用户名: 密码: 验证码:
泥巴山深埋特长公路隧道重大岩体工程问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文结合交通部西部交通建设科技项目“大相岭泥巴山深埋特长隧道关键技术研究”。采用现场测绘、室内外试验、理论分析与数值模拟等方法,对四川雅安~泸沽高速公路的控制性工程——大相岭泥巴山深埋特长隧道的重大岩体工程问题进行了深入研究,主要的研究内容及在导师和课题组的提示和启发下获得的成果如下:
     (1)通过收集分析泥巴山地区现有基础地质资料、勘探测试资料和现场详细调绘,弄清了隧址区的工程地质环境,结果表明:隧道所穿过的大相岭背斜并非为倒转的背斜,而是一似“箱”形构造模式;隧址区地质环境条件极为复杂,岩性种类多,空间分布多变,现代构造应力量值较大,不同规模与期次的褶皱构造和断裂构造发育并叠加改造。因构造影响,岩体破碎及结构复杂。
     (2)利用单轴压缩试验、单轴拉伸试验、常规三轴压缩试验以及卸围压试验对隧址区主要岩石进行了岩石力学试验,结果表明:完整岩石强度较高,单轴抗压强度最高达250MPa,岩石强度明显受微裂隙影响,微裂隙发育的岩石单轴抗压强度最低为20MPa左右,一般在70-100MPa;岩石单轴抗压强度有随埋深而增加的趋势;岩石三轴压缩变形及强度受加载路径的明显影响。
     (3)采用现场钻孔水压致裂测试法、室内Kaiser效应测试法和震源机制解对泥巴山隧址区初始地应力进行了测试及分析,结果表明:地应力值随深度呈近似线性增加,隧道高程附近最大主应力量值40-45MPa;整体趋势为埋深约0-300m段垂直向地应力小于两个水平向地应力,约300-850m段垂直地应力介于两个水平向主应力之间,大于850m时,垂直应力大于两个水平向主应力,其中最大水平主应力总体方向为N55°W,与隧道轴线整体方向N47°E近垂直。
     (4)根据现场测试结果,采用数值模拟反演分析得到:隧址区地应力场受地形的明显影响,隧道进、出口应力较小,埋深较大的中段地应力水平较高,其中最大主应力多为30MPa-45MPa,中间主应力多为20MPa~30MPa,最小主应力为10-20MPa,断层带对局部地应力场大小及方向有显著影响。
     (5)以现场实测地应力及室内岩石试验为基础,根据传统能量理论及提出的岩爆潜指数法、改进的强度理论观点,采用理论方法及数值模拟方法,对隧道围岩岩爆危险性进行了定性及定量的预测分析。结果表明,泥巴山隧道围岩存在岩爆危险的洞段长度约占整个洞长的29%,其中弱岩爆危险洞段长度约占20%,中等程度岩爆危险的洞段长度约占7%,强烈岩爆危险的洞段长度约占2%,因岩性分布及岩体结构的差异性,产生岩爆洞段不连续,沿隧道呈带状分布。
     (6)将交通隧道大变形界定为隧道变形非脆性破坏的变形量超出了规范规定的预留变形量,根据Ⅲ级围岩标准,当隧道边壁的相对变形量Db≥0.013时,定义为大变形。利用岩体力学理论和数值模拟分别计算预测隧道典型断面的相对变形量,结果表明,断层带及其附近围岩可能产生严重的大变形,个别埋深及宽度大的断层带产生大变形程度为严重或极严重;断层带围岩大变形受断层带宽度、断层岩工程特性及结构特征和两盘岩体工程性质影响;断层带宽度大于19m洞段,围岩大变形较明显。
This dissertation combining with practical project, studies the critical technology of the NIBASHAN deep buried and extra-long tunnel of Bei Jing-Kun Ming highway. The key rock mass engineering problem along tunnel, which is the key and bottleneck project of Ya'an to Lu Gu, were researched according to the field sketch, experiment both in laboratory and field, simulative calculation and theoretical analysis. By more than three years'study, some progress and conclusion were given as follows:
     (1) On the basis of collecting and analyzing exsting basic geological data and filed geological work, it is included that:The Daxiangling articline is not overturned,but similar to the outline of "box";there is a varied topography, numerous stratum and complex spatial distrbution, the modern tectonics stress is high, complex formation condition; The rock mass structure is complex because of the tectonic influence in tunnel area; well-developed fold and faults which is exert an influence to geostress.Tectonic damage in NIBASHAN tunnel area is obviously distributed in belt, including strong tectonic damage zone, medium tectonic damage zone and weak tectonic damage zone.
     (2) A series of rock mechanics experiments were carried include uniaxial compression test, uniaxial tensile test, triaxial compression and unloading tests.the following results have been drawn:Integral rock with high compressive strength, the max compressive strength is about 250MPa, Microcracks cast influence on the compressive strength,and the strength is about 20MPa if microcracks are well developed,the average is between 70MPa to 100MPa. With the increase of buried depth, the peak strength become higher; Loading paths influence on the triaxial compressive strength and deformation.
