账户: 密码:
强扰作用下砂堆模型及崩塌滑坡动力学特性研究
详细信息    本馆镜像全文|  推荐本文 | 收藏本文 |   获取CNKI官网全文
摘要
自组织临界性理论是当代非线性物理学中的前沿理论。是为解释无序的、非线性复杂系统的行为特征提出的新概念。砂堆模型则是研究自组织临界崩滑动力学理论的典型范例,砂堆可以看成一个带有局域相互作用和广延空间自由度的耗散动力系统,在一个微小的扰动作用下将触发连锁反应并导致灾变。因此,本文在“5.12”汶川地震灾区现场调研的基础上,通过砂堆模型离心试验,采用颗粒流方法、三维离散元法数值模拟等技术,在自组织临界性理论概念框架下,对强扰作用下崩塌滑坡动力学特性进行了解释,并围绕强扰作用下崩塌滑坡规模和影响范围等特征开展了一些基础性的研究工作,为铁路、公路边(滑)坡在高烈度地震区的防治工程提供科学依据。主要工作及研究结论如下:
     (1)对“5.12”汶川地震诱发的次生山地灾害类型、空间分布、影响因素、主要特征等进行了系统的分析论述。其次生山地灾害类型主要有崩塌、碎屑流以及滑坡,还有它们堵江形成的堰塞湖以及引发的泥石流,各灾种之间存在一定的相互转化关系;次生山地灾害主要沿龙门山地震断裂带呈带状分布和沿河流水系成线状分布特点,分布具有明显的上盘效应,发震断裂上盘发育密度明显大于下盘。影响因素除主震诱发因素外,还受到构造断裂带,岩性、地形地貌等其他因素的控制作用。
     (2)对国道213线都江堰至映秀段以及水磨支线公路边坡崩滑灾害工点开展了详细的调查工作。对公路边(滑)坡的崩滑成灾模式,崩滑作用机理以及崩滑动力学特性进行了分析研究。崩滑成灾模式主要分为岩质边坡崩滑和基覆边坡(基岩与厚覆盖层)崩滑。其中岩质边坡崩滑包括崩滑性滑坡、崩滑、落石3种成灾模式;基覆边坡包括崩坡积体、残坡积体、滑坡堆积体、冲洪积体崩滑4种成灾模式。从崩滑规模和深度出发认为高烈度地震区岩土体崩塌滑坡呈现明显的自组织临界崩滑动力学特性。
     (3)在课题组前期砂堆实验的基础上,基于拟静力法思想,开展了3种粒径级配的大尺度砂堆模型实验,模拟的实际边(滑)坡高度达到了20.4m,超过了国内外开展的所有砂堆模型实验的尺度标准。实验分别模拟了3种颗粒级配砂堆在3种扰动强度作用下的崩滑现象,扰动强度通过改变不同的底坡倾角来实现,得到了3种不同的崩滑动力学特性:①颗粒均匀的0.5~1.0mm砂堆在变倾角1.5°、3.0°、6.0°时崩滑规模呈现准周期分布;②颗粒均匀的8.0~10.0mm砂堆和非均匀系数φ=3.10的砂堆在变倾角1.5°时崩滑规模服从负幂律分布,呈现自组织临界崩滑动力学特性;③颗粒均匀的8.0~10.0mm砂堆和非均匀系数φ=3.10的砂堆在变倾角3.0°、6.0°时崩滑规模服从正态分布。
     (4)建立了基于颗粒流理论的PFC2D数值计算模型,对边(滑)坡在不同强扰作用下的崩滑规摸进行了研究。分析了相同尺度的颗粒体系在不同强扰作用下的崩滑规模,以及不同尺度分布颗粒体系在同一强扰作用下的崩滑规模。结果表明:同一尺度分布颗粒体系的崩滑规模随扰动强度增加整体呈现上升趋势,不同尺度分布颗粒体系在同一扰动强度作用下的崩滑规模随粒径范围增大整体呈减小趋势。数值模拟结果与离心模型试验结果具有较好的一致性。
     (5)运用三维离散元法对重力作用下边(滑)坡的崩滑破坏过程进行了模拟。分析了刚度系数、时间步、阻尼系数、摩擦系数等介质特征参数对崩塌滑坡范围的影响,计算结果表明:摩擦系数是影响边坡崩滑稳定的重要因素,体系破坏后的堆积形态与单元的大小形态关系非常密切,单元越大,体系崩滑破坏后在底部的堆积影响范围越大;相反,单元越小,体系崩滑破坏后在底部的堆积影响范围越小。认为强扰作用下的铁路、公路崩塌滑坡防治工程应按重力作用影响进行考虑,而崩塌落石则需考虑水平地震力的影响。
     (6)建立了边(滑)坡的崩滑规模灾势评估模型,并根据该模型,完成了川藏公路通麦至105道班沿线各典型边(滑)坡工点在小、中、大震作用下崩塌规模的计算评估。
Self-organized criticality theory is in the forefront of the contemporary theory of nonlinear physics, which was put forward is to explain the disorder, the nonlinear behavior of complex systems. Sandpile model is the typical example of studying dynamical theory of self-organized criticality, and it can be seen as an interaction with the local area and wide space extension of the dissipative degrees of freedom dynamic system, a small disturbance will trigger the action of knock-on effect and lead to disaster. Therefore, on the basis of field research of the "5.12" Wenchuan earthquake disaster area, this article through the sand model centrifuge tests, using numerical simulation technology of particle flow method and three-dimensional discrete element method, under the framework of the concept of self-organized criticality theory, explained the landslide dynamiacal charactertics of sand model and slope under strong disturbance, and carried out a number of basic research work focuing on the landslide features such as the scale and scope of slope, for the railway, road slope at high intensity earthquake zone to provide scientific basis for prevention and control engineering. Major work and research findings are as follows:
     (1) The "5.12" Wenchuan Earthquake-induced secondary mountain hazards types, spatial distribution, influencing factors; the main characteristics were systematically analyzed and discussed. Main types of secondary mountain hazards are avalanches, debris flows and landslides, as well as they dammed lake formed by damming, as well as mudslides triggered by various kinds of disaster exists between the relationship of mutual transformation; secondary disasters, mainly along the Longmen Shan mountain earthquake fault zone and along the river flow was zonal distribution system into a linear distribution of the characteristics, distribution has obvious effects on the plate, the plate developed seismogenic fault density was significantly greater than the footwall. The secondary mountain hazards were controlled by the main factors of earthquake, but also by the tectonic fault, lithology, landforms, and other factors.
