲ的华北落叶松,粗脂肪、粗蛋白、全氮、C/N、灌木层Simpson(?)旨数、土壤含水率对其凋落物分解影响较大。立地条件为Ⅳ的华北落叶松,第一主成分主要综合了木质素、灌木层Shannon-Wiener指数、灌木层Simpson指数、灌木层Gleason指数、凋落层厚度的信息。
     (6)对各间伐强度下影响凋落物分解因子进行分析评判,来反映各间伐林分对林下凋落物分解作用的综合水平。24、32年油松,以间伐Ⅲ为最优,密度分别为1700株/hm2、1325株/hm2,40年油松则以间伐Ⅳ最优,密度为1050株/hm2。华北落叶松2种立地条件下均以间伐Ⅳ为最优,间伐Ⅰ最小。最优密度分别为1325株/hm2、1150株/hm2,说明适当的间伐强度对针叶人工林凋落物的分解有促进作用。
ABSTRACT
     Two main conifers in North China, Pinus tabulaeformis Carr and Larix principis-rupprechtii Mayr,, were used as the objects of the study. Litter decomposition dynamics of these two coniferous, as well as effects of different precommercial thinning (PCT) intensities on the decomposition process were explored. The study used the litterbag technique to quantify the dynamics of organic and inorganic nutrients in leaves of same-age-class Pinus tabulaeformis and Larix principis-rupprechtii plantations under four different PCT treatments with plots allocated in the middle hilly lands of Yingpan, Yanqing County, Bejing. Comprehensively, the effects of PCT and understorey vegetation (shrubs and herbs) & soil properties changed by PCT on decomposition rate were analyzed and evaluated by Principal Components Analysis (PCA) to find the dominant factor controlling the coniferous litter decomposition, as well as the optimal density of coniferous plantations for the litter decomposition. The results showed that:
     (1) Decomposition cycle of coniferous litter for Pinus tabulaeformis was 11.77-17.69 years and for Larix principis-rupprechtii was 9.01-13.25 years. The decomposition rate reached the peak value in the autumn. The initial N content and initial C:N ratio were the main factors influence litter decomposition rates in early stage.
     (2) The effects of four different PCT intensities were different in the initial quality of the coniferous litter. The more initial litter nutrient content can shorten the time of elements release, especially nitrogen. Thinning effects on litter decomposition showed that with thinning intensity increase, the accumulation and release of nutrient fluctuations was more obvious, which in summer-autumn performance was the most significant.
     (3) Correlated analysis showed that the decomposition rate was significantly correlated with biodiversity of understory vegetation (shrubs and herbs) and the retained amount of nutrients. The layer of forest litter and decomposition rate was significantly negatively correlated, the correlation coefficient was-0.621 in the Pinus tabulaeformis plantations, and was-0.758 in the Larix principis-rupprechtii plantations.
     (4) The activities of four soil enzymes were most active in summer. Different degrees of correlations (positive or negative) were discovered between the returned amount of five nutrients and the activities of soil enzymes in the process of litter decomposition. At the same time, the retained amounts and returned amounts of five nutrients also interacted with each other.
     (5) The PCA was used among all shaping factors in the data process, the results showed the quality of coniferous litter (initial C and N content) of 24-year-old and 32-year-old Pinus tabulaeformis plantations, biodiversity of understory vegetation and undergrowth dead litter played stronger role in the decomposition of coniferous litter. In contrast, the highest contributing ratio of 40-year-old Pinus tabulaeformis plantations was the factor of litter quality, Larix principis-rupprechtii (index III)summarized the effects of coarse fat, coarse protein, total nitrogen content, C/N in leaves of Larix principis-rupprechtii, Simpon index of shurb and soil moisture content on the litter decomposition. Larix principis-rupprechtii (indexⅣ)mainly integrated the information of lignin content in leaves, indexes of shrub layer and depth of litter layer.
