用户名: 密码: 验证码:
缙云山林地土壤侵蚀物理力学机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
该论文结合国家自然科学基金“基于分形理论的三峡库区林地土壤结构特征与土壤侵蚀关系研究”,进行了重庆缙云山林地土壤侵蚀物理力学机制的研究,以期为三峡库区土壤侵蚀研究及三峡库区的植被建设和生态环境可持续发展提供科学依据。
     该研究以缙云山典型林分—针阔混交林、常绿阔叶林、竹林、灌木林和农地(对照)作为研究对象,首次采用分形理论综合定量地研究了缙云山林地土壤结构特征,结果为:林地土壤颗粒表面分维(Dj)为混交林最优(2.936),竹林最差(2.908);微团粒分维(Dw)为灌木林最优(2.582),农地最差(2.718);团粒分维(Dt)为混交林最优(2.706),农地最差(2.762);孔隙分维(Dk)为灌木林最优(2.773),竹林最差(2.466)。运用非线性预测法得出林地土壤组成、理化性质指标与土壤结构分维存在非线性关系:γ=αDjβ1Dwβ2Dtβ3Dkβ4,颗粒表面分维的影响要大于微团粒分维和孔隙组分维,但小于团粒分维。
     采用统计分析、典型相关分析、灰色关联度、逐步回归、主因子分析、模糊聚类等方法,对林地土壤侵蚀物理力学机制和影响因素进行了研究,结果为:典型林地渗透性为灌木林最强,农地最差,初渗率主要受表层土壤颗粒表面分维和团粒分维影响,与其呈负相关,其次是表层土壤微团粒分维和孔隙分维,稳渗率受团粒分维、颗粒表面分维影响作用大于孔隙分维,微团粒分维影响最小,与孔隙分维呈正相关,与其它三者呈负相关。土壤水分入渗过程中,入渗率主要受孔径>1.5mm的孔隙影响,其次是孔径为0.4~0.9mm的孔隙,以及<0.4mm的孔隙。典型林地抗分散性为灌木林地最强(抗蚀指数78.4%),农地最差(抗蚀指数42%);抗蚀指数随时间的动态变化模型为:S=at2+bt+c;灌木林土壤抗蚀性最强,竹林最差,土壤抗蚀性评价最佳指标为团粒结构破坏率。典型林地土壤抗剪强度为针阔混交林>常绿阔叶林>灌木林>竹林>农地,其主要决定于微团粒分维,其次主要受土壤容重、干密度、粘聚力和硬度的综合影响。典型林地土壤抗冲指数随时间变化特征为幂函数关系K=at-b;土壤抗冲指数与坡度的关系为:K=0.0755e0.0755x,农地土壤抗冲性受坡度影响最为强烈,竹林最小;针阔混交林土壤抗冲性最强,农地土壤抗冲性最弱;土壤抗冲能力主要受孔隙分维、团粒分维、大孔隙平均半径和稳渗率四个指标影响,其次为大孔隙断面积比、结构颗粒指数和有机质。典型林地土壤侵蚀临界切应力为针阔混交林最大(1.257N/m2),农地最小(0.824 N/m2),临界切应力主要决定于土壤的抗剪强度,是反映土壤侵蚀能力的一个重要指标。
     从土壤渗透性、抗分散性、抗剪性与抗冲性四个方面筛选抗侵蚀性指标,采用层次分析法(AHP)、综合评分法对典型林地土壤抗侵蚀性能评价结果为:灌木林(1.260)>针阔混交林(1.169)>常绿阔叶林(1.106)>竹林(1.066)>农地(1.042)。灌木林地土壤抗侵蚀性能最强,农地土壤抗侵蚀性能最差。
     该论文较为全面和深入地研究了缙云山林地土壤侵蚀物理力学机制,提出了土壤抗侵蚀的土壤因素评价指标体系,并得出了缙云山不同典型林地类型土壤抗侵蚀性能,填补了缙云山林地土壤侵蚀物理力学综合研究与评价的空白。
The research on the physical and mechanical mechanism of soil erosion of forest in Jinyun Mountain of Chongqing City was conducted, which are associated with the National Natural Science Fund project "The Relationship Research between Soil Structure Characteristics and Soil Erosion of the Three Gorges Reservoir Area Based on Fractal Theory ". The purpose of this paper is to provide scientific evidence for soil erosion research and vegetation construction and sustainable ecological environment development of the Three Gorges reservoir area.
     Soil structure of four typical forest lands (mixed Pinus massoniana-broadleaf forest, evergreen broad-leaved forest, Phyllostachys pubescens forest and shrub forest) and the agricultural land in Jinyun Mountain, was comprehensively and quantitatively studied by the method of the fractal theory for the first time. The results are as follows:particle size fractal dimension (PSD) of mixed forest land was optimal (2.936), the one of Phyllostachys pubescens forest land was worst (2.908); micro-aggregate size fractal dimension (MASD) optimal for shrub forest land (2.582), the one of agricultural land was worst (2.718); aggregate size fractal dimension (ASD) optimal for mixed forest land (2.706), the one of agricultural land was worst (2.762); pore fractal dimension (PFD) for shrub forest land optimal (2.773), the one of Phyllostachys pubescens forest land was worst (2.466). With the method of nonlinear predictive indicators, the relation between soil properties and soil structure fractal dimension was fitted by the model ofγ=αDjβ1Dwβ2Dtβ3Dkβ4. PSD's impact on the model was greater than MASD and PFD, but less than ASD.