     (2) The article conducted a detailed investigation about landslide hazard of State Highway 213 from Dujiangyan to Yingxiu and Water Mill feeder. The landslide mode, landslide mechanism and landslide dynamiacal charactertics have been analyzed. Landslide disaster mode can be divided into rock slope landslide and bedrock and thick cover layer Landslide, which rock slope landslide include slump of landslides, landslides and falling rock three kinds of disaster mode; bedrock and thick cover layer landslide including the debris deposit, dilapidated and residual soil, accumulation landslide and diluvial deposit four kinds of disaster mode. Departure from the landslide scale and depth of slope, the law of landslide of slope show clear self-organized criticality dynamiacal charactertics.
     (3) On the basis of prophase sandpile experiment, based on quasi-static force method of thought, carried out three kinds of particle size grading of large-scale sandpile model experiments. According to principle of centrifugal test, the actual slope height reached 20.4m, more than all of the measure of the standard of sandpile model experiments carried ou at home and abroad. Experiments simulated landslide phenomenon of three kinds of particle size distribution sandpile under three kinds of disturbance intensity, disturbances of different intensity were achieved by changing the bottom slope angle, got three different dynamiacal charactertics of landslide:①0.5~1.0mm uniform particle sandpile, landslide scale show a quasi-periodic distribution when the inclination were changed 1.5°,3.0°and 6.0°;②8.0~10.0mm uniform sandpile and non-uniform sandpile ofΦ=3.10, landslide scale subject to a negative power-law distribution, showing self-organized critical landslide dynamiacal charactertics whenis the inclination were changed 1.5°;③8.0-10.0mm uniform sandpile and non-uniform sandpile of = 3.10, landslide scale show a normal distribution, when the inclination were changed 3.0°and 6.0°.
     (4) PFC2D numerical model was established based on the theory of granular flow and landslide scale of slope were studied under the action of strong disturbance. The numerical model analysised of the landslide scales of the same particle size distribution system under the action of different strong disturbing, and different particle size distribution system under the action of the same strong disturbing. The results showed that:the landslide scale of the same particle size distribution system, increased upward trend with the disturbance intensity to increase, but different particle size distribution system under the action of the same strong disturbing, reduced trend with the size of the particle to increase. Numerical simulation results with centrifuge model test results have good consistency.
     (5) The landslide failure processes were simulated under gravity by using three-dimensional discrete element method. The stiffness coefficient, time step, damping coefficient, friction coefficient etc. characteristic parameters to impact on landslide scope of slope were analysised. Calculation results show that:the friction coefficient is an important factor to slope stability, the deposit shapes of slope after failure has a very close relationship with cell size, the larger particle unit, the heap greater sphere of influence after failure; On the contrary, the smaller the unit, the heap smaller sphere of influence. At last, under the action of strong disturbance, the railway, road slope landslide prevention engineering should take into account the effects of gravity, while the collapse of falling rock should consider the impact of horizontal seismic force.
     (6) Finally, this article established a potential disaster assessment model of landslide scale of slope, and according to the model, the author completed the calculation and evaluation of typical landslides of Sichuan-Tibet road from Tongmai to 105 Maintenance under small, medium and large earthquake
引文
[1]徐永年.崩塌土流动化机理及泥石流冲淤特性的实验研究[D],中国水利水电科学研究院博士学位论文,2001
    [2]钟敦伦等.金沙江下游四川片泥石流、滑坡普查报告[R],1991
    [3]吴积善等.泥石流及其综合治理[M],北京:科学出版社,1993
    [4]曹毅然等编.国土资源部实物地质资料中心集刊.第15号[M],北京:地质出版社,2002
    [5]中国灾害防御协会铁道分会,中国铁道学会水工水文专业委员会.中国铁路自然灾害及其防治[M].中国铁道出版社,2000:5-27
    [6]Yao Lingkan,Huang Yuan,Lu Yang. Self-organized criticality and its application in the slope disasters under gravity[J].Science in China Ser.E Technological Sciences,2004,46 (1):10-21
    [7]何振宁.区域工程地质与铁路选线[M].中国铁道出版社,2004:3-37
    [8]崔鹏,林勇明,蒋忠信.山区道路泥石流滑坡活动特征与分布规律[J].公路,2007,(6):77-82
    [9]Bak P, Tang C, Wiesenfeld K. Self-organized criticality:an explanation of 1/fnoise.Physical Review Letters,1987,59(4):381~384