     (3) To get the geostress, Hydraulic fracturing method, focal mechanism solution and Kaiser effect were used. Results as follows:The geostress increase with the depth of burial, the max principal stress is between 40MPa to 45MPa; the vertical stress less than horizontal stress,when the depth lower 300m,the vertial stess lies in bwtween the min principal and the max principal stress if the depth ranges from 300m to 850m,the vertical stress more than horizontal stress,when the depth greater 850m; The direction of max principal stress in tunnel area is N55°W, it is intersect trend of tunnel with large angle.
     (4) Based on the site test results,numerical calculation shows that:Topography have an obvious effect on geostress, the grostress of import and exit is low, tunnel of middle is larger; The maximum principal stress in deep-buried tunnel is between 30MPa to 45MPa, the intermediate principal stress is between 20Mpa to 30MPa, the min. principal stress is between 10Mpa to 20MPa.
     (5) Based on the site tests and the rock tests, numerical simulation and theoretical analysis were carried to predict the fatalness of rockburst. Analysis by energy theory and theory of strength showns that:the length that rockburst may occur in Nibashan tunnel is 29% of total tunnel, including:weak rockburst tunnel is about 20%, medium rockburst tunnel is about 7%, serious rockburst is about 2%. Because of fault zone and difference of rock joint, the tunnel that rockburst may occur is un-continuous, and belt-distributed along the tunnel.
     (6) Large deformation is defined as non-brittle failure, the deformation exceed the reserved deformation, when the relative deformation of the side is more than 0.013(Db≥0.013),it is intitule large deformation. This essay separately calculates out the variables of each section in tunnel through rock mechanical theory and FLAC3D. The results shows that:the sections with serious large deformation are all with high in-suit stress and in fault zone of surrounding rock, three is serious large deformation in individual sections; Engineering characteristic and texture characteristics of rock mass in fault zone influence large deformation, there be obvious large deformation, when the width of fault zone is over 19m.
引文
[1]马少鹏,王来贵,章梦涛,李功伯.加拿大岩爆灾害的研究现状[J],中国地质灾害与防治学报,1998,9(3)
    [2]谭以安.岩爆类型及防治[J].现代地质,1991,5(4)
    [3]汪泽斌.岩爆实例、岩爆术语及分类的建议[J].工程地质,1988,(3)
    [4]武警水电指挥部.天生桥水电站引水隧洞岩爆研究(科研报告).1991
    [5]王兰生,徐林生,李天斌等.深埋长隧道高地应力与围岩稳定问题(二郎山科研报告),1998
    [6]郭志.实用岩体力学[M].北京:地震出版社,1996
    [7]左文智,张齐桂等.地应力与地质灾害关系探讨.见:第五届全国工程地质大会文集.北京:地质出版社,1996
    [8]徐林生.川藏公路二郎山隧道高地应力与岩爆问题研究[D],成都理工学院博士论文,1999
    [9]谭以安,岩爆烈度分级问题[J],地质评论,1992,38(5):439-443
    [10]徐则明,黄润秋等.长大隧道岩爆灾害研究进展[J],自然灾害学报.2004,4(2)
    [11]Shabarov A N. On formation of geodynamic zones prone to rock bursts and tectonic shocks[J]. Journal of Mining Science,2001,37:129-139.
    [12]Senfaute G, Chambon C, Bigarre P, et al. Spatial distribution of mining tremors and the relationship to rockburst hazard[J]. Pure and Applied Geophysics,1997,150:451-459.
    [13]Whittaker B N, Singh R N, Sun G. Rock fracture mechanics:principles, design, and applications[M].Elsevier,1992.
    [14]Durrheim R J, RobertsMK C, Haile AT,et al. Factors influencing the severity of rockburst damage in South African gold mines[J]. The Journal of the South African Institute ofMining andMetallurgy, 1998,98(3/4):53 57.
    [15]Jager A J, Klokow J W. Back analysis to determine the mechanism and risk of rockbursts-3 case histories from South African gold mines[A]. Lasocki Proc 26th Int Conf of Safety in Mines Research Insti-tutes[C]. Katowice:Central Mining Institute,1995:4156.
    [16]Shivakumar K, Srinivasan C, Kusunose K. Multifractual analysis of the spatial distribution of area rockburst at kolar gold mines[J]. In-ternational Journal of RockMechanics andMiningSciences,1996, 33(2):167 172.
    [17]Vardoulakis I,A gradient flow theory of plasticity for granular materials[J].Acta Mechenica,1991,87:197-217.
    [18]Fleck N A,Hutchinson J W.A phenomenological theory for strain gradient effects in plasticity [J].Journal of Mechanics and Physics Solids,1993,41:1 825 - 1857.