     The physical and mechanical mechanism of soil erosion of forest was analysized and evaluated by the methods of statistical analysis, canonical correlation analysis, grey reational analysis, stepwise regression, principal component analysis, fuzzy-clustering analysis and other methods, the results were as follows:Impermeability of shrub forest land was the strongest, while agricultural land was worst. Initial infiltration rate was mainly affected by PSD and ASD, followed by the MASD and PFD. Effect on steady infiltration rate with ASD and PSD was greater than PFD, the least was MASD. Infiltration rate was mainly affected by pore (aperture> 1.5 mm), followed by the pore (aperture was amang 0.4 to 0.9 mm), the least was pore (aperture< 0.4 mm). Anti-dispersion of shrub forest land against was the strongest (78.4%) and agricultural land was the worst (42%). Anti-dispersion dynamic changes with time was fitted by the model of s=at2+bt+c. The best indicator of anti-erodibility evaluation was the disarrangement rate of aggregate. Anti-erodibility of shrub forest land was the strongest and Phyllostachys pubescens forest land was the worst. The order of soil shear strength was mixed forest land> evergreen broadleaf forest> shrub forest> Phyllostachys pubescens forest> agricultural land, which was mainly affected by MASD, followed by bulk density, dry density, cohesion and the hardness. The index of soil anti-scouribility had the great remarkable power function with time and its relation with slope was fitted by the model of K= 0.0755e 0.0755x.Soil anti-scouribility of mixed forest land was the strongest, Phyllostachys pubescens forest land was the weakest, it was mainly affected by PFD, ASD, macropore radius and steady infiltration rate, followed by macropore section area ratio, structure index and organic matter. Critical shear stress of mixed forest land was the largest (1.257 N/m2), agricultural land was the smallest (0.824 N/m2), the critical shear stress depended mainly on soil shear strength.
     Impermeability, anti-erodibility, shear strength and anti-scouribility reflect the physical and mechanical mechanisms of soil erosion, soil erosion which are important indicators to evaluate the degree of soil erosion. Then, the method of analytic hierarchy process was applied to evaluate the degree of soil erosion under the typical forest land, the result is as follows:shrub forest (1.260)> mixed forest land (1.169)> evergreen broadleaf forest (1.106)> Phyllostachys pubescens forest land (1.066)> agricultural land (1.042). Therefore, the resistance to soil erosion of shrub forest land is the strongest, and agricultural land was the worst. Forest vegetation can improve soil anti-erosion. The physical and mechanical mechanisms of soil erosion in Jinyun Mountain was studied in-depth, the evaluation index system of soil anti-erosion was proposed, and soil anti-erosion properties of different typical forest lands were obtained. It fills in the blanks of analysis and evaluation of physical and mechanical system of soil anti-erosion in Jinyun Mountain.
引文
[1]安和平.北盘江中游地区土壤抗蚀性及预测模型研究[J].水土保持学报,2000,14(4):38-42.
    [2]鲍士旦.土壤农化分析[M].北京:中国农业出版社,2005:25-35.
    [3]曹志平.土壤生态学[M].北京:化学工业出版社,2007:55-68.
    [4]曹升庚.土坡微形态学的历史、进展和将来[J].土壤专报,1988,43(1):1-44.
    [5]陈金林,俞元春,罗汝英,等.杉木、马尾松、甜槠等林分下土壤养分状况研究[J].林业科学研究,1998,11(6):586-591.
    [6]陈志雄,汪仁真.中国几种土壤的持水性质[J].土壤学报,1979,16(3):277-281.
    [7]陈利军,周礼恺.土壤保肥-供肥机理及其调节Ⅳ.棕壤型菜园土肥力的调节与培育及其作用实质[J].应用生态学报,2000,11(4):532-534.
    [8]陈国样,谢树楠,汤立群.黄土高原地区流域产沙模型研究[M].郑州:黄河水利出版社:1996:2-10.
    [9]陈绍英,王启文.分形理论及其应用[J].呼伦贝尔学院学报,2005,13(2):59-63.
    [10]陈恩风,周礼恺,武冠云.土壤的自动调节性能与抗逆性能[J].土壤学报,1991,28(2):168-176.
    [1]]陈红星,李法虎,郝仕玲,等.土壤含水率与土壤碱度对土壤抗剪强度的影响[J].农业工程学报,2007,23(2):21-25.
    [12]陈效民,黄德安,吴华山.太湖地区主要水稻土的大孔隙特征及其影响因素研究[J].土壤学报,2006,43(3):508-512.
    [13]储小院,王玉杰,刘楠,等.重庆缙云山典型林地土壤微团粒特征分析[J].土壤通报,2009,40(6):1241-1244.
    [14]代全厚,张力,刘艳军,等.嫩江大堤植物根系固土护堤功能研究[J].中国水土保持,1998(12):36-37.
    [15]冯杰,郝振纯.CT确定土壤大孔隙分布[J].水科学进展,2002,13(3):611-617.
    [16]樊宝凤,王录.吸管法测定土壤机械组成及土壤微团粒吸样时间的探讨[J].河南职技师院学报,1994,22(4):69-70.
    [17]方学敏,万兆惠,徐永年.土壤抗蚀性研究现状综述[J].泥沙研究,1997(2):87-91.
    [18]高维森,王佑民.黄土丘陵区柠条林地土壤抗蚀性研究[J].西北林学院学报,1991,6(3):12-17.
    [19]高维森,王佑民.土壤抗蚀抗冲性研究综述[J].水土保持通报,1992,12(5):59-63.
    [20]高维森.土壤抗蚀性指标及其适用性初步研究[J].水土保持学报,1991,5(2):60-65.
    [21]高中琪,张洪江,史玉虎.长江三峡花岗岩区不同地类土壤流失量研究[J].中国水土保持科学,2004,2(4):26-29.