     (6) The shaping factors on litter decomposition were analyzed and determined to reveal the total role played by plantations under different PCT treatments. It was observed that PCT treatment III was the optimal density for 24-year-old and 32-year-old Pinus tabulaeformis plantations, while PCT treatmentⅣwas the best for 40-year-old Pinus tabulaeformis plantations. For Larix principis-rupprechtii plantations in two kinds of site conditions, PCT treatmentⅣplayed the strongest role but PCT treatment I poorly worked on the coniferous litter decomposition. It might suggest that appropriate PCT intensities accelerate and promote the coniferous litter decomposition in conifer plantations.
引文
[1]鲍士旦.土壤农化分析[M].北京:中国农业出版社,2005,34-110.
    [2]毕润成.山西霍山山核桃群落生态特征及其区系分析[J].应用生态学报,1999,10(6):650-656.
    [3]曹云,杨劫,宋炳煜,等.人工抚育措施对油松林生长及结构特征的影响[J].应用生态学报,2005,16(3):397-402.
    [4]陈立新,陈祥伟,段文标.落叶松人工林凋落物与土壤肥力变化的研究[J].应用生态学报,1998,9(12):581-586.
    [5]陈灵芝,黄建辉,严昌荣.1997.中国森林生态系统养分循环[M].北京:气象出版社.
    [6]陈玉福,董鸣.生态学系统的空间异质性[J].生态学报,2003,23(2):346-352.
    [7]陈东升.森林微生物生态学[M].哈尔滨:东北林业大学出版社,1993:65-185.
    [8]崔国发,蔡体久,杨文化.兴安落叶松人工林土壤酸度的研究[J].北京林业大学学报,2000,22(3):33-36.
    [9]程励励,文启孝,吴顺玲,等.植物物料的化学组成和腐解条件对新成腐殖质的影响[J].土壤学报,1981,18(4):360-368.
    [10]陈印平,潘开文,吴宁,等.凋落物质量和分解对中亚热带栲木荷林土壤氮矿化的影响[J].应用与环境生物学报,2005,11(2):146-151.
    [11]常雅军,曹靖,李建建,等.秦岭西部山地针叶林凋落物层的化学性质[J].生态学杂志2009,28(7):1308-1315.
    [12]董鸣,王义凤,孔繁志,等.陆地生物群落调查观测与分析[M].北京:中国标准出版社,1996.
    [13]董世仁,沈国舫,聂道平.油松人工林养分循环的研究Ⅱ:油松人工林养分元素的动态特性[J].北京林业大学学报,1986,8(1):11-22.
    [14]方海波,田大伦,康文星,等.间伐后杉木人工林生态系统养分动态的研究[J].中南林学院学报,1999,19(2):15-19,21.
    [15]方华,莫江明.氮沉降对森林凋落物分解的影响[J].生态学报,2006,26(9):3127-3136.
    [16]方晰,田大伦,项文化,等.杉木人工林凋落物量及其分解过程中碳的释放率[J].中南林学院学报.2005,25(6):12-16.
    [17]费鹏飞.森林凋落物对林地土壤肥力的影响[J].安徽农学通报,2009,15(13):55-56.
    [18]高甲荣.秦岭火池塘林区华北落叶松人工林营养元素生物循环的研究[J].西北林学院学报,1987,2(1):23-35.
    [19]国家林业局森林资源管理司.2009年中国十大绿色事件[J].绿色中国,2010,1:10-12.
    [20]耿晓源.长白山某些树种叶子的分解动态研究[J].植物生态与地植物学报,17(1):90-96.
    [21]耿玉清,孙向阳,亢新刚,等.长白山林区不同森林类型下土壤肥力状况的研究[J].北京林业大学学报,1999,21(6):97-101
    [22]关松荫.土壤酶及其研究法[M].北京:农业出版社,1986:188-359.
    [23]郭蓓,刘勇,李国雷,等.飞播油松林地土壤酶活性对间伐强度的响应[J].林业科学,2007,43(7):128-133.