    [19]王青海,李晓红,顾义磊等.地下工程中岩爆灾害的成因及防治措施[J],重庆大学学报,2003,26(7):116-120
    [20]E.Hoek, E.T.Brown.:岩石地下工程(译)[M].北京:冶金工业出版社,1986
    [21]徐林生,王兰生,李天斌.国内外岩爆研究现状综述[J]长江科学院院报,1999,16(4):24-27
    [22]Muhlhas H B,Vardolakis I.The thickness of shear bands in granular materials[J].Geotechnique,1987,37(3):271~283.
    [23]许迎年,徐文胜,王元汉等.岩爆模拟试验及岩爆机理研究[J],岩石力学与工程学报,2002,21(10):1462-1466
    [24]杨淑情.隧洞岩爆机制物理模型试验研究[J].武汉水利电力大学学报,1993,26(2)
    [25]周德培,洪开荣,太平驿隧洞岩爆特征及防治措施[J],岩石力学与工程学报,1995,14(2):171-178
    [26]谷明成,何发亮,陈成宗.秦岭隧道岩爆的研究[J],岩石力学与工程学报,2002,21(9):1324-1329
    [27]李育枢,郑建国,李天斌.电站隧洞岩爆岩石的微观破坏力学机制分析[J],水力发电,2006,8:17-20.
    [28]王兰生,徐进,李天斌,等.二郎山公路隧道岩爆及岩度分级[J].公路,1999,8(2):37-43.
    [29]Cook N G W,Hook E,Petorius J P G.Rock mechanic applied to the rock bursts[J].Int J.S.Afr.Inst.Min.Metall,1966,66(8):435~528
    [30]Stamon M D G Stability, instability and design of pillar working[J].
    Int J.Rock Mech.Min.Sci.&Geomech.Abstr.1970,7(4):613~631
    [31]Hudson J A,Crouch S L,Fairhurst C.Soft,stiff and servo-controlled testing machines:a review with reference to rock failure[J].Eng.Geol.1972,6(3):155~189
    [32]Gill D E, Aubertin M, Simon R. A practical engineering approach to the evaluation of rockburst potential Rockbursts and Seismicity inMines[M]. Balkema:Rotterdam,1993:63~68.
    [33]李广平.岩体的压剪损伤机理及其在岩爆分析中的应用[J].岩土工程学报,1997,19(6):49-56.
    [34]谭以安.岩爆形成机理研究[J].水文地质与工程地质,1989,(1)
    [35]王敏强、侯发亮.板状破坏的岩体岩爆判别的一种方法[J]岩土力学,1993,14(3):53-60
    [36]Zubelewicz A, Mroz Z. Numerical simulation of rock burst process treated as problems of dynamic instability [J].Rock Mechanics and Rock Engineering,1983,16:253-274.
    [37]Mueller-W. Numerical simulation of rock bursts[J].Mining Science& Technology,1991,12:27-42.
    [38]杨涛,李国维.基于先验知识的岩爆预测研究[J].岩石力学与工程学报,2000,19(4):429-431
    [39]李春杰.秦岭隧道岩爆特征与施工处理[J].世界隧道,1999,(1):36-41.
    [40]陶振宇.若干电站地下工程建设中的岩爆问题[J].水力发电,1988,(7):40-45.
    [41]DowdingCH,AnderssonCA.Potential for rock bursting and slabbing in deep caverns [J].Engineering Geology,1986,22:265-279.
    [42]邹成杰.地下工程中岩爆灾害发生规律与岩爆预测问题的研究[J].中国地质灾害与防治学报,1992,3(4):48-53.
    [43]徐林生,王兰生.二郎山公路隧道岩爆发生规律与岩爆预测研究[J].岩土工程学报,1999,21(5):569-572
    [44]李忠,杨腾峰.福建九华山隧道岩爆工程地质特征分析与防治措施[J]研究地质与勘探,2005,41(2):81-84
    [45]李忠,汪俊民.重庆陆家岭隧道岩爆工程地质特征分析与防治措施研究[J]岩石力学与工程学
    报.2005,24(18):3398-3402
    [46]Donll. Vibrations studies:blasting and rock bursts [J].Canandian Mining and Metallurgical Bulletin,1951,470:415-418.
    [47]罗先启,舒茂修.岩爆的动力断裂判据——D判据[J].中国地质灾害与防治学报,1996,7(2):1-5.
    [48]潘岳,王志强.狭窄煤柱冲击地压的折迭突变模型[J].岩土力学,2004,25(1):20~30
    [49]李宏,安其美,马元春.深埋硐室地应力状态与岩爆相关性研究[J].岩石力学与工程学报,2005,24(增1):822-826.
    [50]徐林生,王兰生,李永林.岩爆形成机制与判据研究[J].岩土力学,2002,23(3):300-303.
    [51]许东俊,章光,李廷芥等.岩爆应力状态研究[J].岩石力学与工程学报,2000,19(2):169-172.