    [22]高明,李阳兵,魏朝富,等.稻田长期垄作免耕对土壤肥力性状的影响研究[J].水土保持学报,2005,19(3):29-33.
    [23]高大钊.土力学与基础工程[M].北京:中国建筑工业出版社,1998:68-90.
    [24]高大钊,袁聚云.土质学与土力学(第三版)[M].北京:人民交通出版社,2001:58-70.
    [25]高学田,包忠谟.降雨特性和土壤结构对溅蚀的影响[J].水土保持学报,2001,15(3):24-26.
    [26]宫阿都,何毓蓉.金沙江干热河谷区退化土壤结构的分形特征研究[J].水土保持学报,2001,15(3):112-114.
    [27]郭培才,王佑民.黄土高原沙棘林地土壤抗蚀性及其指标的研究[J].中国水土保持,1992,4(1):80-86.
    [28]郭伟,史志华,陈立顶,等.红壤表土团粒粒径对坡面侵蚀过程的影响[J].生态学报,2007,27(6):2516-2522.
    [29]郭飞,徐绍辉,刘建立.土壤样本分形几何特征的图像分析方法[J].土壤学报,2005,42(1):24-28.
    [30]关连珠,张伯泉,颜丽.不同肥力黑土、棕壤各级微团粒中胶结物质的粗成及其特性[J].沈阳农业大学学报,1991,22(1):55-60.
    [31]关欣,李巧云,张凤荣,等.南疆平原干旱土的微形态特征[J].土壤学报,2003,40(5):672-678.
    [32]龚伟,胡庭兴,王景燕,等.川南天然常绿阔叶林人工更新后土壤微团粒分形特征研究[J].土壤学报,2007,44(3):571-575.
    [33]龚伟,胡庭兴,王景燕,等.川南天然常绿阔叶林人工更新后土壤团粒结构的分形特征[J].植物生态学报,2007,31(1):56-65.
    [34]龚伟,颜晓元,蔡祖聪,等.长期施肥对华北小麦-玉米轮作土壤物理性质和抗蚀性影响研究[J].土壤学报,2009,46(3):520-525.
    [35]韩鲁艳,郝乾坤,焦菊英.黄土丘陵沟壑区人工林地的土壤抗蚀性评价[J].水土保持通报,2009,29(3):159-164.
    [36]洪惜英,谢宝元.水力学[M].北京:北京林业大学,1987:25-37.
    [37]胡建忠,范小玲,王愿昌,等.黄土高原沙棘人工林地土壤抗蚀性指标探讨[J].水土保持通报,1998,18(2):25-30.
    [38]胡振琪,陈宝政,陈星彤.应用探地雷达检测复垦土壤的分层结构[J].中国矿业,2005,14(3):73-75.
    [39]胡建忠.黄土高原沟壑区人工沙棘林地土壤抗蚀性研究[J].沙棘,1999,12(1):14-20.
    [40]黄昌勇.土壤学[M].北京:中国农业出版社,2000:30-40.
    [41]黄冠华,詹卫华.土壤水分特性曲线的分形模拟[J].水科学进展,2002,13(1):55-60.
    [42]黄冠华,詹卫华.土壤颗粒的分形特征及其应用[J].土壤学报,2002,39(4):490-497.
    [43]蒋定生等.黄土高原水土流失与治理模式[M].北京:中国水利水电出版社.1997:5-10.
    [44]景可等.中国土壤侵蚀与环境[M].北京:科学出版社,2005:83-84.
    [45]柯家明,李绍进,夏艳华.黄土抗剪强度在水蚀中表现形式的研究[J].特种结构,2005,22(2):53-55.
    [46]雷瑞德,张仰渠,党坤良.秦岭林区森林水文效应的研究[A].林业部科技司.中国森林生态系统定位研究[C].哈乐滨:东北林业大学出版社,1994,400-412.
    [47]雷志栋,杨诗秀,谢森传.土壤水动力学[M].北京:清华大学出版社,1988:5-8.
    [48]林大仪.土壤学[M].北京:中国林业出版社,2002:30-45.
    [49]李德成,张桃林.中国土壤颗粒组成的分形特征研究[J].土壤与环境,2000,9(4):263-265.
    [50]李易麟,南忠仁.开垦对西北干旱区荒漠土壤养分含量及主要性质的影响:以甘肃省临泽县为例[J].干旱区资源与环境,2008,22(10):147-151.
    [51]李伟莉,金昌杰,王安志,等.关德新长白山主要类型森林土壤大孔隙数量与垂直分布规律[J].应用生态学报,2007,18(10):2179-2184.
    [52]刘伟,区自清,应佩峰.土壤大孔隙及其研究方法[J].应用生态学报,2001,12(6):465-468.
    [53]李香兰,田积莹,张成娥.黄土高原不同林型对土壤物理性质的影响[J].林业科学,1992,28(2):98-105.
    [54]李勇,吴钦孝,朱显谟,等.黄土高原植物根系提高土壤抗冲性的有效性[J].水土保持学报,1990,4(3):1-5.
    [55]李艳茹,梁运江,许广波,等.分形理论及其在土壤物理学上的应用[J].安徽农业科学,2006,34(20):5141-5143,5145.
    [56]李勇,朱显瑛.黄土高原土壤抗冲性机理初步研究[J].科学通报,1990,35(5):390-393.
    [57]刘定辉,李勇.植物根系提高土壤抗侵蚀性机理研究[J].水土保持学报,2003,17(3):34-37.
    [58]刘云鹏,王国栋,等.陕西4种土壤粒径分布的分形特征研究[J].西北农林科技大学学报,2003,31(4):92-94.
