用户名: 密码: 验证码:
堡镇软岩隧道大变形机理及控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:复杂条件下地下洞室及其围岩的稳定性历来受到关注,尤其是高地应力、地下水发育和较为破碎的围岩,变形破坏非常严重且持续时间长,同时又表现出时间上和空间上不均匀、不对称等诸多特性,开挖、支护和维护难度大。由于这类围岩显示出显著的时间特性,因此,以前的研究者多基于岩石流变观点,用连续介质流变理论来研究围岩的流变性及巷道变形破坏的时间相关性,而对其岩体结构,则认为是确定的和固定不变的。工程实践表明,这些研究尚未能揭示层状围岩大变形本质,基于这些研究而采取的支护措施,效果不甚理想。
     堡镇隧道地质条件复杂,局部地段处于高应力区,围岩变形具有变形速度快、变形量大且破坏严重、持续时间长的特征,同时又表现出变形不对称和不均匀的特征。本文依托堡镇隧道工程实践进行了大量的室内试验研究:
     (1)考虑围岩赋存环境,对不同岩性岩石的物理力学性质参数进行测定,得到了围压和饱水时间对软岩峰值强度、残余强度和峰后体积变化的影响规律;
     (2)根据大变形段掌子面围岩分布有软弱夹层的岩层组合结构,利用常规三轴压缩试验研究夹层厚度对岩石强度的影响规律,根据试件破坏形态,提出夹层破坏前后与围岩的相互作用关系,分析了夹层引起围岩结构变形失稳的动态过程,建立了含软弱夹层层状岩体结构系统力学模型,研究了变形失稳机理;
     (3)根据饱水试验结果和现场支护结构应力的监测数据,进行了低围压条件下的三轴压缩试验,探求支护阻力对软岩强度和体积应变的影响规律,在控制围岩大变形方面,指出了“强支硬顶”的支护方式在理论上不合理、实践中不可行,提出了峰后软化阶段末尾和残余阶段开始作为二衬的最佳施作时机。
     根据试验结论及大量的现场调研及丰富的测试和监测资料,同时查阅并参考了国内外较多类似地下工程实例,发现这类高应力区的层状软弱围岩的流变性及其它相关特征,不是由岩石变形引起,而是由地层结构的时间相关性变形所致。据此,提出堡镇隧道围岩变形的3种模式:①围岩岩性控制类,②层状岩层结构控制类,③围岩赋存环境控制类。岩层结构控制类大变形是堡镇隧道围岩大变形的主要形式,是指在高应力区完整性差的软弱围岩体内,由于岩体开挖,岩层结构依应力状态而发生一系列复杂的时间相关性的力学行为和力学响应,使工程岩体表现出显著流变的现象或过程。
     利用多种实测资料,从围岩位移和变形破坏的时间和空间分布特征,论证了层状围岩动态过程,分析了地层结构随时间而变化的演化机理,探讨了导致围岩产生大变形及其它相关特性的原因,在此基础上,总结了围岩的动态特征、变形机制和模式,建立了不同岩性、不同地层结构围岩变形的力学模型,解释了围岩变形具有不对称性的原因,为不对称支护和不对称预留变形量提供了理论依据。在二衬的实践中,认为“当初期支护变形量达到总变形量的70%时尽快施作二衬”比较符合现场实践,提出了控制软岩隧道大变形的原理和方法和高地应力大变形段围岩支护的6条原则,形成了系统的关键技术。
     层状地层结构变形失稳引起围岩大变形的观点从动态上和本质上认识岩体演化过程及其变形破坏机理,突破了关于岩体结构及其特征的静态认识,研究成果在堡镇隧道应用后可以做到措施超前、到位,确保了软岩地段的快速、安全施工该研究成果也可为同类型复杂条件下的地下工程研究及支护提供借鉴和参考。
ABSTRACT: It has been greatly concerned to study the stability of underground caverns and theirs surrounding rock masses under very complex geological environments. High earth stress, deep-buried, rich groundwater and very weak and cracked rock masses make self-stability of the tunnel be unfavorable, it is difficult to excavate, support, and maintain. During construction, The high deformation rate, intense and long-time deformation are the basic characteristics; At the same time, the deformation shows asymmetrical features and uniformities. Surrounding rock masses mentioned as above have remarkable rheological property, but previous researchers consider that the rheology of rock masses resulted from rocks and that structure of rock masses is determinate and static and does not change in spite of any condition, so their researches had been carried out by rheology theory of continua. Engineering practices show that these studies do not reveal the key of deformation and failure of surrounding rock masses with above-mentioned properties and those supports adopted on the basis of their research results can not be take effects.