    [52]何思为,向贤礼,卢世杰.高应力区应力与岩爆的关系[J].广东工业大学学报,2002,19(3):1-6.
    [53]谭以安.岩爆形成机制研究[J].水文地质工程地质,1989,16(1):34-38.
    [54]谷明成,何发亮,陈成宗.秦岭隧道岩爆的研究[J].岩石力学与工程学报,2002,21(9):1324-1329.
    [55]单志钢.锦屏二级水电站长隧硐的岩爆分析与防治[J].成都理工学院学报,2001,28(增):446-450.
    [56]吴德兴,杨健.苍岭山特长公路隧道岩爆预测和工程对策[J].岩石力学与工程学报,2005,24(21):3965-3971
    [57]Russnes B F.Analyses of rockburst in tunnels in valley sides[M Sc.Thesis][D].Trondheim:Norwegian Inst.of Technology,1994,247~247
    [58]Ortlepp W D.Rockburst mechanisms in tunnels and shafts[J].Tunnelling and Underground Space Technology,1994,59(6):59~65
    [59]徐则明,黄润秋.深埋特长隧道及其施工地质灾害[M],西南交通大学出版社,2000
    [60]王元汉,李卧东,李启光等.岩爆预测的模糊数学综合评判方法[J],岩石力学与工程学报.1998,17(5):493-501
    [61]姜晨光,隋明寿,贺勇等.地下采矿岩爆原因的新认识[J]矿业研究与开发,2004,Aug.54-57
    [62]陶振宇.高地应力区的岩爆及其判别[J].人民长江,1987,18(5):25-32.
    [63]A.Kidybinski.Bursting liability indices of coal[J].Int.J.Rock Mech.Min.Sci. Geomech.Abstr,1981,18(2):295-304.
    [64]Singh S P. Bursting energy release index[J]. RockMechanics and Rock Engineering,1988, 21(1):149~155.
    [65]彭祝,王元汉,李廷芥.Griffith理论与岩爆的判别准则[J]岩石力学与工程学报,1996 15(增刊):491-495
    [66]唐礼忠,王文星.一种新的岩爆倾向性指标[J].岩石力学与工程学报.2002,21(6):874-878
    [67]谭以安.模糊数学综合评判在地下洞室岩爆预测中的应用[A].第二次全国岩石力学与工程学术会议论文集.北京:知识出版社,1989
    [68]谢学斌,潘长良.岩爆灾害的灰类白化权函数聚类预测方法[J],湖南大学学报(自然科学版),2007,34(8):16-20
    [69]LINKOV AM. Rockbursts and the instability of rock masses[J].Int J Rock Mech Min Sci& Geomech Abstr,1996,33(7):727-732.
    [70]宫凤强,李夕兵,林杭.隧道岩爆预测的距离判别分析模型研究及应用[J],中国铁道科学,2007,28(4):25-28
    [71]冯夏庭.地下峒室岩爆预报的自适应模式识别方法[J].东北大学学报,1994,15(5):471-575
    [72]杨涛,沈培良基于人工神经网络的岩爆烈度预测研究[J]公路交通科技.2004,21(7):30-38
    [73]周科平,古德生.基于GIS的岩爆倾向性模糊自组织神经网络分析模型[J]岩石力学与工程学报.2004,23(18):3093-3097.
    [74]Singh S P.The influence of rock properties on the occurrence and control of rockburst[J].Min.Sci.Technol,1987,5(6):11 ~ 18
    [75]钟云光,徐成光.岩爆预测与防治方法述评[J],矿冶,2005,14(2):8-12
    [76]谢和平,W.G.Pariseau.:岩爆的分形特征和机理[J].岩石力学与工程学报,1993,12(1):28-37
    [77]Coughlin J,Kranz R.New approaches to studying rock burst-associated seismicity in mines,Proc.32nd U.S.Symp.on Rock Mechanics,Rotterdam:Balkema,1991,491-500.
    [78]单哓云,徐东强等.用突变理论预报巷道岩爆发生的可能性[J],矿山测量.2000,12(4)
    [79]Krajcinovie C,Silva M A G. Statistical aspects of continuous damage theory. Int J Solids Structures,1982,18(7):557-562
    [80]刘小明,李焯芬.脆性岩石损伤力学分析与岩爆损伤能量指数[J].岩石力学与工程学报.1997,16(2):140-147
    [81]潘一山,徐秉业.考虑损伤的圆形洞室岩爆分析[J].岩石力学与工程学报,1999,18(2):152-156
    [82]付小敏.典型岩石单轴压缩变形及声发射特性试验研究[J]成都理工大学学报(自然科学版),2005,32(1):17-21
    [83]刘正雄,岩爆预防及防治技术研究[J].中国铁道科学,2001,22(4):25-28
    [84]Mansurov V. A. Acoustic emission from failing rock behavior[J].Rock Mechanics and Rock Engineering,1994,27:173-182.