    [24]郭剑芬,杨玉盛,陈光水,等.森林凋落物分解研究进展[J].林业科学,2006,42(4):93-100.
    [25]郭玉硕.楠木叶凋落物的分解及养分动态[J].福建林学院学报,2007,27(3):199-202.
    [26]郭忠玲,郑金萍,马元丹,等.长白山各植被带主要树种凋落物分解速率及模型模拟的试验研究[J].生态学报,2006,26(4):1037-1046.
    [27]何艺玲,傅懋毅.人工林林下植被的研究现状[J].林业科学研究,2002,15(6):727-733.
    [28]侯学煜.1982.中国植被地理及优势植物化学成分[M].北京:科学出版社.
    [29]胡肄慧,陈灵芝,孔繁志,等.油松和栓皮栎枯叶分解作用的研究[J].植物学报,1986,28(1):102-110.
    [30]兰思仁.武夷山国家级自然保护区植物物种多样性研究[J].林业科学,2003,39(1):36-43.
    [31]李春义,马履一,王希群,等.抚育间伐对北京山区侧柏人工林林下植物多样性的短期影响[J].北京林业大学学报,2007,29(3):60-66.
    [32]李国雷,刘勇,郭蓓,等.保留密度对飞播油松林下植被发育影响的研究[J].西北林学院学报,2007a,22(3):105-110.
    [33]李国雷,刘勇,郭蓓,等.间伐强度对油松人工林植被发育的影响[J].北京林业大学学报,2007b,29(2):70-74.
    [33]李国雷,刘勇,李瑞生,等.油松叶凋落物分解速率、养分归还及组分对间伐强度的响应北京 林业大学学报,2008,30(5):52-57.
    [34]李国雷,刘勇,于海群,吕瑞恒,李瑞生.油松人工林林下植被发育对油松生长节律的响应[J].生态学报,2009,29(6):1264-1275.
    [35]李海涛,于贵瑞,李家永,等.井冈山森林凋落物分解动态及磷钾释放速率[J].应用生态学报,2007a,18(2):233-240.
    [36]李海涛,于贵瑞,李家永,等.亚热带红壤丘陵区四种人工林凋落物分解动态及养分释放[J].生态学报,2007 b,27(3):898-908.
    [37]李淑兰陈永亮不同落叶林林下凋落物的分解与养分归还[J].南京林业大学学报,2004,28(5):59-62.
    [38]李志安,邹碧,丁永祯,等.植物残茬对土壤酸度的影响及其作用机理[J].生态学报,2005,25(9):2382-2388.
    [39]林成芳,高人,陈光水,等.凋落物分解模型研究进展[J].福建林业科技,2007,34(3):227-233.
    [40]林波,刘庆,吴彦,等.森林凋落物研究进展[J].生态学杂志,2004,23(1):60-64.
    [41]林开敏,章志琴,曹光球,等.杉木与楠木叶凋落物混合分解及其养分动态[J].生态学报,2006,26(8):2732-2738.
    [42]林开敏,洪伟,俞新妥,等.杉木与伴生植物凋落物混合分解的相互作用研究[J].应用生态学杂志,2001,12(3):321-325.
    [43]刘波,尹华军,程新颖,等.中国人工林生态系统的可持续更新问题与对策[J].世界林业研究,2009,23(1):71-75.
    [44]刘晨峰,王正宁,贺康宁,等.黄土高原半干旱区几种人工林的土壤水分、光照变化及其对林分的影响[J].西部林业科学,2004.33(3):34-41.
    [45]刘强,彭少麟,毕华,等.热带亚热带森林叶凋落物交互分解的养分动态[J].北京林业大学学报,2005,27(1):24-32.
    [46]刘强,彭少麟,毕华,等.热带亚热带森林叶凋落物交互分解的研究[J].中山大学学报(自然科学版),2004,43(4):86-89.