     Baozhen tunnel is the only soft rock tunnel and the key project in the Yi-wan railway. The very complex geological environments, such as high earth stress, deep-buried, rich groundwater, very weak and cracked rock masses and bias pressure along the rock seam, make self-stability of the tunnel be unfavorable. During construction, The high deformation rate, intense and long-time deformation are the basic characteristics; At the same time, the deformation shows asymmetrical features and uniformities. Carrying out a series r of laboratory testing research on Buzhen tunnel engineering practice:
     (1) According to the environment of surrounding rock occurrence, different physical and mechanical parameters of rock were measured, the Impact law of confining pressure and saturated time on peak strength, residual strength and post-peak volume change was obtained;
     (2) According to the rock laminated composite structures which tunnel face section distribute weak interlayer in large deformation sector, the law between interlayer thickness and rock strength was researched through conventional triaxial compression tests, the relation between interlayer and surrounding rock was put up before and after the interlayer damaged according to the specimen failure mode, the dynamic process of surrounding rock damaged caused by interlayer failure was studied, mechanical model of structural system was established to study the mechanism of deformation and yield;
     (3) According to test results and monitoring data of stress on supporting structure, a series of triaxial compression tests were conducted under conditions of low confining pressure, and explore the influence law of support resistance to the soft rock strength and the volumetric strain, in controlling aspects of large deformation of surrounding rock pointed out that the "strong support" was unreasonable support method in theory, in practice not feasible, put forward the best reasonable time for lining was at the end stage of post-peak softening and residual phase begins.
     Take Baozhen tunnel as an example, on the basis of detail site investigation and lots of data tested, measured and monitored in laboratory and on site, it is found that rheology and other characteristics of jointed and soft surrounding rock in high stress area resulted from not rocks but strata structure. It is complicated time-dependent deformation of structural distortion that results in large deformation of rock masses. Based on calculation and analysis by these data, three kinds of types of deformation were put forward:rock property controlling type, strata structure controlling type and environment in which surrounding rocks existed controlling type, pointed out that the second type was the key type which provoking large deformation. The large deformation of strata structure controlling type is defined as the phenomena or process in which surrounding rocks put up rheology feature due to the complex time-dependent behaviors and response of strata structure in the course of stress redistribution by excavation of soft jointed rock mass in high stress area.
     By analyzing spatial and temporal characteristics of displacements and failure of surrounding rock, the strong rheology and other correlated properties during dynamic evolutionary process of surrounding rocks are discussed. The mechanism and its characteristics and pattern of deformation were also discussed. On this basis, the dynamic characteristics of the surrounding rock and deformation types were summed up, the mechanical models of deformation were given respectively according to different strata structures, the principles and methods of controlling large deformation in soft tunnel were put up. At last, systemic technologies for building the tunnel in high earth stress and soft rock area were formed.
     From the viewpoint of large deformation provoked by strata structure failure, the dynamic evolutionary process and deformation mechanism were understood, which modifies the classic knowledge completely. The research results obtained form the author of this dissertation applied to Baozhen tunnel ensure various measures of controlling large deformation done in advance, and can also be used and referred for other similar underground works under complicated conditions.
引文
[1]张顶立,王梦恕,高军.复杂围岩条件下大跨隧道修建技术研究[J].岩石力学与工程学报,2003,22(2):290-296.
    [2]郑雨天.岩石力学的弹塑粘性理论基础[M].北京:煤炭工业出版社,1988.
    [3]蔡美峰,何满潮,刘东燕.岩石力学与工程[M].北京:科学出版社,2002,307~326.
    [4]凌贤长,蔡得所.岩体力学[M].哈尔滨:哈尔滨工业大学出版社,2002.
    [5]何满潮,景海河,孙晓明.软岩工程力学[M].北京:科学出版社,2002.
    [6]朱维申,何满潮.复杂条件下围岩稳定性与岩体动态施工力学[M].北京:科学出版社,1996.