    [85]Frid V. Calculation of electromagnetic radiation criterion for rock burst hazard forecast in coal mines [J].Pure and Applied Geophysics,2001,158:931-944.
    [86]Alcott J M, Kaiser P K,Simser B P.Use of microseismic source parameters for rockburst hazard assessment[J].Pure and Applied Geophysics,1998,153:41-65.
    [87]李长洪,蔡美峰,乔兰等.岩石全应力-应变曲线及其与岩爆关系[J].北京科技大学学报,1999,21(6):513-515
    [88]侯发亮等.圆形隧道中岩爆的判据及防治措施[A].岩石力学在工程中的应用.北京:知识出版社,1989
    [89]谭以安.岩爆特征及岩体结构效应.1991,9(B):985-991.
    [90]Frid V. Electromagnetic radiation method water-infusion control in rock burst-prone strata[J]. Journal of Applied Geophysics,2000,43:5-13.
    [91]Roest J P A,et al.高地应力条件下巷道周围岩石圈应力解除技术的基本研究[J].梅志荣译.隧道译丛,1991,(11):12-20.
    [92]Grodner M. Fracturing around a preconditioned deep level gold mine stope[J]. Geotechnical and Geological Engineering,1999,17:291-304.
    [93]Amberg R. Design and construction of the Furka base tunnel[J].Rock Mechanics and Rock Engineering,1983,16:215-231.
    [94]张玉军,刘谊平.地下洞室埋深对围岩双重非线性影响的有限元分析[J].岩土力学.2003,vol.24(1):127-129.
    [95]Sellers E J, Klerck P.Modeling of the effect of discontinuities on the extent of the fracture zone surrounding deep tunnels[J].Tunneling and Underground Space Technology,2000,15(4):463-469.
    [96]张士林,冯夏庭.控制极软巷道围岩大变形合理支护强度理论研究[J],金属矿山,2001,5:4-6.
    [97]吴汉辉,刘会,杨转运等.几何大变形非线性问题中拟线性等效系统研究[J].武汉理工大学学报(交通科学与工程版)2008,vol.32(5):963-966.
    [98]张志强,关宝树.软弱围岩隧道在高地应力条件下的变形规律研究[J].岩土工程学报,2000,vol.22(6):696-700.
    [99]H.H. Einstein.Tunneling in swelling rock Underground space,1979,4(1):51-61。
    [100]何满潮,谢和平,彭苏萍.深部开采岩体力学研究[J],岩石力学与工程学报.2005,vol.24(16):2803-2813.
    [101]赵旭峰,王春苗,孔祥利等.深部软岩隧道施工性态时空效应分析[J].岩石力学与工程学报.2007,vol(2):404-409.
    [102]Muiwood A M.Tunnels for roads and motorways [J].Quart.J.Eng.Geol.1972,5:119-120.
    [103]Aydan O,Akagi T,Kavamoto T.The squeezing potential of rock around tunnels:theory and prediction with examples taken from Japan[J].Rock Mechanics and Rock Engineering,1996,29:125-143.
    [104]Jiang Yujing, Thoretical and Experimental Study on the Stability of Deep Underground Openning[D].Doctoral paper of Kyushu University, Japan,1993.
    [105]Vogel M, Rast H P.Transit-safety in construction as a challenge:health and safety aspects in very deep tunnel construction[J].Tunneling and Underground Space Technology,2000,15(4):481-484
    [106]Sun J, Wang S J.Rock mechanics and rock engineering in China:developments and current state-of-the-art[J].International Journal of Rock Mechanics and Mining Science,2000, (37):447-465.
    [107]李建林,孟庆义.卸荷岩体的各向异性研究[J].岩石力学与工程学报.2001,20(3):338-341
    [108]Diering D H.Tunnels under pressure in an ultra-deep Wifwatersrand gold mine[J]. Journal of the South African Institute of Mining and Metallurgy,2000,100:319-324.
    [109]Vogel M, Andrast H P.Alp transit-safety in construction as achallenge, health and safety aspects in very deep tunnel constructio[J].Tunneling and Underground Space Technology,2000,15(4):481- 484.
    [110]何满潮,吕晓俭,景海河.深部工程围岩特性及非线性动态力学设计理念[J].2002,21(8):1215-1224.
    [111]喻渝.挤压性围岩支护大变形的机理及判定方法[J].世界隧道,1998(1):46—51.
    [112]张志强.高地应力条件下隧道大变形破坏机理的研究及其在二郎山隧道工程中的应用.研究报告.1999.10
    [113]张祉道.关于挤压性围岩隧道大变形的探讨和研究[J].现代隧道技术,2003,vol,40(2):5-12.
    [114]张志龙.越岭长大公路隧道地质预报中的关键技术问题研究[D].成都理工大学博士学位论文,2006.