    [59]刘金福,洪伟,吴承祯.中亚热带几种珍贵树种林分土壤团粒结构的分维特征[J].生态学报,2002,22(2):197-205.
    [60]刘伟,区自清,应佩峰.土壤大孔隙及其研究方法[J].应用生态学报,2001,12(3):465-468.
    [61]刘式达,等.自然科学中的混沌和分形[M].北京:北京大学出版社,2003:2-5.
    [62]刘莹,胡敏,余桂英.分形理论及其应用[J].江西科学.2006,24(2):205-209.
    [63]刘金福,洪伟,吴承祯.中亚热带几种珍贵树种林分土壤团粒结构的分维特征[J].生态学报,2002,22(2):197-205.
    [64]刘世荣,温远光,王兵,等.中国森林生态系统水文生态功能规律[M].北京:中国林业出版社,1996:10-13.
    [65]吕菲,刘建立,何娟.利用CT数字图像和网络模型预测近饱和土壤水力学性质[J].农业工程学报,2008,24(5):10-14.
    [66]卢培俊.热带森林水文学研究刍议[J].热带林业科技,1987,2:1-8.
    [67]卢金伟,李占斌.土壤团粒研究进展[J].水土保持研究,2002,9(1):81-84.
    [68]卢金伟.土壤团粒水稳定性及其与土壤可蚀性之间关系研究[D].陕西:西北农林大学,2002.6
    [69]马志尊.应用卫星影象估算通用土壤流失方程各因子值方法的探讨[J].中国水土保持,1989,(3):24-27.
    [70]门明新,赵同科,彭正萍,等.基于土壤粒径分布模型的河北省土壤可蚀性研究[J].中国农业科学,2004,37(11):1647-1653.
    [71]彭亮,徐清,朱忠礼,等.应用低频微波波段GPR测量土壤结构[J].北京师范大学学报,2007,43(3):324-329.
    [72]钱宁,万兆惠.泥沙运动力学[M].北京:科学出版社,1991.
    [73]冉茂勇,赵允格,陈彦芹.黄土丘陵水蚀区生物结皮土壤抗冲性试验研究[J].西北林学院学报,2009,24(3):37-4.
    [74]沙际德,蒋允静.试论初生态侵蚀性坡面薄层水流的基本特征[J].水土保持学报,1995,9(5):29-35.
    [75]沈慧,姜凤岐,杜晓军,等.水土保持林土壤肥力及其评价指标[J].水土保持学报,2000,14(2):60-65.
    [76]时忠杰,王彦辉,徐丽宏,等.徐大平六盘山典型植被下土壤大孔隙特征[J].应用生态学报,2007,18(12):2675-2680.
    [77]沈慧,姜凤岐,杜晓军.水土保持林土壤抗蚀性能评价研究[J].应用生态学报,2000,11(3):345-348.
    [78]史德明.中国红壤[M].北京科学出版社,1983.
    [79]孙凡,冯沈萍.25度以上坡耕地退耕还林对三峡库区农林经济可持续发展的影响[J].重庆大学学报(社会科学版),2000,6(1):13-15.
    [80]孙洪军,赵丽红.分形理论的产生及其应用[J].辽宁工学院学报(自然科学版),2005,25(2):113-117.
    [81]唐克丽.生草灰化土与黑钙土的团粒结构-抗蚀性能[A].全苏土壤侵蚀会议论文集[C].1961.
    [82]周正朝,上官周平.子午岭次生林植被演替过程的土壤抗冲性[J].生态学报,2009,26(10):3270-3275.
    [83]佟金,任露泉,陈秉聪,等.土壤颗粒尺寸分布分维及对粘附行为的影响[J].农业工程学报,1994,10(3):27-33.
    [84]文仕之,何炳飞.杉木人工林生态系统不同干扰条件下径流规律的研究[A].刘煊章.森林生态系统定位研究[C].北京:中国林业出版社,1993,221-227.
    [85]王康,张仁铎,王富庆.基于不完全分形理论的土壤水分特征曲线模型[J].水利学报,2004,(5):1-6,13.
    [86]王玉杰,王云琦,齐实,等.重庆缙云山典型林地土壤分形特征对水分入渗影响[J].北京林业大学学报,2006,28(2):73-78.
    [87]王佑民,郭培才,高维森.黄土高原土壤抗蚀性研究[J].水土保持学报.1994,8(4):11-16.
    [88]王云琦.三峡库区森林理水调洪机理及空间配置研究[D].北京:北京林业大学,2006.6.
    [89]王恩姮,赵雨森,陈祥伟.基于土壤三相的广义土壤结构的定量化表达[J].生态学报,2009,29(4):2067-2072.
    [90]文卓立.缙云山次生演替植物群落土壤抗冲性研究[D].重庆:西南大学,2008,6
    [91]吴普特,周佩华.坡面薄层水流流动型态与侵蚀搬运方式的研究[J].水土保持学报,1992,6(1):1-3.
    [92]吴承祯,洪伟.不同经营模式团粒结构的分形特征研究[J].土壤学报,1999,36(2):162-167.
    [93]吴兴德.杉木马褂木不同混交比例土壤团粒结构的分形特征研究[J].福建林业科技,2006,33(2):105-110.
    [94]吴文强,李吉跃,张志明,等.北京西山地区人工林土壤水分特性的研究[J].北京林业大学学报,2002,24(4):51-55.
    [95]吴彦,刘庆,乔永康,等.亚高山针叶林不同恢复阶段群落物种多样性变化及其对土壤理化性质的影响[J].植物生态学报,2001,25(6):648-655.
    [96]吴淑安,蔡强国,靳长兴.内蒙古东胜地区土壤抗蚀性实验研究[J].干旱区资源与环境,]996,10(2):38-45.