    [7]张顶立,王悦汉,曲天智.夹层对层状岩体稳定性的影响研究[J].岩石力学与工程学报,2000,19(2):140-144.
    [8]关宝树.隧道工程维修管理要点集[M].北京:人民交通出版社,2004.
    [9]孙钧.岩石力学的若干进展[A].见:中国岩石力学与工程学会第四次学术大会论文集[C].北京:中国科学技术出版社,1996.
    [10]陈宗基.关键在于正确的概念[J].水文地质与工程地质,1982(4):5-10.
    [11]刘高.高应力区结构性流变围岩稳定性研究(博士学位论文)[D].成都:成都理工大学,2001.
    [12]P.Lunardi. The influence of rigidity of the advance core on the safety of tunnel excavations[J]. Tunnel, 1998(8):32-44.
    [13]POUYAA, GHOREYCHI M. Determination of rock mass strength properties by homogenization[J]. International journal for numerical and analytical methods in geomechanics,2001,25(13):1285-1303.
    [14]WITTKE W,PIERAU B.膨胀岩石中隧道的修建和设计原理[C].第四届国际岩石力学会议文集.北京:A. A. Balkema,1985:328-352.
    [15]PRIEST S D. Discontinuity analysis for rock/engineering[M]. London:Chapman and Hall,1993.
    [16]PRIEST S D. Hemispherical projection methods in rock mechanics[M]. Boston:Allen and Unwin,1985.
    [17]KAISER P K, MALONEY S,MORGENSTERN N R. Time-dependent behavior of tunnels in highly stressed rock[C]//Proceedings of the 5th Congress of Intentional Society-Rock Mechanics. Rotterdam:A. A. Balkema,1983:329-335.
    [18]GROB H. Swelling and heave in Swiss tunnels[J]. Bulletin of IAEG Krefeld,1976,13:55-60.
    [19]EINSTEIN H H. Design of tunnels in swelling rocks[C]. Proceedings of Design Methods in Rock Mechanics 16th Symposium on Minneapolis. Minneapolis, USA,1979:51-61.
    [20]STEINER W. Swelling rock in tunnels:rock characterization, effect of horizontal stresses and construction procedures[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts,1993,30(4):361-380.
    [21]董方庭,宋宏伟,郭志宏,等.巷道围岩松动圈支护理论[J].煤炭学报,1994,19(1):21-31.
    [22]何修仁.注浆加固与堵水[M].东北工学院出版社.1990.
    [23]贺永年,等.巷道滞后注浆加固与滞后时间分析[J].煤炭学报,1996,(3):240-244.
    [24]杨米加,贺永年.水泥注浆渗流机理初探[J].煤炭学报,1996,(5):481-486.
    [25]康红普.巷道围岩的承载圈分析,岩土力学[J].1996,17(4):84-88.
    [26]康红普.巷道围岩的关键圈理论,力学与实践[J].1997,No1.
    [27]侯朝炯,等著.煤巷锚杆支护技术[M].中国矿盐大学出版社.1992,2.
    [28]李明远,王连国,等著.软岩巷道锚注支护理论与实践.煤炭工业出版社.2001,9.
    [29]孙广忠.岩体结构力学[M].北京:科学出版社,1988.
    [30]安欧.构造应力场[M].北京:地震出版社,1992.
    [31]R. E. Googman.岩石力学原理及其应用[M].北京:水利电力出版社,1990.
    [32]陶振宇.岩石力学理论与实践[M].北京:水利出版社,1981.
    [33]李先炜.岩体力学性质[M].北京:煤炭工业出版社,1990.
    [34]]张悼元,王兰生,王士天.工程地质分析原理[M].北京:地质出版社,1994.
    [35]S. K. Sharan. Analytical solution for stress and displacements around a circular opening in a generalized Hoek-Brown rock[J]. International Journal of Rock Mechanics and Mining Sciences,2008,45(1):78-85.
    [36]Yamaguchi I Y, Kiritani Y. Study on ground-tunnel interactions of four shield tunnels driven in close proximity[J]. Tunnelling and Underground Space Technology,1998,13(3):289-304.
    [37]Itasca Consulting Group, Co. Fast Lagrangian analysis of continua in 3 dimensions(FLAC3D)[R]. Minneapolis: Itasca Consulting Group, Co.,1997.