    [10]Bak P, Tang C, Wiesenfeld K. Self-organized criticality.Physical Review A,1988,38(1):364~374
    [11]Bak P, Chen K. Self-organized criticality.Scientific American,1991(1): 26-33
    [12]Maxim Vergeles.Mean-field theory of hot sandpiles[J].Physical Review E,1997,55(5):6264-6265
    [13]Luis A.Nunes Amaral, Kent Baekgaard Lauritsen.Energy avalanches in a rice-pile model [J]. Physica A,1996, (231):608-614
    [14]M.Bengrine,A.Benyoussef,F.Mhirech, S.D.Zhang.Disorder-induced phase transition in a one-dimensional model of rice pile[J].Physica A,1999,(272):1-11
    [15]S.Liibeck,K.D.Usadel.Numeric determination of the avalanche exponents of the Bak-Tang-Wiesenfeld model[J].Physical Review E,1997,55(4):4095-4099
    [16]Shu-Dong Zhang.On the universality of a one-dimensional model of rice pile[J].Physics Letter A,1997,(233):317-322
    [17]S.S.Manna.Critical exponents of the sand pile models in two dimensions[J].Physica A,1991,(179):249-268
    [18]L.Pietronero,A.Vespignani, S.Zapperi.Renormalization scheme for self-organized criticality in sandpile models[J].Physical Review Letters,1994,72(11):1690-1693
    [19]Chao Tang,Per Bak.Critical exponents and scaling relations for self-organized critical phenomena[J].Physical Review Letters,1988, 60(23):2347-2350
    [20]Yi-Cheng Zhang.Scaling theory of self-organized criticality [J]. Physical Review Letters,1989,63(5):470-473
    [21]Asa Ben-Hur,Ofer Biham.Universality in sandpile models[J].Physical Review E,1996,53 (2):R1317-R1320
    [22]Alessandro Vespignani, Stefano Zapperi, Luciano Pietronero. Renormalization approach to the self-organized critical behavior of sandpile models[J].Physical Review E,1995,51 (3):1711-1724
    [23]Sergei Maslov, Maya Paczuski.Scaling theory of depinning in the Sneppen model [J]. Physical Review E,1994,50(2):R643-R646
    [24]S.D.Edney,P.A.Robinson, D.Chisholm.Scaling exponents of sandpile-type models of self-organized criticality[J].Physical Review E,1998,58(5):5395-5402
    [25]Luis A.Nunes, Kent Baekgaard Lauritsen.Universality classes for rice-pile models [J]. Physical Review E,1997,56(1):231-234
    [26]Maria de Sousa Vieira.Simple deterministic self-organized critical system [J]. Physical Review E,2000,61(6):R6056-R6059
    [27]Maria Markosova.Universality classes for the ricepile model with absorbing properties [J]. Physical Review E,2000,61(1):253-260
    [28]Stefan Hergarten, Horst J.Neugebauer.Self-organized criticality in two-variable models [J]. Physical Review E,2000,61(3):2382-2385
    [29]S.N:Dorogovtsev, J.F.F.Mendes, Yu.g.Pogorelov.Bak-Sneppen model near zero dimension [J]. Physical Review E,2000,62(1):295-298
    [30]Terence Hwa,Mehran Kardar.Dissipative transport in open system:an investigation of'self-organized criticality[J].Physical Review Letters,1989,62(16):1813-1816
    [31]Alexei Vazquez,Oscar Sotolongo-Costa.Universality classes in the random-storage sandpile model[J].Physical Review E,2000,61(1): 944-947
    [32]S.Liibeck.Large-scale simulations of the Zhang sandpile model [J]. Physical Review E,1997,56 (2):1590-1594
    [33]Hiizu Nakanishi,Kim Sneppen.Universal versus drive-dependent exponents for sandpile models[J].Physical Review E,1997,55(4):
    4012-4016
    [34]S.S.Manna.Critical exponents of the sand pile models in two dimensions[J].Physica A,1991,(179):249-268
    [35]Stefano Lise,Maya Paczuski.Self-organized criticality and universality in a noncom-servative earthquake model[J].Physical Review E,2001, 63(3):036111-036115
    [36]Albert Diaz-Guilera.Nois, dynamics of self-organized criticality phenomena [J]. Physical Review A,1992,45(12):8551-8558
    [37]Chao Tang, Per Bak.Mean-field theory of self-organized critical phenomena [J]. Jounal of Statistical Physics,1988,51(5/6):797-802
    [38]Kim Christensen, Zeev Olami.Sandpile models with and without an underlying spatial structure [J]. Physical Review E,1993,48(5): 3361-3372
    [39]Henrik Flyvbjerg,Kim Sneppen, Per Bak.Mean field theory for a simple model of evolution[J].Physical Review Letters,1993,71(24):4087-4090
    [40]Stefano Zapperi, Kent Baekgaard Lauritssen, Eugene Stanley. Self-organized branching processes:mean-field theory for avalanches[J].Physical Review Letters,1995,75(22):4071-4074
    [41]Makoto Katori,Hirotsugu Kobayashi. Mean-field theory of avalanches in self-organized critical states[J].Physica A,1996,(229):461-477
    [42]Maxim Vergeles,Amos Maritan, Jayanth R.Banavar.Mean-field theory of sandpile [J]. Physical Review E,1997,55(2):1998-2000
    [43]J. M. Carlson, J.T.Chayes,E.R.Grannan,G.H. Swindle. Self-organized criticality in sandpiles:nature of critical phenomenon[J].Physical Review A,1990,42(4):2467-2470