    [47]刘世荣,李春阳.落叶松人工林养分循环过程与潜在地力衰退趋势的研究[J].东北林业大学学报,1993,21(2):19-24.
    [48]刘燕,周国逸,褚国伟,等.鼎湖山针阔混交林土壤酸度与土壤养分的季节动态[J].生态环境,2000,14(1):81-85.
    [49]刘洋,张健,冯茂松..巨桉人工林凋落物数量、养分归还量及分解动态[J].林业科学,2006,42(7):1-9.
    [50]刘勇,李国雷,李瑞生,等.密度调控对油松人工林土壤肥力的影响[J].西北林学院学报,2008,23(6):18-23.
    [51]刘增文,段而军,潘开文,等.川西亚高山人工林碳氮分配格局及其随凋落叶分解的释放规律[J].应用生态学报,2009,20(1):1-6.
    [52]吕瑞恒,刘勇,李国雷,等.北京延庆飞播林区不同植被类型土壤肥力的差异[J].东北林业大学学报,2009,37(5):39-42.
    [53]逯军峰,王辉,曹靖,等.油松人工林凋落物对土壤理化性质的影响[J].西北林学院学报,2007,22(3):25-28.
    [54]鲁叶江,吴忠福,杨万勤,等.土壤养分库对缺苞箭竹叶片养分元素再分配的影响[J].生态学杂志,2005,24(9):1058-1062.
    [55]陆耀东,薛立,曹鹤,等.去除地面枯落物对加勒比松(pinus caribaea)林土壤特性的影响[J].生态学报,2008,28(7):3205-3211.
    [56]骆宗诗,向成华,慕长龙.绵羊官司河流域主要森林类型凋落物含量及动态变化[J].生态学报,2007,27(5):1772-1781.
    [57]莫江明,薛花,方运霆,等,鼎湖山主要森林植物凋落物分解及其对N沉降的响应[J].生态学报,2004,24(7):1413-1420.
    [58]聂道平,沈国舫,董世仁.油松养分循环的研究:Ⅲ养分元素循环和林分养分的平衡[J].北京林业大学学报,1986,8(2):8-19.
    [59]潘开文,何静,吴宁.森林凋落物对林地微生境的影响[J].应用生态学报,2004,15(1):153-158.
    [60]庞学勇,刘世全,刘庆.川西亚高山人工云杉林地有机物和养分库的退化与调控[J].土壤学报2004,4(1):126-133.
    [61]彭少麟,刘强.森林凋落物动态及其对全球变暖的响应[J].生态学报,2002,22(9):1534-1544.
    [62]齐泽民,王开运.密度对缺苞箭竹凋落物养分归还及养分利用率的影响[J].应用生态学报,2007,18(9):2025-2029.
    [63]沈海龙,丁宝永,沈国舫,等.樟子松人工林下针阔叶凋落物分解动态[J].林业科学,1996,32(5):393-402.
    [64]盛炜彤,杨承栋.关于杉木林下植被对改良土壤性质效用研究[J].生态学报,1997,17(4):377-385.
    [65]盛炜彤:杉木林的密度管理与长期生产力研究[J].林业科学2001,37(5):2-9.
    [66]盛炜彤,范少辉.人工林长期生产力保持机制研究的背景、现状和趋势[J].林业科学究,2004,17(1):106-115.
    [67]盛炜彤,范少辉.杉木人工林长期生产力保持机制研究[M].2005.北京:科学出版社.
    [68]宋新章,江洪,张慧玲,等.全球环境变化对森林凋落物分解的影响[J].生态学报.2008,28(9):4414-4423.
    [69]孙晓芳,黄建辉,王猛,等.内蒙古草原凋落物分解对生物多样性变化的影响[J].生物多样性,2009,17(4):397-405.
    [70]苏芳莉,刘明国,谭学仁,等.不同间伐强度天然次生林凋落物性质的研究[J].辽宁林业科技,2007,2:1-3,11.