    [97]夏艳华.黄土抗侵蚀能力与抗剪强度的关系研究[D].武汉:中国科学院研究生院,2003.6.
    [98]夏青,何丙辉.土壤物理特性对水力侵蚀的影响[J].水土保持应用技术,2006,5:12-15.
    [99]徐永福,董平.非饱和土的水分特征曲线的分形模型[J].岩土力学,2002,23(4):400-405.
    [100]杨培岭,罗远培,石元春.用粒径的重量分布表征的土壤分形特征[J].科学通报,1993,38(20):1896-1899.
    [101]杨玉盛.不同利用方式下紫色土可蚀性的研究[J].水土保持学报,1992,6(3):52-58.
    [102]阮伏水,吴雄海.关于土壤可蚀性指标的讨论[J].水土保持通报,1996,9(6):16-19.
    [103]袁剑航.土壤水分特征曲线和土壤水分的滞后现象[J].土壤通报,1986,(1):43-47.
    [104]姚文艺.坡面流阻力规律试验研究[J].泥沙研究.1996,(1):74-81.
    [105]于大炮,刘明国,邓红兵,等.辽西地区林地土壤抗蚀性分析[J].生态学杂志,2003,22(5):10-14.
    [106]于东升,史学正,梁音,等.应用不同人工模拟降雨方式对土壤可蚀性K值的研究[J].土壤侵蚀与水土保持学报,1997,3(2):53-57.
    [107]查小春,唐克丽.黄土丘陵林地土壤侵蚀与土壤性质变化[J].地理学报,2003,58(3):464-469.
    [108]张建丰,林性粹,王文焰.黄土的大孔隙特征和大孔隙流研究[J].水土保持学报,2003,17(4):168-171.
    [109]张世熔,邓良基,周倩,等.耕层土壤颗粒表面的分形维数及其与主要土壤特性的关系[J].土壤学报,2002,39(2):22-226.
    [110]张保华,刘子亭,何毓蓉,等.应用分形维数研究土壤团粒与低吸力段持水性的关系[J].土壤通报,2006,37(5):857-880.
    [111]张晓明.重庆缙云山坡地降雨产流规律及可蚀性研究[D].北京:北京林业大学,2008.6.
    [112]张洪江,解明曙,等.长江三峡花岗岩区坡面糙率系数研究[J].水土保持学报,1994,(1):33-38.
    [113]张建军,张宝颖,毕华兴,等.黄土区不同植被条件下的土壤抗冲性[J].北京林业大学学报,2004,26(6):25-29.
    [114]张洪江.土壤侵蚀原理[M].北京:中国林业出版社,2000.1.
    [115]张季如,朱瑞赓,祝文化.用粒径的数量分布表征的土壤分形特征[J].水利学报,2004(4):67-71.79.
    [116]张爱国,李锐,杨勤科.中国水蚀土壤抗剪强度研究[J].水土保持通报,2001,21(3):5-9.
    [117]张昌顺,范少辉,管凤英,刘广路,翁玉榛.闽北毛竹林的土壤渗透性及其影响因子[J].林业科学,2009,45(1):36-42.
    [118]张兴昌,刘国彬,刘文兆.不同土壤颗粒组成在水蚀过程中的流失规律[J].西北农业学报,2000,9(3):55-58.
    [119]张靓,梁成华,杜立宇,等.长期定位施肥条件下蔬菜保护地土壤微团粒组成及有机质状况分析[J].沈阳农业大学学报,2007,38(3):331-335.
    [120]张洪江等.长江三峡花岗岩地区优先流运动及其模拟[M].北京:科学出版社2006.1.
    [121]张金池,陈三雄,刘道平,等.浙江安吉主要植被类型土壤抗蚀性指标筛选及评价模型构建[J].亚热带水土保持,2006,18(2):1-5.
    [122]赵传燕,李林.兰州市郊区土壤水稳定性微团粒的组成分析[J].兰州大学学报(自然科学版),2003,39(2):90-94.
    [123]钟祥浩,程根伟.森林植被变化对洪水的影响分析[J].山地学报,2001,19(5):413-417.
    [124]周虎,吕贻忠,李保国.土壤结构定量化研究进展[J].土壤学报,2009,46(3):501-505.
    [125]周佩华,武春龙.黄土高原土壤抗冲性的试验研究方法探讨[J].水土保持学报,1993,7(1):29-34.
    [126]朱祖祥.土壤学(上册)[M].北京:农业出版社,1983.
    [127]朱显漠.我国十年来水土保持工作的成就[J].土壤,1959,(10):5-9.
    [128]朱劲伟.小兴安岭红松阔叶林的水文效应[J].东北林学院学报,1982,4:17-24.
    [129]中国科学院南京土壤研究所.土壤理化分析[M].上海:上海科学技术出版社,1978.
    [130]Al-Durrah, M. M. and J. M. Bradford:New methods of studying soil detachment due to waterdrop impact[J]. Soil Scl. Am. J.V.1981,45,949-953.
    [131]A. R. Dexter, Advances in characterization of soil structure[J],1988, Soil & Till. Res.11,199-238.
    [132]Arya L. M. and Paris J. F.. A physicoempirical model to predict the soil moisture characteristic from particle-size distribution and bulk density data[J]. Soil Science Society of America Journal, 1981,45:1023-1031.
    [133]Alexandra Kravchenko, Renduo Zhang. Estimating the soil water retention from particle-size distribution:a fractal approach[J]. Soi Soc Am,1998,163(3):171-179.
    [134]Anderson AN. McBratney AB. Soil aggregates as mass fractals[J].Aust J, Soil Res,1995,33: 757-772.