    [44]S.T.R.Pinho,C.P.C.Prado,S.R.Salinas.Complex behavior in one-dimensional sandpile models[J].Physical Review E,1997,55(3): 2159-2165
    [45]Leo P.Kadanoff,Sidney R.Nagel,Lei Wu, Su-min Zhou.Scaling and universality in avalanches[J]. Physical Review A,1989,39(12): 6524-6537
    [46]M.De Menech,A.L.Stella,C.Tebaldi.Rare events and breakdown of simple scaling in the Abelian sandpile model[J].Physical Review E,1998,58(3):R2677-R2680
    [47]Kim Christensen,Zeev Olami, Per Bak.Deterministic 1/f noise in nonconservative models of self-organized criticality[J].Physical Review Letters,1992,68(16):2417-2420
    [48]Albert Diaz-Guilera.Noise and dynamics of self-organized criticality phenomena [J]. Physical Review A,1992,45(12):8551-8558
    [49]Henrik Jeldtoft Jensen.Lattice gas as a model of 1/f noise[J].Physical Review Letters,1990,64(26):3103-3106
    [50]B.Kaulakys, T.Meskauskas.Modeling 1/f noise [J]. Physical Review E,1998,58(6):7013-7019
    [51]G.Grinstein, D.H.Lee, Subir Sachdev.Conservation laws, Anisotropy, and'self-organized criticality in noisy nonequilibrium systems [J]. Physical Review Letters,1990,64(16):1927-1930
    [52]V.N.Skokov,A.V.Reshetnikov,V.P.Koverda,A.V.Vinogradov.Self-rga nized criticality and 1/f noise at interacting nonequilibrium phase transitions[J].Physica A,2000,(293):1-12
    [53]Henrik Flyvbjerg.Simplest possible self-organized critical system [J]. Physical Review Letters,1996,76(6):940-943
    [54]Hans-Henrik Stolum.Flutuations at the self-organized critical states[J].Physical Review E,1997,56(6):6710-6718
    [55]Kurt Wiesenfeld,James Theiler,Bruce McNamara.Self-organized criticality in a deter-ministic automaton[J].Physical Review Letters, 1990,65(8):949-952
    [56]A.Alan Middleton, Chao Tang.Self-organized criticality in nonconserved systems [J]. Physical Review Letters,1995,74(5): 742-745
    [57]Per Bak, Stefan Boettcher.Self-organized criticality and Punctuated equilibria [J]. Physica D,1997,(107):143-150
    [58]Per Bak,Kim Sneppen.Punctuated equilibrium and criticality in a simple model of evolution[J].Physical Review Letters,1993,71(24): 4083-4086
    [59]Emma Montevecchi,Attilio L.Stella.Boundary spatiotemporal correlations in a self-organized critical model of punctuated equilibrium[J].Physical Review E,2000,61(1):293-297
    [60]C.Adami.Selff-organized criticality in living systems[J].Physics Letters A,1995, (203):29-32
    [61]Tomoko Tsuchhiya,Makoto Katori.Proof of breaking of self-organized criticality in a nonconservative Abelian sandpile model[J].Physical Review E.2000,61(2):1183-1188
    [62]Per Bak.Self-organized criticality in non-conservative models [J]. Physica A,1992, (191):41-46
    [63]Peyman Ghaffari, Stefano Lise, Henrik Jeldtoft Jensen. Nonconservative sandpile models[J].Physical Review E,1997,56(6):
    6702-6709
    [64]E.N.Miranda,H.J.Herrmann.Self-organized criticality with disorder and frustration [J].Physica A,1991,175:339-344
    [65]Sergei Maslov, Yi-Cheng Zhang.Self-organized critical directed percolation [J]. Physica A,1996,(223):1-6
    [66]Horacio Ceva, Roberto P.J.Perazzo.From self-organized criticality to first-order-like behavior:A new type of percolation transition [J]. Physical Review E,1993,48(1):157-160
    [67]A.M.Alencar, J.S.Andrade, L.S.Lucena.Self-organized percolation [J]. Physical Review E,1997,56(3):R2379-R2382
    [68]S.Clar, B.Drossel, K.Schenk, F.Schwabl.Self-organized criticality in forest-fire models [J]. Physica A,1999,(266):153-159
    [69]Barbara Drossel,Siegfried Clar,Franz Schwabl.Crossover from percolation to self-organized criticality [J]. Physical Review E,1994, 50(4):R2399-R2402
    [70]Kim Christensen,Henrik Flyvbjerg,Zeev Olami.Self-organized critical forest-fire model:mean-field theory and simulation results in 1 to 6 dimensions[J].Physical Review Letters,1993,71(17):2737-2740
    [71]C.Vanderzande, F.Daerden.Dissipative Abelian sandpiles and random walks [J]. Physical Review E,2001,63(3):030301-030304
    [72]K.I.Hopcraft, E.Jakeman, R.M.Tanner.Characterization of structural reorganization in rice piles [J]. Physical Review E,2001,64(1): 016116-016125
    [73]Eric Bonabeau. Scale-Free Networks[J].Journal of the Physical Society of Japan,64(1):327-328
    [74]R.R.shcherbakov,V.I.V.Papoyan,A.Mpovolotsky.Critical dynamics of self-organizing Eulerian walkers[J].Physical Review E,1997,55(3): 3686-3688
    [75]R.Vilela Mendes.Characterizing self-organization and coevolution by ergodic invariants [J].Physica A,2000,276:550-571
    [76]Maya Paczuski, Sergei Maslov, Per Bak.Avalanche dynamics in evolution, growth, and depinning models [J]. Physical Review E,1996,53(1):414-443