    [38]朱合华,丁文其.地下结构施工过程的动态仿真模拟分析[J].岩石力学与工程学报,1999,18(5):558-562.
    [39]金丰年,钱七虎.隧洞开挖的三维有限元计算[J].岩石力学与工程学报,1996,15(3):193-200.
    [40]许传华.地下工程围岩稳定性分析方法研究进展[J].金属矿山,2003,(2):34-37.
    [41]杨泽平,李海兵.层次分析法在工程岩体分类中的应用[J].工程地质学报,2006,14(6):830-834.
    [42]中国系统工程学会决策科学专业委员会.决策科学理论与实践[M].北京:海洋出版社,2003.
    [43]谭跃进.定量分析方法[M].北京:中国人民大学出版社,2006.
    [44]王在泉,王建新.局部破碎带渗水条件下海底隧道稳定性的有限元极限分析[J].岩石力学与工程学报,2007,26(增2):3751-3755.
    [45]潘岳,王志强.基于应变非线性软化的圆形硐室围岩弹塑性分析[J].岩石力学与工程学报,2005,3(6):915-920.
    [46]G. Herget. Stress in rock. A. A. Balkema,1988.
    [47]蔡美峰,乔兰,李华斌.地应力测量原理和技术[M].北京:科学出版社,1995.
    [48]薛玺成,王大年,王伟.岩体初始地应力场研究的新进展[A].见:岩石力学新进展[C].沈阳:东北工学院出版社,1989:241-256.
    [49]张有天,胡惠昌.地应力场的趋势分析[J].水利学报,1984(4):31-38.
    [50]杨林德.岩土工程问题的反演理论与工程实践[M].北京:科学出版社,1999.
    [51]王芝银,李云鹏.地下工程位移反分析法及程序[M].西安:陕西科学技术出版社,1993.
    [52]周维垣.高等岩石力学[M].北京:水利电力出版,1990.
    [53]朱焕春,陶振宇.地形地貌与地应力分布的初步分析[J].水利水电技术.1994(1):29-33.
    [54]E. TBrown, E. Hoek Trends in Relationships between measured in-situ stresses and depth. Int. J.Rock.}llech.Mining Science.1978,15(4).
    [55]N.Hast. The state of stress in the upper part of the earth's crust. Tectonophysics,1969(8):169-211.
    [56]中华人民共和国水利部.工程岩体质量分级(GB50218-94)[S].北京:中国计划出版社,1995.
    [57]聂德新.岩体场位特征及其工程应用[J].工程地质学报,2000,8(1):68-72.
    [58]尤明庆,华安增.岩石试样单轴压缩的破坏形式与承载能力的降低[J].岩石力学与工程学报,1998,13(3):292-296.
    [59]蔡美峰,王金安,等.玲珑金矿深部开采岩体能量分析与岩爆综合预测[J].岩石力学与工程学报,2001,20(1):38-42.
    [60]尤明庆,华安增.岩石试样破坏过程的能量分析[J].岩石力学与工程学报,2002,21(6):778-781.
    [61]徐志纶编.弹性力学[M].人民教育出版社.1979,8.
    [62]李如生编著.非平衡态热力学和耗散结构.清华大学出版社.1986,4.
    [63]秦四清.初论岩体失稳过程中耗散结构的形成机制[M].岩石力学与工程学报,2000,19(3):265-269.
    [64]聂德新,等.围压效应与软弱夹层的特理力学特性的相关性研究[J].地质灾害与环境保护.1990.1(2).
    [65]聂德新,符文熹,任光明,等.天然围压下软弱层带的工程特性及当前研究中存在的问题分析[J].工程地质学报,1999.7(4).
    [66]T. Ramamurthy. V K. Arova. Strength predictions for joint rocks in confined and unconfined states. Int. J. Rock Mech. Min. Sci. & Geomech. Abstract.1994(31):9-22
    [67]K. Sugawara, Y. Obara, M. Akimoto, et al. Stability Estimation of large rock cavern by in-situ stress measurement. In:Proc. Int. Symp. on Engineering in Complex Rock Formations.1986:135-141.
    [68]Rodolfo V. de la Cruz, James R.Mulkey.地应力对矿山顶板锚杆稳固性的影响[J].地下工程.67-71.
    [69]陈宗基.地下巷道长期稳定性的力学问题[J].若石力学与工程学报,1982,1(1):1-19.