    [135]Anderson, H.W. Suspended Sediment Discharge as Related to Streamflow, Topgraphy, Soil And Land Use[J]. Trans. Am.Gophys Union.1954,35:268-281.
    [136]Barthes B. and Roose E.. Aggregate stability as an indicator of soil susceptibility to runoff and erosion:validation at several levels[J].Catena.2002,47:133-149.
    [137]Barthes B., Azontonde A., Boli B.Z., et al. Field-scale run-off and erosion in relation to topsoil aggregate stability in three tropical regions(Benin, Cameroon, Mexico) [J]. European Journal of Soil Science,2000,51:485-495.
    [138]Baver, R. B. The development, Use and Efficiency of Indices of Soil Erodibility[J]. Geoderma 1968,2:5-26.
    [139]Bennet, H. H. Some comparisons of the Properties of Humid-tropical and Humid-temperate American Soils with Special Reference to Indicated Relations. Between Chemical Composition and Physical Properties[J].SoilS ci.1926,21:349-375.
    [140]Beven K. J. and Clarke R. T.. On the variation of infiltration into a homogeneous soil matrix containing a population of macropores[J]. Water Resources Research,1986,22:383-388.
    [141]Bird N. R. H., Bartoli F. and Dexter A. R..Water retention models for fractal soil structures[J]. European Journal of Soil Science,1996,47:1-6.
    [142]Bird N.R.A., Perrier E. and Rieu M. The water retention function for a model of soil structure with pore and solid fractal distributions[J]. European Journal of Soil Science,2000,51:55-63.
    [143]Bissonnais L. and Arrouays.Aggregate stability and assessment of soil crustability and erodibility:Application to humic loamy soils with various organic carbon contents[J]. European Journal of Soil Science.1997,48:38-48.
    [144]Brady NC. The Nature and Properties of Soils (eight edition)[M]. New York MacmillanPublishing Co., Inc.,1974,234-251.
    [145]Bouma J, Wosten JHM. Characterizing ponded infiltration in a dry cracked clay soil[J]. Journal of Hydrology,1984.69:297-304.
    [146]Burger JA, Kelting DL. Using soil quality indicators to assess foreststand management[J]. For Ecol Manag,1999,122:155-156.
    [147]Buringh. P.1981. An assessment losses and degradation of productive agricultural land in the world. Working Group on soils policy, Food, Food and Agriculture Organization, United Nations, Rome, Italy.
    [148]Coppola, A. Unimodal and bimodal description of hydraulic properties for aggregated soils. Soil Sci. Soc. of Am. J.,2002,64:1252-1262.
    [149]CHENG ZHU-HUA, ZHANG JIA-BAO and ZHU AN-NING. Introducing fractal dimension to estimation of soil sensitivity to preferential flow[J]. Pedosphere,2002,12(3):201-206.
    [150]Clapp R. B., Hornberger G. M. and Cosby B. J. Estimating spatial variation in soil moisture with a simple dynamic model[J]. Water Resources Research,1983,19:739-745.
    [151]Cook, H. L. The Nature and Controlling Variables of Water Erosion Prosess[J]. Soil Sci. Am. Proc. 1936,1:487-494.
    [152]Corradini C., Morbidelli R. and Smith R. E. A unified model for infiltration and redistribution during complex rainfall patterns[J]. Journal of Hydrology,1997,192:104-124.
    [153]De Leenheer L. De Boodt M. Detemination of Aggregate Stability by the Change in weight-diameter[J]. Mededelingen Ran de Land bouwhoge School:1959.24:290-351.
    [154]Doran JW, Parkin TB. Defining and assessing soil quality. In:DoranJW, et al eds. Defining Soil Quality for a Sustainable Environment[J]. SoilSci Soc A m,1994,35:3-21.
    [155]DONALD R, KAY B D, MILLER M.The effect of soil aggregate size on early shoot and root growth of maize (Zea mays L.)[J]. Plant and Soil,1987,103:251-259.
    [156]Dudal, R.1981. An evaluation of Conservation Needs, In R. P. C. Morgan Soil conservation, problems and prospects.J.Wiley and Sons, Chicnester, England, PP3-12.
    [157]Ellison W. D. Soil erosion studies Part[J]. Agricultural Engineer,1947,28:145-146.
    [158]Falconer K J. Fractal geometry[M]. John wiley and sons.1989:89-159.
    [159]Farres. P. J. and S. M. cousen. An Improved Method of Aggregate Stability Measurement Earth Surface Processes Landforms[J]. Soil Sci Soc,1989,10:321-329.
    [160]FitzPatrick E. Soils. Their formation, classification and distribution. Longman, New York[M] 1983.
    [161]Foster, G. R. Meyer, L. D. and Onstad, C. A. An erosion equation derived from basic erosion principles[J]. Trans. Of ASAE,1977,20(4):678-682.
    [162]Friesen J. P.. Fractal space and rock permeability implication [J]. Physical Review B-Condensed Matter,1987,38:2635-2638.
    [163]Germann P, Edwards WM, Owens LM.1984. Profiles of bromide and increased soil moisture after infiltration into soilswith macropore[J]. Soil Science Socienty of America Journal,48:237-244.
    [164]Green W. H. and Ampt G.. Studies of soil physics. Part I. The flow of air and water through soils[J]. Journal of the Agriculutural Society,1911,4:1-24.
    [165]Gussak V. B. A device for the rapid determination of erodibility of soils and some results of its application[J]. Abstract in soils and Frtilizes,1946, (10).
    [166]HAYNES R J, SWIFT R S. Stability of soil aggregates in relation to organic constituents and soil water content[J]. J Soil Science,1990,41:73-83.