    [77]E.M.Blanter, M.G.Shnirman. Simple hierachical systems, Stability, self-organized criticality, and catastrophic behavior [J]. Physical Review E,1997,55(6):6397-6403
    [78]J.Rosendahl.M.Vekic,J.E.Rutledge.Predictability of large avalanches on a sandpile[J].Physical Review Letters,1994,73(4):537-540
    [79]Peter Bantay and Imre M.Janosi.Avalanche Dynamics from anomalous diffusion.Physical Review Letters,1992,68(13):2058-2061
    [80]J.E.S, Socolar,G.Grinstein. On self-organized criticality in nonconserving systems [J]. Physical Review E,1993,47(4):2366-2376
    [81]N.Vandewalle,H.Puyvelde,M.Ausloos.Self-organized criticality can emerge even if the range of interactions is infinite[J].Physical Review E,1998,57(1):1167-1170
    [82]L.Pietronero, P.Tartaglia, Y.C.Zhang.Theoretical studies of self-organized criticality [J]. Physical A,1991,(173):22-44
    [83]Sergei Maslov,Maya Paczuski,Per Bak.Avalanches and 1/f noise in evolution and growth models[J]. Physical Review Letters,1994, 73(16):2162-2165
    [84]Alvaro Corral,Albert Diaz-Guilera.Symmetries and fixed point stability of stochastic differential equations modeling self-organized self-organized criticality[J].Physical Review E,1997,55(3):2434-2445
    [85]J.M.Carlson, J.T.Chayes.E.R.Grannan,G.H.Swindle.Self-organized criticality and singular diffusion[J].Physical Review Letters,1990, 65(20):2547-2550
    [86]S.P.Obukhov.Self-organized criticality:goldstone modes and their interactions [J]. Physical Review Letters,1990,65(12):1395-1398
    [87]Maria de Sousa Vieia.Are avalanches in sandpiles a chaotic phenomenon[J].Physica A,2004,340:559-565
    [88]B.Gaveau, Moreau, J.T.oth. Scenarios for self-Organized Criticality in Dynamical Systems [J].Open Sys. & Information Dyn,2000, (7):297-308
    [89]Bak P, Tang C.Earthquakcs as a self-organized critical phenomenon [J]. J.G.R,1989,94(B11):15635-15637
    [90]Christopher Cramer Barton, P. R. La Pointe. Fractals in the Earth Sciences[M].Kluwer Academic Publishers,1995:110-210
    [91]S.Hainzl, G.Zoller, J.Kurths, J.Zschau. Seismic quiescence as an indicator for earth-quakes in a system of self-organized criticality[J].Geophys Res Lett,2000,27(5):597-600
    [92]Z.Olami, H.J.S Feder, K Christensen. Self-organized criticaliy in a continious, norr conservative cellular alltomaton modelling earthquakes [J]. Phy.Rhys.Rev.Lett,1992, (68):1244-1247
    [93]J.M.Carlson, J.T.Chayes.E.R.Grannan,G.H. Swindle.Self-organized criticality and singular diffusion [J].Physical Review Letters,1990, 65(20):2547-2550
    [94]S.P.Obukhov.Self-organized criticality:goldstone modes and their interactions [J]. Physical Review Letters,1990,65(12):1395-1398
    [95]D.D'Ambrosio,S.Di.Gregorio, S.Gabriele, et al. A Cellular Automata Model for Soil Erosion by Water [J].Phys.Chem. Earth, 2001,26(1):33-39
    [96]Bruce D,Malamud,Gleb Morein,Donald L, Turcotte.Forest Fires:An Example of Self-Organized Critical Behavior[J].Science,1998, (281):1840-1841
    [97]Donald L Turcotte.Self-Organized Criticality [J].Rep.Prog.Phys. 1999,(62):1377-1429
    [98]Johansen A.Spatio-temporal self-organization in a model of disease spreading [J]. Physica D,1994,(78):186-193
    [99]Rhodes C J, Anderson RM. Power laws governing epidemics in isolated populations [J]. Nature,1996,381(6583):600-602
    [100]Schenk K,Drossel B,Clar S,Schwabl F. Finite-size effects in the self-organized critical forest-fire model[J].J Eur Phys,2000,(15): 177-185
    [101]Clar S,Drossel B,Schwabl F. Scaling laws and simulation results for the self-organized critical forest-fire model[J].Phys Rev E,1994,(50): 1009-1018
    [102]Drossel B,et al.Self-Organized Critical Forest Fire Model[J].Phys Rev Lett,1992,69(11):1629-1992
    [103]Drossel B, Schwalb F. Forest-fire model with immune trees [J]. Physica A,1993,199(2):183-197
    [104]Albano E. V.Spreading analysis and finite-size scaling study of the critical behavior of a forest fire model with immune trees[J].Physica A,1995,(216):213-226
    [105]Biham O,Middleton A A,Levine D.Self-organization and dynamical transition in traffic-flow models[J].Phys Rev,1992,(A46):6124-6127
    [106]Hard J,Pomeau.Y, de. Pazzis. O. Time Evolution of a Two dimension Model System [J]. Jounal of Mathematic Physics,1973,(14):1746-1759
    [107]Scheidegger A E.On prediction of the reach and veiocity of catastrophic landslides [J]. Rock Mechancis,1973, (5):231-236
    [108]Donald L Turcotte,Bruce D Malamud.Landslides forest fires,and earthquakes examples of self-organized critical behavior[J].Physica A,2004,(340):580-589
    [109]Giusebbe Consolini. Paola De Michelis. A revised forest-fire cellular automaton for the nonlinear dynamics of the Earth's magnetotail [J].