    [71]田大伦.杉木林生态系统定位研究方法[M].2004.北京:科学出版社.
    [72]田茂洁.川中人工纯柏林凋落物分解动态研究[J].生态学杂志,2005,24(10):1147-1150.
    [73]王凤友.森林凋落物量研究综述[J].生态学进展,1989,6(2):82-98.
    [74]王凤友,王业蘧.红松针阔叶混交林凋落物的生态学研究(Ⅲ)—群落类型林地凋落物的现存量//周晓峰.森林生态系统定位研究.1991.哈尔滨:东北林业大学出版社:245-248.
    [75]王瑾,黄建辉.暖温带地区主要树种叶片凋落物分解过程中主要元素释放的比较[J].植物生态学报,2001,25(3):375-380.
    [76]王希华,黄建军,闫思荣.天童国家森林公园常见植物凋落叶分解的研究[J].植物生态学报,2004.28(4):457-467.
    [77]汪思龙,陈楚莹.森林凋落物对土壤酸化缓冲作用的初步研究[J].环境科学,1991,13(5):5,25-30.
    [78]吴福忠,王开运,杨万勤,等.密度对缺苞箭竹凋落物生物元素动态及其潜在转移能力的影响[J].应用生态学报,2005,29(4):537-542.
    [79]吴庆标,王效科,欧阳志云.活性有机碳含量在凋落物分解过程中的作用[J].生态环境,2006,15(6):1295-1299.
    [80]武吉华,张坤,江源,等.2005.植物地理学[M].北京:高等教育出版社.
    [81]肖慈英,黄青春,阮宏华.松栎纯林及混交林凋落物分解特性研究[J].土壤学报,2002,39(5):763-767.
    [82]熊有强,盛炜彤,曾满生.不同间伐强度杉木林下植被发育及生物量研究[J].林业科学研究,1995,8(4):408-412.
    [83]徐扬,刘勇,李国雷,等.间伐强度对油松中龄人工林林下植被多样性的影响[J].南京林业大学学报:自然科学版,2008,32(3):135-138.
    [84]薛立,邝立刚,陈红跃,等.不同林分土壤养分、微生物与酶活性的研究[J].土壤学报,2003,40(2):280-285.
    [85]徐秋芳,钱新标,桂祖云.不同林木凋落物分解对土壤性质的影响[J].浙江林学院学报,1998,15(1):27-31.
    [86]徐建华.现代地理学中的数学方法[M].北京:高等教育出版社,2002.
    [87]阎恩荣,王希华,周武.天童常绿阔叶林不同退化群落的凋落物特征及与土壤养分动态的关系[J].植物生态学报,2008,32(1):1-12.
    [88]杨承栋,焦如珍.发育林下植被是恢复杉木人工林地力的重要途径[J].林业科学,1995,31(3):316-322.
    [89]杨万勤,王开运.森林土壤酶的研究进展[J].林业科学,2004,40(2):152-159.
    [90]杨玉盛,郭剑芬,陈银秀,等.福建柏和杉木林凋落物分解及养分动态的比较[J].林业科学,2004,40(3):19-25.
    [91]尹承军,黄德华,陈佐忠.内蒙古典型草原4种植物凋落物分解速率与气候因子之间的定量关系[J].生态学报,1994,14(2):149-154.
    [92]余树全,姜春前,李翠环,等.人为经营干扰对人工雷竹林下植被多样性的影响[J].林业科学研究,2003,16(2):196-202.
    [93]余建英,何旭宏.2006.数据统计分析与Spss应用[M].北京:人民邮电出版社,
    [94]张东来,毛子军,张玲,等.森林凋落物分解过程中酶活性研究进展[J].林业科学,2006,26(42):105-109.
    [95]张德强,余清发,孔国辉,等.1998.鼎湖山季风常绿阔叶林凋落物层化学性质的研究.生态学报,18(1):96-100.