    [167]Higgins, G. M. A. H, Kassam and L, Naiken,1982. Potential population supporting capacities of land in developing world project INT/72/p13. Food and Agriculture Organization, United Nations, Rome, Italy.
    [168]Hillel D. Application of soil physics[M]. New York:Academic Press,1980.
    [169]Horton R. E. The role of infiltration in the hydrologic cycle[J]. Transactions of American Geophysical Union,1933,14:446-460.
    [170]Kok. H. and D. K. Mc Cool. Quantifying Freeze/Thaw-in-duced Variability of Soil Strength[J]. Trans. ASAC.1990,33:501-511.
    [171]HUANG GUANG-HUA, ZHANG REN-DUO, HUANG QUAN-ZHONG. Modeling of soil water retention curve with a fractal method[J]. Pedosphere,2006,16(2):20-30.
    [172]Hudson, N. W. Soil Conservation[M]. BT Batsford, London, England 1976.
    [173]Hudson N. Soil Conservation[M]. A MES:Iowa State University Press,1995.
    [174]Kravchenko A. and Zhang R.. Estimation the soil water retention from particle-size distribution:a fractal approach[J]. Soil Science Society of America Journal,1998,62(3):171-179.
    [175]Katz AJ, Thompson A H. Fractal sand stonepores:implication for conductivity and pore formation[J]. Phys ReV Let 1985,54(12):1325-1328.
    [176]Kay, B. D.,1990:Rate of change of soil structure under different cropping systems[J]. Adv. Soil Sci.12:1-52.
    [177]Kok. H. and D. K. McCool. Quantifying Freeze/Thaw-in-duced Variability of Soil Strength[J]. Trans. A SAC.1990,33:501-511.
    [178]Kirkby M. J.. Hydrograph modeling strategies[A]. In Peel R., Chisholm M. and Haggett P. (eds) Precesses in Physical and Human Geography[C]. Heinemann, London,1975:69-90.
    [179]Lal. R. Erodibility and Erosion, in soil Erosion Research Methods.Wageningen[J]. The Netherlands,1990:144-161.
    [180]Laflen J M, Elliot W J, Simanton J R. WEPP soil erodibility experiments for rangeland and Cropland soils[J].J Soil and water Cons,1991,46(1):39-44.
    [181]Lison W.D.. Soil erosion studies-Part. Agracultural Engineering,1947,28:145-146.
    [182]Loch R J, Rosewell C J. laboratory methods or measurement of soil erodibilities factoers for the USLE, Aust[J]. Joumal of Soil Research,1992,30(2):233-248.
    [183]Lujan D.L.. Soil physical properties affecting soil erosion in tropical soils[J]. Lecture given at the college on soil physics, Trieste,3-21 March 2003.
    [184]Lutz, J. F. The Physic-chemical Properties of Soil Affecting Erosion. Mississippi State Coll[J]. Agr. Expt. Str. Bull.1934,212:1-45.
    [185]Luk, S. H. Effect of antecedent soil moisture content on rainwash erosion[M]. Catent,1985.
    [186]Middleton, H. E. Properties of Soils Which Influence Soil Erosion[J]. USDA Tech. Bull.1930,178: 16.
    [187]Morris C, Mooney SJ.2004. A high-resolution system for the quantification of preferential flow in undisturbed soil using observations of tracers[J]. Geoderma,118:133-143
    [188]Matin M.A., Pachepsky Y.A. and Perfect E.. Scaling, fractals and diversity in soils and ecohydrology[J]. Ecology modeling,2005,182:217-220.
    [189]Mbagwu J.S.C..Aggregate stability and soil degradation in the tropics, ecture given at the college on soil physics, Trieste,3-21 March 2003.
    [190]Mandel brot BB. Fractal:from chance and dimension. Sa Francisco:Free man,1977.
    [191]Michel R,Garrison S.1991. Fractal fragmentation, soil porosity and soil water properties. Theory[J]. Soil Sci. Soc.Am.J.,55:1231-1238.
    [192]Moore WC. A Dictionary of Geography [M]. London:Admn and Charles Black.1975.131.
    [193]Morgan RPC. Soil Erosion and Conservation (second edition) [M]. New York:John Wiley and Sons,1995,1-3.
    [194]Nearing M A. Foster G R, Lane L J, Finkner S C. A process-based soil erosion model for USDA-Water Erosion Prediction Project Technology [J]. Trans. ASAE.1989,32:1587-1593.
    [195]Nearing, M. A. and J. M. Bradford. Single waterdrop splash detachment and mechanical Properties of soils[J]. Soil Soc. Am.1985,49:547-552.
    [196]Pachepsky Y.A., Radcliffe D.E., and Selim H.M.. Bridging Scales in soil physics[J]. In: Pachepsky., Y.A., Radcliffe, D.E., Selim H.M.(Eds.), Scaling Methods in Soil Physics. CRC Press, Boca Raton,2003.
    [197]Pachepsky Ya A, Shcherbakov R. A., Korsunskaya L. P. Scaling of soil water retention using a fractal model[J]. Soil Science Society of America Journal,1995,159:99-104.
    [198]Peele, T. C. The Effect of Lime and Organic Matter on the Erodibility of Cecil Clay[J]. Soil Sci. Soc. Am. Proc.1938,3:289-295.
    [199]Pefect E., Mchaughlin N. B., Kay B. D., et al.. An improved fractal equation for the soil water retention curve[J]. Water Resources Research,1996,32:281-287.
    [200]Perfect E, Rasiah V, Kay B D.1992. Fractal dimensions of soil aggregate-size distributions calculated by number and mass [J]. Soil Sci. Soc. Am.J.,56:1407-1409.