    Journal of Atmospheric and Solar-Terrestrial Physics,2001,(63): 1371-1377
    [110]L.da Silva,A.R.R. Papa.A.M.C. de Souza[J].Phys. Lett. A,1998, (242):343
    [111]Crosby N,Vilmer N,Lund N,Sunyaev R. Astron[J].Astrophys.1998, (334):299
    [112]A.Bershadskii, K.R. powerful X-ray flares, Sreenivasan. Multiscale self-organized criticality and Eur[J].Phys. J. B,2003,3(5):513-515
    [113]L.de Arcangelisa, H.J.Herrmannb. Self-organized criticality on small world networks[J].Physica A,2002,(308):545-549
    [114]J.C. Sprott.Competition with evolution in ecology and finance [J]. Physics Letters A,2-004,(325):329-333
    [115]Per Bak,Kan Chen, Jose Scheinkman and Michael Woodford. Aggregate Fluctuations from Independent Sectoral Shocks:Self-Organized Criticality in a Model of Production and Inventory Dynamics[D]. working paper,1992:21-111
    [116]陈嵘,艾南山,李后强.地貌发育与汇流的自组织临界性[J].水土保持学报,1993,7(4):9-12
    [117]罗德军,艾南山,李后强.泥石流暴发的自组织临界现象[J].山地研究,1995,13(4):213-218
    [118]王裕宜,詹钱登,陈晓清,等.泥石流体的应力应变自组织临界特性[J].科学通报,2003,48(9):976-980
    [119]安镇文.地震孕育过程的物理学研究展望[J].国际地震动态,1999,(5):12-15
    [120]张书东,黄祖洽.地震和地震预报理论研究中的几个问题[J].物理,1997,26(7):416-422
    [121]宋卫国,汪秉宏,舒立福.自组织临界性与森林火灾系统的宏观规律性[J].中国科学院研究生院学报,2003,20(2):205-211
    [122]曹一家,江全元,丁理杰.电力系统大停电的自组织临界现象[M].电网技术,2005,29(15):1-5
    [123]鲁宗相.电网复杂性及大停电事故的可靠性研究[J].电力系统自动化,2005,29(12):93-97
    [124]于群,郭剑波.电网停电事故的自组织临界性及其极值分析[J].电力系统自动化,2007,31(3):1-3,90
    [125]夏德明,梅生伟,侯云鹤.基于OTS的停电模型及其自组织临界性分析[J].电力系统自动化,2007,31(12):12-18
    [126]邱秀梅,王连国.断层采动型突水自组织临界特性研究[J].山东科技大学学报(自然科学版),2002,21(1):59-61
    [127]许强,黄润秋.岩石破裂过程的自组织临界特征初探[J].地质灾害与环境保护,1996,7(1):25-30
    [128]尹光志,代高飞,万玲,等.岩石微裂纹演化的分岔混沌与自组织特征[J].岩石力学与工程学报,2002,21(5):635-639
    [129]张玉海,郭治安.客运模型自组织临界性的研究[J].西北建筑工程学院学报,1996,(3):12-17
    [130]汪秉宏,毛丹,王雷,等.交通流中的自组织临界性研究[J].广西师范大学学报(自然科学版),2002,20(1):45-51
    [131]於崇文.地质系统的复杂性[M],北京:地质出版社,2003:93-140
    [132]史玲娜,王宗笠.自组织现象的热力学分析[J].四川大学学报(自然科学版),2004,41(6):1197-1200
    [133]韩瑛,佟天波,刘天华.自组织临界性一维砂堆模型中微观态的等几率假设[J].辽宁大学学报,1997,24(3):69-74.
    [134]童培庆.自组织临界现象的计算机模拟[J].南京师大学报(自然科学版),1994,17(2):26-29
    [135]周海平,蔡绍洪,王春香.含崩塌概率的一维砂堆模型的自组织临界性[J].物理学报,2006,55(7):3356-3359
    [136]许强,黄润秋.岩石破裂过程的自组织临界特征初探[J].地质灾害与环境保护,1996,7(1):25-30.
    [137]YAO Lingkan, QI Ying. Fractal characteristics of gravity landform and its SOC mechanism [J].Wuhan University Journal of Natural Sciences.2007,12(4):577-768.
    [138]艾南山,侯文贵.流域演化动力学的初步研究[J].中国地质灾害与防治学报,1993,3:26-34
    [139]李后强,艾南山,苟兴华.段家河流域泥石流发育的渗流模型[J].中国地质灾害与防治学报,1993,4(3):35-41
    [140]罗德军,艾南山,李后强.泥石流暴发的自组织临界性[J].山地研究,1995,13(4):213-218
    [141]艾南山,陈嵘,李后强.泥石流沟形态的数量分布[A].海峡两岸山地灾害与环境保育研究[C]:第一卷.成都:四川科学技术出版社,1998
    [142]许强,黄润秋.地质灾害发生频率的幂律规则[J].成都理工学院学报,1997,24(增刊):91-96
    [143]吴忠良.自组织临界性与地震预测[J].中国地震,1998,14(4):1-10
    [144]孙业志,吴爱祥,黎剑华.饱和散体液化的自组织临界性[J].岩石力学与工程学报,2002,21(11):1724-1728
    [145]江见鲸,徐志胜,等编著.防灾减灾工程学[M],北京:机械工业出版社,2005
    [146]黄润秋.汶川8.0级地震触发崩滑灾害机制及其地质力学模式[J],岩石力学与工程学报,2009,28(6):1239-1249
    [147]黄润秋,李为乐.汶川地震触发崩塌滑坡数量及其密度特征分析[J],地质灾害与环境保护2009,20(3):1-7
    [148]刘天翔,杨雪莲,周永江等.“5.12”汶川大地震诱发边坡地质灾害及其对公路基础设施影响的初步研究[J],西南公路,2008(4):192-199.
    [149]唐永建,庄卫林,吉随旺.“5.12”汶川大地震四川灾区公路应急调查与抢通[M],北京:人民交通出版社,2008.
    [150]姚令侃,陈强.“5.12”汶川地震对线路工程抗震技术提出的新课题[J],四川大学学报(工程科学版),2009,41(3):43-50.
    [151]施斌,王宝军,张巍,徐洁.汶川地震次生地质灾害分析与灾后调查[J].高校地质学报,2008,14(3):387-394.
    [152]韩用顺,崔鹏,朱颖彦等.汶川地震危害道路交通及其遥感监测评估[J],四川大学学报(工程科学版),2009,5(3):273-283.