    [70]罗康成.贵州西部矿区地应力场与软岩巷道变形破坏特征[A].见:中国岩石力学与工程学会[C].北京:中国科学技术出版社,1996.
    [71]陶振宇,杨子文.地应力-岩体性状的一个主要因素[J].水利学报,1982(10):38-43.
    [72]李铁汉.高地应力梯度与岩体物理场[A].见:中国岩石力学与工程学会第四次学术大会论文集[A].北京:中国科学技术出版社,1996:657-663.
    [73]陶振宇.试论高地应力区的岩体特性[J].地下工程,1985.5-9.
    [74]郭志.高地应力地区岩体的变形特性[A].见:全国第三次工程地质大会论文选集[C].成都:成都科技大学出版社,1988.
    [75]薛玺成,郭怀志,马启超.岩体高地应力及其分析.水利学报,1987(3):52-58.
    [76]郭映忠.锦屏二级水电站引水工程区地应力初步研究[J].工程地质学报,1997,5(1):41-46.
    [77]李协生.渔子溪一级水电站压力引水隧洞中岩爆问题的分析探讨闭[J].地下工程.1983(10):14.
    [78]白世伟,朱维申,王可钧.在高地应力区与一个大型地下电站有关的若干岩石力学问题[J].岩石力学与工程学报,1983.2(1):33-39.
    [79]刘克远.二滩水电站枢纽区主要工程地质问题的研究[J].岩石力学与工程学报,1999.7(SUPP):64 -77.
    [80]H. Wanger. Design and support of underground excavation in high stressed rock, Keynote paper. In:Proc. of 6th ISRM Congress, Montreal,1987(3).
    [81]W. D. Ortepp, N. C. Gay. Performance of an experimental tunnel subjected to stresses ranging from 50MPa to 230MPa. In:Proc.4th Symp. ISRM. A. A. Balkema,1984:337-346.
    [82]C. Tanimoto. S.Hata. T. Fujiwara. H. Yoshioka, et al. Relationship between deformation and support pressure in tunneling through overstressed rock. In: Proc.6thInt. Congrress. On Rock Mechanics. Vol.2, 1271-1274:
    [83]E. Hoek. E. T. Brown.岩石地下工程.北京:冶金工业出版社,1986.
    [84]E. T. Brown. J. W. Bray. B. Ladanyi. E. Hoek. Ground response curve for rock tunnels. J.Geotech. Engineering,1993.109(1):15-39.
    [85]R. K. Srivastava, K. G. Sharma. Finite element analysis of tunnels using different yield criteria.In:The 2nd Int. symp. on Numer..Methods in Geotmechanics.1986:381-389
    [86]徐干成,郑颖人.岩土工程中屈服准则的应用研究[J].岩土工程学报,1990(2):93-99.
    [87]C. L. Crouch. A note on post-failure stress-strain dependencies in Norite[J]. int. J. Rock Mech. Min. Sci. Deomech. Abstract.1972,9(2):197-204.
    [88]Borsetto, R. Ribachi. Influence of the strain-sorting of rock masses on the stability of a tunnel.Proc.3rd Int. Conf. Numer. Meth.in Geomech.1979:611-620.
    [89]M. C. Gumusoglu, J. V. Bray, J. O. Watson, et al. Analysis of underground excavations incorporating the strain softening of rock masses. Proc.6th Congr. ISRM Symp., V2,1986:923-928.
    [90]山富二郎,下谷高丽,山口梅太郎.考虑应变软化的弹塑性分析法[J].地下工程,24-29.
    [91]申京涛,李光煌.考虑应变软化的围岩特性曲线[A].见:中国青年学者岩土工程力学及其应用讨论会论文集[C].北京:科学出版社,1994.
    [92]阳友奎.应变软化地层中隧道围岩响应的解析[A].见:中国岩石力学与工程学会第四次学术大会论文集[C].北京:中国科学技术出版社,1996:526-532.
    [93]谭云亮,王泳嘉.巷道围岩塑性状态判定分析方法[J].工程地质学报,1996,4(2):63-68.
    [94]M. Panet et al. Analysis of convergence behind the face of tunnel. Tunnelling,1982.197-204.
    [95]山下幸夫,藤原世夫.隧道施工中围岩性状和稳定性评价之实例[J].隧道译丛,1989(7):53-59.