    [96]张鼎华,叶章发,范必有,等.抚育间伐对人工林土壤肥力的影响[J].应用生态学 报,2001,12(5):672-676.
    [97]张浩,庄雪影.华南4中乡土阔叶树种枯落叶分解能力[J].生态学报,28(5):2395-2403.
    [98]张鹏,田兴军,何兴兵,等.亚热带森林凋落物层土壤酶活性的季节动态生态环境[J].2007,16(3):1024-1029
    [99]张希彪,上官周平.黄土丘陵区油松人工林与天然林养分分布和生物循环比较[J].生态学报,2006,26(2):373-382.
    [100]张瑞清,孙振钧,王冲,等.西双版纳热带雨林凋落叶分解的生态过程.Ⅲ.酶活性动态[J].植物生态学报,2008,32(3)622-631.
    [101]赵谷风,蔡延,罗媛媛,等.青冈常绿阔叶林凋落物分解过程中营养元素动态[J].生态学报,2006,26(10):3286-3295.
    [102]郑兆飞.木荷叶凋落物的分解及养分动态分析[J]浙江林学院学报.2009,26(1):22-26.
    [103]中国科学院南京土壤研究所土壤物理研究室.土壤物理性质测定法[M].北京:科学出版社,1978.
    [104]中国科学院南京土壤研究所微生物室.土壤微生物研究法[M].北京:科学出版社,1985.
    [105]周礼恺.土壤酶学[M].北京:科学出版社,1987.
    [106]Adrien C, F, Andrew S A, Evanhd et al. Forest litter production,chemistry, and decomposition following two years of free-air CO2 enrichment [J]. Ecology,2001,82:470-484.
    [107]Aerts R. Climate, leaf chemistry and leaf litter decomposition in terrestrial ecosystems:a triangular relationship [J]. Oikos,1997,79:439-449.
    [108]Berg B, Muller M, Wessen B. Decomposition of red clover(Trifolium pratense) roots [J]. Soil Biol. Biochem.1987,19:589-594.
    [109]Berg B. Litter decomposition and organic matter turnover in northern forest soils [J]. Forest Ecology and Management,2000,133:13-22.
    [110]Blair, J.M., Parmelee, R.W., Beare, M.H. Decay rates, nutrient fluxes and decomposer communities in single and mixed-species foliar litter. Ecology,1999,71,1976-1985.
    [111]Bronson K F, Onken A B, Keeling J D, et al. Nitrogen response in cotton as affected by till age system and irrigation level [J]. Soil Sci. Soc. Am. J,2001,65:1153-1163.
    [112]Chapin F S. Nutrogen and phosphorus nutrition and nutrition cycling by evergreen and deciduous understory shrubs in an Alaskan black spruce forests[J]. Can J For Res,1983,13 (5):773-781.
    [113]Cornelissen J H C. An experiment comparison of leaf decomposition rates in a wide range of temperate plant species and types [J]. Ecology,1996,84:573-582.
    [114]Cornelissen J H C, Perez Harguindeguy N, Diaz S, Grime JP, Marzano B, Cabido M,Vendramini F,Ceranolini BLeaf structure and defence control litter decomposition rate across species and life forms in regional floras of two continents.New Phytol,1999,143:191-200.
    [115]Couteauxm, Bottner P, Berg B. Litter decomposition,climate and litter quality [J]. Tree,1995,10: 63-66.
    [116]Cromack K Jr. Litter production and decomposition in a mixed hardwood watershed and in a white pine watershed at Coweeta Hydrologic Station, North Carolina [D].Georgia, USA: University of Georgia,1973.
    [117]Del-Arco J M, Escudero A, Garrido M V. Effects of site characteristics on nitrogen retranslocation from senescing leaves[J]. Ecology,1991,72:701-708.