    [153]马洪生,李玉文,熊杰等.汶川地震西线公路路基病害与地质灾害调查分析[J],西南公路,2008(4):265-272.
    [154]赵升,郑明新,王全才等.汶川地震引起的老虎嘴山体崩滑形成机理与治理方案分析[J],隧道建设,2009,4(2):243-251.
    [155]庄建琦,崔鹏,葛永刚等.5.12汶川地震崩滑滑坡分布特征及影响因子评价[J],地质科技情报,2009,28(2):16-22
    [156]中国地震信息网(http://www.csi.ac.cn/sichuan/index080512.htm)
    [157]何宏林,孙昭民,王世,等.汶川MS8.0地震地表破裂带[J],地震地质,2008,30(2):359-362
    [158]祁生文,许强,刘春玲等.汶川地震极重灾区地质背景及次生边坡灾害空间发育规律[J],工程地质学报,2009,17(1):39-49.
    [159]黄润秋,李为乐.“5.12”汶川大地震触发地质灾害的发育分布规律研究[J],岩石力学与工程学报,2008,27(2):2585-2592.
    [160]谢洪,王士革,孔纪名.“5.12”汶川地震次生山地灾害的分布与特点[J],山地学报,2008,26(4):396-401
    [161]殷跃平,汶川八级地震地质灾害研究[J],工程地质学报,2008,16(4):433-444.
    [162]童立强,祁生文,刘春玲.喜马拉雅山东南地区地质灾害发育规律研究[J].工程地质学报,2007,15(6):721~729.
    [163]吉随旺,宋光润.“5.12”汶川大地震灾区公路边坡崩滑滑移破坏特征初步分析[J],西南公路,2008(4):178-182.
    [164]唐胜传,杨伟,张昌林等.国道317线汶川-理县段边坡地震破坏模式研究[J],地下空间与工程学报,2008,4(6):1036-1040.
    [165]张永双,雷伟志,石菊松等.四川“5.12”地震次生地质灾害的基本特征初析[J],地质力学学报,2008,14(2):109-116
    [166]胡光韬.滑坡动力学[M].北京:地质出版社,1995.
    [167]许强,黄润秋.“5.12”汶川大地震诱发大型崩滑灾害动力特征初探[J],工程地质学报,2008,16(6):721-729
    [168]许向宁.高地震烈度区山体变形破裂机制地质分析与地质力学模拟研究[D],成都理工大学,2006
    [169]李远富,姚令侃,邓域才.单面坡砂堆模型自组织临界性实验研究[J].西南交通大学学报,2000,35(2):121-125
    [170]蒋良潍,姚令侃,李仕雄.非均匀散粒体自组织临界性机制初探[J].岩石力学与工程学报.2004,23(18):3178-3184
    [171]蒋良潍,姚令侃,李仕雄.溜砂坡防治工程安全系数实验探索[J].中国地质灾害与防治学报,2004,5(2):74-77
    [172]蒋良潍.散粒体自组织临界性及其应用[D],西南交通大学,2003
    [173]李仕雄,姚令侃,蒋良潍.灾害研究中的自组织临界性与判据[J].自然灾害学报,2003,12(4):82-87
    [174]李仕雄,姚令侃,蒋良潍.松散边坡演化特征及其应用[J].四川大学学报(工程科学版)2004,(2):7-11
    [175]李仕雄,姚令侃,蒋良潍.临界状态下砂堆大规模崩滑机制分析[J].西南交通大学学报,2004,39(3):366-370
    [176]李仕雄,姚令侃,蒋良潍.影响砂堆自组织临界性的内因与外因[J].科技通报,2003,19(4):278-281
    [177]何越磊,姚令侃,苏凤环.边坡灾害自组织临界性及极值分析[J].中国铁道科学,2005,26(2):15-19
    [178]何越磊,姚令侃,苏凤环.砂堆模型动力学特性与灾害系统演化预测研究[J].自然灾害学报,2005,14(4):44-50
    [179]高召宁,姚令侃,徐光兴,王广军.基于图型动力学的滑面演化过程研究[J].岩土工程学报,2007,29(6):866-871
    [180]高召宁,姚令侃.基于非线性RSH方法的泥石流灾害预测预报研究[J].中国铁道科学,2007,28(6):7-11
    [181]高召宁,姚令侃,苏凤环,齐颖,杨庆华.大尺度散体组构分维和SOC判据研究[J].水土保持通报,2007,27(1):86-91
    [182]包承纲,饶锡保.土工离心模型的试验原理[J].长江科学院院报,1998,15(2):2-7.
    [183]杨庆华,姚令侃,齐颖,等.散粒体离心模型自组织临界性及地震效应分析[J].岩土工程学报.2007,29(11):1630-1635.
    [184]濮家骝.土工离心模型试验及其应用的发展趋势[J].岩土工程学报.1996,18(5):92-94.
    [185]徐光明,章为民.离心模型中的粒径效应和边界效应研究[J].岩土工程学报.1996,18(3):80-86.
    [186]姚令侃,方铎.非均匀砂自组织临界性及其应用研究[J].水利学 报,1997,(3):26-32.
    [187]张锐.基于离散元细观分析的土壤动态行为研究[D].吉林大学博士学位论文.2005
    [188]周健,池永.颗粒流方法及离散元程序[J].岩土力学.2000,21(4):271-274.
    [189]D.D. Tannant, P.A. Lilly C. Wang. Numerical analysis of the stability of heavily jointed rock slopes using PFC2D [J]. International Journal of Rock Mechanics & Mining Sciences.2004,40:415-424.