    [115]Y. Tazawa et al. effects of rock bolts and thin linings as tunnel supports in soft rock. Proceedings of the international symposium on weak rock; A. A. Balkema, Netherlands.1981
    [116]R. Lovat Soft rock TBMs. Annual Meeting-Association of Engineering Geologists. Association of Engineering Geologists.[location varies],United States.1985,28:69
    [117]董方庭.软岩巷道支护基础理论的研究[J].建井技术,1991,(3).
    [118]薛琳.直墙拱形隧道围岩粘弹性位移解析解[J].岩土工程学报,1996,(6)
    [119]何满潮等.论高地应力软岩巷道支护对策[J].水文地质工程地质,1994,(4)
    [120]Kimura F., Okabayashi N.& kawamoto T. Tunneling Through Squeezing Rock in Two Large Fault Zone of Enasan Tunnel II.Rock Mechanics and Rock Engineering 20,1987
    [121]R.Bhasin, N.Barton, E.Grimstad, P. Chryssanthakis. Engineering Geological Characterization of Low strength Anisotropic Rocks in the Himalayan Region for Assessment of Tunnel Support. Engineering Geology,1995,40:169~193
    [122]Einstien, Herbert H.& Bischoff. N. Design of Tunnels in Swelling Rocks, Proc. Design Methods in Roek Mechanics.16th symp. Minneapolis,USA.
    [123]张金富.膨胀性软岩隧道的施工处理与定量判别指标的初步探讨[J].工程勘察,1987(2)
    [124]张祉道.家竹箐隧道施工中支护大变形的整治[J].世界隧道1997,(1):7-16.
    [125]刘泉声,张华,林涛.煤矿深部岩巷围岩稳定与支护对策[J].岩石力学与工程学报.,2004,vol 23(21):3732-3737.
    [126]卿三惠,黄润秋.乌鞘岭特长隧道软弱围岩大变形特性研究[J]现代隧道技术.2005,vol 42(2):7-14.
    [127]何满潮,景海河,孙晓明.软岩工程地质力学研究进展[J].工程地质学报.2000,08(01):46-62.
    [128]王明华,白云,张电吉.含软弱夹层岩体质量评价研究[J].岩土力学,2007,28(1):185—187.
    [129]张志强,李宁,SWOBODA G.软弱夹层分布部位对洞室稳定性影响研究[J].岩石力学与工程学报,2005,24(18):3252—3257.
    [130]陈宗基.地下巷道长期稳定性的力学问题[J],1982,1(1):1-19.
    [131]郭啟良,伍法权,钱卫平等.乌鞘岭长大隧道围岩变形与地应力关系的研究[J].岩石力学与工程学报.2006,vol(11):2194-2199.
    [132]姜耀东,赵毅鑫,刘文岗.深部开采中巷道底鼓问题的研究[J].岩石力学与工程学报,2004,23(4):2396-2401
    [133]吴和平,陈建宏,张涛等.高应力软岩巷道变形破坏机理与控制对策研究[J].金属矿山,2007,9:50-54
    [134]郭富利,张顶立,苏洁等.含软弱夹层层状隧道围岩变形机理研究[J].岩土力学,2008,vol(supp):247-252
    [135]李永林.二郎山隧道在高地应力条件下大变形破坏机理的研究及治理原则[J],公路,2000,12:2-5.
    [136]陆家梁.软岩巷道支护技术(M).长春:吉林科学技术出版社,1995
    [137]W.Wittke,B.Pieran.膨胀岩石中隧道的修建和设计原理[A].见:第匹届国际岩石力学会议文集[C].北京:冶金工业出版社,1985
    [138]刘志春,朱永全,李文江等.挤压性围岩隧道大变形机理及分级标准研究[J].岩土工程学报,2008,vol.30(5):690-697
    [139]中铁二局集团有限公司.不良地质隧道的开挖及支护技术研究总报告及分析报告[R].成都,2000.
    [140]徐林生,李永林,程崇国.公路隧道围岩变形破裂类型与等级的判定[J].重庆交通学院学报,2002,21(2):16-20.
    [141]H.H.Einstein.Tunneling in swelling rock Underground space,1979,4(1):51-61.
    [142]H.Grob.Swelling and heave in Swiss tunnels.Bulletin on IAEQKrefel e,1975,13:55-60
    [143]刘志春,李文江,孙明磊,等.乌鞘岭隧道F4断层区段监控量测综合分析[J].岩石力学与工程学报,2006,25(7):1502-1511.
    [144]刘志春,孙明磊,贾晓云,等.乌鞘岭隧道F4-F7断层区段压力、应力实测与分析[J].石家庄铁道学院学报,2006,19(2):13-17.
    [145]刘高.高应力区结构性流变围岩稳定性研究(博士学位论文)[D].成都:成都理工大学,2001.
    [146]张广祥,张志强.地下工程设计与施工中的岩石力学问题[J].铁道工程学报.1998,增刊.
    [147]Tanimoto,Toshio,Ishikawa,et.Residual strength degradation process and proof tests for frp subjected to various tension-compression cyclic loadings[J].Journal of the society of materials science.Japan,1984,v,33,n 364,p34-40.