    [118]D. A. Wardle, K. I. Bonner, G. M. Barker. Linkages between plant litter decomposition, litter quality, and vegetation responses to herbivores [J] Functional Ecology,2002,16,585-595.
    [119]Dilly O and Munch J C. Ratios between estimates of microbial biomass content and microbial activity in soils[J]. Biology and Fertility of Soils,1998,27:374-379.
    [120]Evans J. Plantation forestry in the tropics [M].2nd. Oxford:Clarendon Press.1992.334-350.
    [121]Gao J R. Nutrient biocycle of Larix principis-rupprechtii plantation in Qingling-gebirges[J]. Journal of Northwest Forestry University,1987,2(1):23-35.
    [122]Gartner T B and Cardon Z G. Decomposition dynamics in mixed-species leaf litter [J]. Oikos, 2004,104:230-246.
    [123]Gray D B, Mary K T, Julie E J. Interactions between crop residue and soil organic matter quality and the functional diversity of soil microbial communities. Soil Biology and Biochemistry,2002, 34:1073-1082.
    [124]Guo L B, Sims R. Litter production and nutrient return in New Zealand cucalypt short rotations for land management. Agric. Ecosyst. Environ,1999,73(1):93-100.
    [125]Hansen R A. Effect of habitat complexity and composition on a diverse litter microarthropod assemblage. Ecology,2000,81,1120-1132.
    [126]Harrison A F.The inhibitory effect of oak leaf litter tannins on the growth of fungi, in relation to litter decomposition [J]. Soil Biol. Biochem.1971,3,167-172.
    [127]Helena D.Ecosystem functioning and plant-soil interactions in forests [J].Sweden:Swedish university of agricultural sciences.2006.8.
    [128]Heanev A, Proctor J. Chemical elements in litter on Volcan Barva, Costa Rica. In:Proctor J. Ed. Mineral nutrients in tropical forest and savanna ecosystems. Blackwell Scientific, Oxford England.1989.225-271.
    [129]Hornsby D C, Lockaby B G, Chappelka AH. Influence of microclimate on decomposition in loblolly pine stands:a field microcosm approach. Canadian Journal of Forest Research, 1995.25(10):1570-1577.
    [130]Imgraben S,Dittmann S.Leaf litter dynamic and litter consumption in two temperate South Australian mangrove forests. Journal of Sea Research,59:83-93.
    [131]Killham K, Foster R. Soil ecology [M]. Cambridge:Cambridge University Press,1994.
    [132]Klemens E,Ellen K,Christian P, et al. Soil-carbon preservation through habitat constraints and biological limitations on decomposer activity. J. Plant Nutr. Soil Sci.2008,171:27-35.
    [133]Lamber H, Stolen I, Van D W. Carbon use in root respiration as affected by elevated atmosphere CO2 [J]. Plant Soil,1996,187:251-263.
    [134]Li Z A, Cao Y S, Zou B, et al. Acid buffering capacity of forest litter from some important plantation and natural forests in South China[J]. Acta Botanica Sinica,2003,45(12):1398-1407.
    [135]Lim M T, Cousens J E. The internal transfer of nutrients in a Scots pine stand 2:the pattern of transfer and the effects of nitrogen availability [J]. Forestry,1986,59:17-27.
    [136]Liu C J, Westman C J and Ilvesniemi H. Matter and nutrient dynamics of pine(Pinus tabulaeformis) and oak (Quercus variabilis) litter in North China[J]. Silva Fennica, 2001.35(1):3-13.
    [137]Mac A, Callaham J R, Anderson P H et al. Litter decomposition and soil respiration response to fuel-preduction treatment in Piedmont loblolly pine forest[C].In:Connor,KF, ed.2004. Proceedings of the 12th biennial southern silvicultural research conference.
    [138]McHale P J, Mitchell MJ, Bowles F P. Soil warming in a northern hardwood forest:trace gas fluxes and leaf litter decomposition. Canadian Journal of Forest Research,1998,28(9):1365-1372.