    [201]Philip J. R.. The theory of infiltration. I. The infiltration equation and its solution[J]. Soil Science, 1957,83:345-357.
    [202]Philip J. R.. Hillslope infiltration:divergent and convergent slopes[J]. Water Resources Research, 1991,27:1035-1040.
    [203]Pimentel Overview world Soil Erosion and Conservation[M]. Edited by D Pimentel, Cambridge University Press, Cambridge,1993:1-5.
    [204]Powers RF, Tiarks AE,Boyle JR. Assessing soil quality:practicable standards for sustainable forest productivity in the United States. In:Adams MB, Ramakrishna K, Davidson EA eds. The Contribution of Soil Science to the Development and Implementation of Criterion and Indicators of Sustainable Forest Management[J]. Soil Sci Soc A m,1998,53:53-80.
    [205]Radulovich R, Solorzano E, Sollins P.1989. Soilmacropore size distribution from water breakthrough curves[J]. Soil Science Society of Am erica Journal,53:556-559.
    [206]Reichert J. M., et al. Aggregate stability and rain-impacted sheet erosion of air-dried and rewetted clayey surface soils under intense rain[J].Soil Science.1994,158:159-169.
    [207]Rasiah V, Kay B D,Perfect E.1993. New mass-based modelFor estimating fractal dimensions of soil aggregates [J]. Soil Sci. Soc. Am. J.,57:891-895.
    [208]Rieu M, Sposito G. Fractal fragmentation, soil porosity and soil water properties Ⅱ. Application[J]. Soil. Sci. Am J.,1991,55:1231-1238.
    [209]Salako F K, Hauser S. Influence of different fallow management systems on stability of soil aggregates in Southern Nigeria[J]. Communications in Soil Science and Plant Analysis,2001,32: 1483-1498.
    [210]Salako F.K.. Susceptibility of coarse-textured soils to soil erosion by water in the tropic. Lecture given at the college on soil physics, Trieste,3-21 March 2003.
    [211]Scott W T, Stephen W W.1989. Application of fractal mathematics to soil water retention estimation [J]. Soil Sci. Soc Am. J.,53:987-996.
    [212]Scott W T, Stephen W W.1992. Fractal scaling of soil particle Size distributions:Analysis and limitation [J]. Soil Sci. Soc Am. J.,56:362-369.
    [213]Scoging H. M. and Thornes J. B.. Infiltration Characteristics in a Semiarid Environment[M]. IAHS Publication NO.128, Wallingford, UK,1982:159-168.
    [214]Shen, H. W. and Li. R. M. Rainfall effect on sheet flow over smooth surface, Proc. Am.
    [215]Skaggs R. W., Huggins L. E., Monke E. J. et al.. Experimental evaluation of infiltration equations[J]. Traus ASAE,1969,12(6):822-828.
    [216]Smith R. E. and Parlange J. Y.. A parameter efficient infiltration model[J]. Water Resources Research,1978,14:533-538.
    [217]Surendra K. M., et al.. Comparison of infiltration models[J]. Hydrology Proc,2003,17(26): 2629-2652
    [218]The soil research institute in Nanjing. Soil physicochemistry analysis (in Chinese)[M]. Shanghai: Shanghai Science & echnology Press,1978.
    [219]Turcotte D L. Fractals and fragmentation[J]. Journal of Geophysical Research,1986,91(B2): 1921-1926.
    [220]Turcotte D L. Fractals in geology and geophysics[J]. Pure Application Geophysics,1989,131: 171-1961.
    [221]Taguas F J, Martin MA, Perfect E. Simulation and testing of self-similarity structures for soil particle-size distribution using iterated function systems[J]. Geoderma,1999,88:191-203.
    [222]Tyler S. W., Wheatcraft S. W.. Fractal processes in soil water relation[J]. Water Resources Research,1990,26(5):1047-1054.
    [223]Tyler S. W. and Wheatcraft S. W.. Application of fractal mathematics to soil water retention estimation[J]. Soil Science Society of America Journal,1989,53:987-996.
    [224]Tyler S W, Wheatcraft S W. Fractal scaling of soil particle size distributions:Analysis and limitations[J]. Soil Science Society of America Journal,1992,56:362-369.
    [225]USDA-Water Erosion Prediction Project. NSERL No.2. National Soil Erosion Research Laboratory[Z]. USDA-ARS.West Lafayette,47907.
    [226]Vogel H J, Roth K. A new approach for determining effective soil hydraulic functions[J]. European Journal of Soil Science,1998,49:547-556.
    [227]Waston. M. Soil Strength. Slope and Rainfall Intensity Effects Interrill Erosion[J]. Transactions of The ASAE.1986.29:98-102.
    [228]Williams J R and Renard. EPIC-A new method for assessing erosion's effect on soil productivity [J]. Jounral of Soil and Water Conversation,1983,38(5):381-383.
    [229]Wischmeier,W.H. A soil Erodibility Nomograph for Farmland and Construction Sites[J]. J. of Soil and Water Conservation 1971,26:189-193.
    [230]Woodburn, R and Kozachyn, J. A Study of Relative Erodibility of a Group of Mississippi Gully Soils[J].Trans.A m.Geophys. nion.1956,37:749-753.
    [231]Woolhiser D A, Liggett J A. Unsteady one-dimensional flow over a plane-the rising hyrography[J]. Water Resoyr Res,1967,3 (3):753-771.
    [232]Zibilske L M, Bradford J M, Smart J R. Conservation tillage induced changes in organic carbon, total nit rogen and available phosphorus in as-arid alkaline subt ropical soil[J]. Soil & Tillage Research,2002,66:153-163.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700