    [148]铁道第二勘察设计院.铁路隧道设计规范(TB10003-2005,J449-2005)[S].中国铁道出版社,2008.
    [149]王树栋、刘开云.长大隧道软弱围岩施工大变形智能预测方法[J].中国铁道私学.2008,vol.29(2).:82-87.
    [150]张俊艳,冯守中,刘东海.基于RBF神经网络的隧道洞围岩变形预测方法[J],中国工程科学,2005,vol,7(10):87-90
    [151]沈振中,倪治斌,赵坚.水工洞室围岩稳定性的非连续变形分析[J].岩石勺学与工程学报.2003,22(增1):2299-2303.
    [152]朱以文,周颖,徐金虎.大位移分析中DDA/流形元计算模型研究[A].中国土木工程学会计算机应用分会第届年会土木工程计算机应力应用文集[C],1999.
    [153]姜云.公路随道工程围岩大变形的预测预报及对策研究[D].成都理工大学博士论文,2004.
    [154]Gysel,M. Design of tunnels in swelling rock[J].Rock mechanics and rock engineering,1987,v 20,n 4,219-242.
    [155]wittke,Walter,Pierau.et.3D Stability analysis of tunnels in jointed rock.ASCE,1976,V,3,P1401-1418.
    [156]Anagnostou G.A Model for Swelling Rock in Tunneling[J].Rock Mech. Rock Enging.1993,26(4):307-331.
    [157]张玉军,唐仪兴.输水隧洞流变-膨胀性围岩稳定性的有限元分析[J].岩土力学.2000,vol,21(2):159-162
    [158]张成良,侯克鹏,李克钢.凝灰岩巷道变形失稳机理及处置对策研究[A],第三届全国岩土与工程学术大会论文集,2009,517-521:
    [159]郭志飚,胡永光,任爱武等.深部膨胀性软岩巷道修复技术研究[J].2006,23(3):316-319.
    [160]赵长海,周小兵,贺建国等.极软岩隧洞的设计与施工[J].岩石力学与工程学报,2006,25(增1):3034-3039.
    [161]万援朝.二次支护原理在深井软岩硐室支护中的实践[J].煤炭科学技术,2006,34(9):5-7.
    [162]程桦,孙钧.软弱围岩复合式隧道衬砌力学机理非线性大变形数值分析[J].岩石力学与工程学报.1997,16(4):327-336
    [163]杨建平,陈卫忠,郑希红.含软弱夹层深部软岩巷道稳定性研究[J].岩土力学.vol29(10),2008:2864-2870
    [164]何满潮,张国锋王桂莲等.深部煤巷底臌控制机制及应用研究[J].岩石力学与工程学报.vol.28(suppl),2009:2593-2598
    [165]侯朝炯,何亚男,李晓等.加固巷道帮、角控制底臌的研究[J].煤炭学报.vol.20(3):229-234,1995.
    [166]周宏伟,谢和平,董正亮.深部软岩巷道喷射钢纤维混凝土支护技术[J].工程地质学报.2001,09(04):393-398.
    [167]何满潮,景海河,孙晓明.软岩工程力学[M].北京:科学出版社,2002.
    [168]刘志春,李文江,朱永全等.软岩大变形隧道二次衬砌施作时机探讨[J].岩石力学与工程学报,2008,vol,27(3):580-588.
    [169]邓林,邓荣贵,付小敏等.泥巴山隧道流纹岩加卸围压力学特性研究[J].岩石力学与工程学报,2009,vol,28(增1):3150-3155.
    [170]Goodman R E. Subaudible noise during compression of rock.Geo Soc Am Bull,1963,74;487-490.
    [171]Michihiro K,Hata K,Fujiwara T,et al Study on Estimating Initial Stress and Predicting Failure on Rock Masses by Acoustic Emission Balkama,Rotterdam:Rock at Great Depth.1989,1025-1032.
    [172]陈勉,陈治喜,金衍.用斜井岩芯的声发射效应确定深层地应力[J],岩石力学与工程学报.1998,17(3):311~314.
    [173]韩金良,吴数仁,谭成轩等.东秦岭东江口花岗岩体水压致裂法与AE法地应力测量对比研究[J],岩石力学与工程学报.2007,26(1):81-86.
    [174]PANSIYAN L L,KOLEGOV S A,MORGUNOV A N. Stress memory studies in rocks by means of acoustic emission[C]//Proceedings of the International Conference Mechanics of Jointed and Faulted Rock.Rotterdam:A.A.Balkema,1990:435-439.
    [175]LAVROV A. Kaiser effect observation in brittle rock cyclically loaded with different loading rates[J],Mechanics of Materials,2001,33(1):669-677.
    [176]李元辉,袁瑞甫,,赵兴东.不同应力路径对岩石声发射Kaiser效应的影响[J],东北大学学报(自然科学版).2007,28(4):576-579.