    [139]Martius C, Hofer H, Marcos V.B et al. Litter fall, litter stocks and decomposition rates in rainforest and agroforestry sites in central Amazonia. Nutrient Cycling in Agroforestry [J], 2004,68:137-154.
    [140]Melillo J M, Aber JD, Meratore J F. Nitrogen and lignin control of hardwood leaf litter decomposition dynamics [J]. Ecology,1982,63:621-626.
    [141]Noble A D, Randall P J. Alkalinity effects of different tree litters incubated in an acid soil of N. S. W., Australia [J]. Agrofoest.Syst,1999,46:147-160.
    [142]Noble AD. Leaf litter ash alkalinity and neutralization of soil acidity [J].Plant soil, 1996,179:293-302.
    [143]Peng S L, Liu Q. The dynamics of forest litter and its responses to global warmming.Scientia Silvac Sinicae,2006,42(4):93-100.
    [144]Perez Harguindeguy N, Diaz S, Cornelissen J H C, Vendramini F, Cabido M, Castellanos A. Chemistry and toughness predict leaf litter decomposition rates over a wide spectrum of functional types and taxa in central Argentina. Plant and Soil,2000,218:21-30.
    [145]Russel A E, Larid D A and Mallarino A P. Nitrogen fertilization and cropping system impacts on soil quality in Midwestern Mollisols [J]. Soil Sci. Soc. Am. J,2006,70:249-255.
    [146]Rustad L E, Croran C S. Element loss and retention during litter decay in a red spruce stand in Maine. Can. J. For. Res.,1988,18(6):947-953.
    [147]Sariyildiz T, Anderson J M. Interactions between litter quality, decomposition and soil fertility:a laboratory study. Soil Biology and Biochemistry,2003,35:391-399.
    [148]Savill P, Evans J, Auclair D.1997. Plantation silviculture in Europe [M].Oxford:University Press.
    [149]Schlesinger WH, Hasey MM. Decomposition of chaparral shrub foliage:losses of organic and inorganic constituents from deciduous and evergreen leaves [J]. Ecology,1981,62:762-774.
    [150]Singh K P, Singh P K, Tripathi S K. Litter fall, litter decomposition and nutrient release patterns in four native tree species raised on coal mine spoil at Singrauli, India. Biology and Fertility of Soil, 1999,29:371-378.
    [151]Shanks R E, Olson J S.1961.First-year break down of leaf litter in southern Appalachian forests [J]. Science,134:194-195.
    [152]Sollins P, Grier C C, Mccorison F M, et al. The internal element cycles of old-growth Douglas-fir ecosystem in Western Oregon [J]. Ecology,1980,50:261-285.
    [153]Swift M J, Heal O W, Anderson J M. Decomposition in terrestrial ecosystems.University of California Press, Berkleym. California, U SA,1979.
    [154]Taylor B R, Parkinson D, Parsons W F J. Nitrogen and lignin content as predictors of litter decay rates:a microcosm test. Ecology,1989,70 (1):97-104.
    [155]Tian G, Brussaard L and Kang B T. Bio logical effects of plant residues with contrasting chemical compositions under humid tropical conditions:effects on soil fauna[J].Soil Biology and Biochemistry,1993,25 (6):731-737.
    [156]Wang J H and Son Y H. Shortterm effects of thinning and liming on forest soils of pitch pine and Japanese larch plantations in central Korea [J]. Ecological Research,2006,21(5):671-680.
    [157]Vitousek P M. Beyond global warning:ecology and global change [J].Ecology,1994,75: 1861-1876.
    [158]Yoshiyuki Inagaki, Shigeo Kuramoto, Atsushi Torii, et al. ffects of thinning on leaf-fall and leaf-litter nitrogen concentration in hinoki cypress (Chamaecyparis obtusa Endlicher)plantation stands in Japan[J]. Forest Ecology and Management 255 (2008) 1859-1867.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700