    [190]N. Djordjevic. Discrete element modelling of the influence of lifters on power draw of tumbling mills [J]. Minerals Engineering.2003,16: 331-336.
    [191]F.N. Shi N. Djordjevic, R.D. Morrison. Applying discrete element modelling to vertical and horizontal shaft impact crushers [J]. Minerals Engineering.2003,16:983-991.
    [192]Z. Asaf I. Shmulevich, D. Rubinstein. Interaction between soil and a wide cutting blade using the discrete element method [J]. Soil Tillage Research.2007,97:37-50.
    [193]David O. Potyondy. Simulating stress corrosion with a bonded-particle model for rock [J]. International Journal of Rock Mechanics and Mining Sciences.2007,44:677-691.
    [194]Jianqiao Li Rui Zhang. Simulation on mechanical behavior of cohesive soil by Distinct Element Method [J]. Journal of Terramechanics.2006, 43:303-316.
    [195]Wonjoon Jeong Seonhong Kim, Dongho Jeong. Numerical simulation of blasting at tunnel contour hole in jointe rock mass [J]. Tunnelling and Undeground Space Technology.2006,21:306-307.
    [196]Wulf Schubert Young-Zoo Lee. Determination of the round length for tunnel excavation in weak rock [J]. Tunnelling and Undeground Space Technology.2008,23:221-231.
    [197]P.A. Cundall D.O. Potyondy. Abonded-particle model for rock [J]. Rock Mechanics and Mining Sciences.2004,41:1329-1364.
    [198]周健,池毓蔚,池永,等.砂土双轴试验的颗粒流模拟[J].岩土工程学报.2000,22(6):701-704.
    [199]A.E.Skinner. A note on the influence of the interparticle friction on the shearing strength of a random assembly of spherical particles [J]. Geotechnique.1969,19:150-157.
    [200]Y.Nakata and M.D.Bolton Y.P.Cheng. Discrete element simulation of crushable soil [J]. Geotechnique.2003,53(7):633-641.
    [201]罗勇.土工问题的颗粒流数值模拟及应用研究[D],浙江大学,2007
    [202]陈昌凯,阮永芬,熊恩来.地震作用下边坡稳定的动力分析方法[J].地下空间与工程学报,2005,1(7):1054-1057.
    [203]J·贝尔.多孔介质流体动力学[M].李竞生,陈崇希译,北京:中国建筑工业出版社,1983.91-94.
    [204]交通部公路规划设计院.公路工程抗震设计规范[M].北京:人民交通出版社,2005.11-15.
    [205]Sassa, Prediction of earthquake induced landslide, Landslide, Senneset (ed.) 1996Balkema. Rotterdam. ISBN 90 54108185.
    [206]申润植主编.坡面框架工程设计与施工方法[M],日本三海堂,1995年5月
    [207]S. D. Ellen and R..W. Flming Mobilization of debris flow from soil slips, San Francisco Bay region, California[J], Geological Society of America Reviews in Engineering Geology, Vol. VII,1987
    [208]A.E. Scheidegger, On the Prediction of the Reach and Velocity of Catastrophic Landslides [J]. Rock Mechanies,5,1973
    [209]Hsu, K, Catastrophic Debris Streams generated by Rock falls[J], abaull of Geological Society of America, Vol.86,1975
    [210]刘建武.静力松弛离散单元法及其在岩土工程稳定分析中的应用[D],中国科学院岩土力学研究所硕士学位论文,1988
    [211]何唐铺,郝跃天.岩体开挖问题的离散元-有限元法分析[J].第三届全国岩土力学数值分析与解析方法讨论会论文集.1988,356-357
    [212]夏元友,李梅.边坡稳定性评价方法研究及发展趋势[J].岩石力学与工程学报.21(7),1087-1091,2002.7
    [213]陈春光,姚令侃,王沁.三维离散单元法在泥石流堆积研究中的作用[J].自然灾害学报,2003,12(4)55-61
    [214]刑纪波,俞良群,张瑞丰,王泳嘉等.离散单元法的计算参数和求解方法选择[J].计算力学学报,1999,16(1)47-51
    [215]王光纶,张楚汉,彭刚,陈畅伟.刚块动力实验与离散单元法动力分析参数选择的研究[J].岩石力学与工程学报.1994,13(2)124-133
    [216]张楚汉,王光纶,鲁军.用离散单元法分析边坡的动力稳定[J].第四界全国地震工程会议论文集,1994
    [217]王泳嘉,沈宝堂.边坡稳定的离散元分析[J].结构模型破坏试验研讨会论文集.1988,河海大学
    [218]姚建国.开采影响下岩层移动变形的单元数值模拟[J],第一届全国计算岩土力学研讨会论文集,西南交通大学出版社,1987,110-117
    [219]陈昌伟.离散单元法及其在岩质高边坡稳定分析中的应用[D].清华大学硕士学位论文
    [220]郑永学,王泳嘉,姚赞勋.自然崩落法崩落机制的研究[J].有色金属,1989(2)
    [221]陈伟,李世海.允许变形及断裂的三维离散元计算方法[J].岩石力学与工程 学报,2004,2,23(4),545-549
    [222]尚岳全,陈明东.长江三峡磨子湾滑坡形成过程的离散元模拟[J].自然灾害学报.1994,13(1)84-87
    [223]李伟,胡选利等.不连续散粒体的离散单元法[J].南京航空航天大学学报.1999,31(1)85-91
    [224]中华人民共和国铁道部.GB50111-2006铁路工程抗震设计规范[S].北京:中国计划出版社,2006.
    [225]国道318线川藏公路整治改建工程通麦至105道班段工程可行性研究报告[R],第六册.中交第一公路勘察设计研究院,2005,3

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅:66554900、66554949;咨询服务:66554800;科技查新:66554700