    [177]Lockner D. The role of acoustic emission in the study of rock fracture[J].Int JRock Mech Min Geomech Abstr,1993,3(7):883-899.
    [178]CHANG C D,MARK D Z, ABB AS K.Empirical relation between rock strength and physical properties in sedimentary rocks[J].Journal of Petroleum Science and Engineering,2006,51(3/4):233-237.
    [179]刘允芳,刘元坤.单钻孔中水压致裂法三维地应力测量的新进展[J],岩石力学与工程学报,2006,25(Supp.2):3816-3822.
    [180]葛修润,侯明勋.一种测定深部岩体地应力的新方法——钻孔局部壁面应力全解除法[J],岩石力学与工程学报,2004,23(23):3923-3927
    [181]康勇,李晓红,王青海等.隧道地应力测试及岩爆预测研究[J],岩土力学,2005,26(6):959-963.
    [182]徐林生,王兰生,孙宗远等.二郎山公路隧道地应力测试研究[J],岩石力学与工程学报,2003,22(4):611~614
    [183]Angelier J.Determination of the mean principal direction of stresses for a given fault population.Tectonophysics,1979,56:17-26.
    [184]唐荣昌,韩渭宾.四川活动断裂与地震[M],地震出版社,北京,1993
    [185]谢富仁,苏刚,崔效锋等.滇西南地区现代构造应力场分析[J],地震学报,2001,23(1):17~23
    [186]朱俊江,丘学林,詹文欢等.南海东部海沟的震源机制解及其构造意义[J],地震学报,2005,27(3)
    [187]朱俊江,詹文欢,丘学林等.红河断裂带两侧地震震源机制及构造意义[J],大地构造与成矿学,2004,28(3)
    [188]龙思胜,赵珠.鲜水河、龙门山和安宁河三大断裂交汇地区震源应力场特征[J].地震学报.2000.22(5):457~464.
    [189]龙海英,高国英,聂晓红等.乌鲁木奇地区中小地震震源机制解及构造应力场[J].地震.2007,27(3):89~96.
    [190]沈海超,程远方,王京印等.断层对地应力场影响的有限元研究[J].大庆石油地质与开发.2007,26(2):34~37.
    [191]刘平江,刁桂苓,宁杰远.川滇地块的震源机制解特征及其地球动力学解释[J].地震学报,2007,29(5):449~458
    [192]王光钦,丁桂保,刘长虹等.弹性力学[M],北京:中国铁道出版社,2005.
    [193]四川省交通厅公路设计院.四川省雅安经石棉至泸沽高速公路大相岭隧道工程地质详勘报告[R],2007.
    [194]Kaiser P K,McCreath D R,Tannnant D D.Canadian rockburst support handbook[R].Sudbury,Ontario,Canada:Geomechanics Research Centre,1996.
    [195]蒲文龙,张国华.长沟峪煤矿地应力测量及煤巷稳定性分析与控制[J],煤炭工程,2006,10:68-70.
    [196]马秀敏,彭华,李金锁等.襄渝铁路增建二线—新白岩寨隧道地应力测量及其在岩爆分析中的应用[J],地球学报,2006,27(2):181-186
    [197]蒋鹏飞,王跃飞,张志龙等.邵怀高速雪峰山隧道初始地应力场研究[J],中南公路工程,2006,31(2):9-13
    [198]陈秀铜,李璐.锦屏二级水电站引水隧洞区域三维初始地应力场反演回归分析[J],水文地质工程地质,2007,6:55-59
    [199]李金锁,彭华,马秀敏等.大丽线铁路隧道工程地应力三维有限元数值模拟分析[J],岩土工程学报,2006,28(6):800-803
    [200]戚蓝,丁志宏,马斌等.初始地应力场多方程回归分析[J],岩土力学,2003,24(suppl):137-139.
    [201]International Society of Rock Mechanics. Suggested Method for Deformability Determination Using a Stiff Dilatometer[J]. Intern. J. Rock Mech. Mining Sci.& Geomech. Abstr.,1996,33(4): 735-741.
    [202]杨林德.岩土工程问题的反演理论与工程实践[M].北京:科学出版社,1996.
    [203]杨志法,刘竹李.地下工程有限元图谱及其应用[J],地下工程,1982,第11期,33—41.
    [204]冯紫良,杨林德,李成江.初始地应力的反推原理,隧道工程,1983年第3、4期.
    [205]杨林德,黄伟,王聿.初始地应力位移反分析计算的有限单元法[J].同济大学学报,1985,4:69-77
    [206]郭怀志,马启超,薛玺成.岩体初始地应力场的分析方法[J].岩土工程学报,1983,5(3):64-75.
    [207]朱伯芳.有限单元法原理与应用[M].北京:中国水利电力出版社,1998.
    [208]张金明,章青,李彦彬.岩爆应力状态研究[J].安徽建筑工业学院学报(自然科学版),2002,10(4):17-19

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700