    [96]于学馥,郑颖人,刘怀恒,等.地下工程围岩稳定分析[M].北京:煤炭工业出版社,1983.
    [97]王思敬,杨志法,刘竹华.地下工程岩体稳定性分析[M].北京:科学出版社,1984.
    [98]久武胜保,樱井春辅,伊滕富雄.软岩隧道的非线性弹塑性状态[J].隧道译丛,1992(1):11-18.
    [99]刘夕才,林韵梅.软岩巷道弹塑性分析[[J].岩土力学,1994.15(2):27-35.
    [100]许宏发.软岩强度和弹模的时间效应研究[J].岩石力学与工程学报,1997,16(3):246-251.
    [101]于学馥,于加,葛树高,等.岩石记忆与开挖理论[M].北京:冶金出版社,1993.
    [102]S.Hibinno.根据大型地下硐室开挖的量测结果对围岩动态的探讨[J].隧道译丛,1985(5):1-13.
    [103]READ R S.20 years of excavation response studies at AECL's underground research laboratory[J]. International Journal of Rock Mechanics and Mining Sciences,2004,41(8):1251-1275.
    [104]MARTINO J B, CHANDLER N A. Excavation-induced damage studies at the underground research laboratory[J]. International Journal of Rock Mechanics and Mining Sciences,2004,41(8):1413-1426.
    [105]BACKBLOM G. Recent experiments in hard rocks to study the excavation response: implications for the performance of a nuclear waste geological repository[J]. Tunnelling and Underground Space Technology,1999,14(3): 377-394.
    [106]NGUYEN T S, BORGESSON L, CHIJIMATSU M, et al. Hydromechanical response of a fractured granitic rock mass to excavation of a test pit-the Kamaishi Mine experiment in Japan[J].International Journal of Rock Mechanics and Mining Sciences,2001,38(1):79-94.
    [107]SAYERS C M. Orientation of microcracks formed in rocks during strain relaxation[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts,1990,27(5):437-439.
    [108]CAI M, KAISER P K, TASAKAY, et al. Generalized crack initiation and crack damage stress thresholds of brittle rock masses near underground excavations[J]. International Journal of Rock Mechanics and Mining Sciences,2004,41(5):833-847.
    [109]KESALL P C, CASE J B, CHABANNES C R. Evaluation of excavation induced changes in rock permeability[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts,1984,21(3):123-135.
    [110]ENQELDER T, PLUMB R. Changes in in-situ ultrasonic properties of rock on strain relaxation[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts,1984,21(2): 75-82.
    [111]MITAIM S, DETOURNAY E. Damage around a cylindrical opening in a britle rock mass[J]. International Journal of Rock Mechanics and Mining Sciences,2004,41(8):1447-1457.
    [112]MOLINERO J, SAMPER J, JUANES R. Numerical modeling of the transient hydrogeological response produced by tunnel construction in fractured bedrocks[J]. Engineering Geology,2002,64f41:369-386.
    [113]MAE JIM AT, MORIOKAH, MORIT, et al. Evaluation of loosened zones on excavation of a large underground rock cavern and application of observational construction techniques[J]. Tunnelling and Underground Space Technology,2003,18(2/3):223-232.
    [114]MAXWELL S C,YOUNG R P, READ R S.A micro-velocity tool to assess the excavation damaged zone[J].International Journal of Rock Mechanics and Mining Sciences,1998,35(21:235-247.
    [115]CAI M, KAISER P K, MARTIN C D. Quantification of rock mass damage in underground excavations from micro-seismic event monitoring [J]. International Journal of Rock Mechanics and Mining Sciences, 2001,38(7):1135-1145.
    [116]R. E. Goodman, R. L. Taylor, T. L. Brekker. A model for the mechanics of jointed rock. J. Soil Mech. Found Division.1968,94(3):637-659.
    [117]潘别桐,黄润秋.工程地质数值法[M].北京:地质出版社,1994.
    [118]栾茂田,林阜,W. F. CHEN,等.岩土力学中非连续变形分析方法的FEM理论解释[A].见:中国青年学者岩土工程力学及其应用讨论会论文集[C].北京:科学出版社,1994:57-65.
    [119]钱令希,张雄.结构分析中的刚性有限元法[J].计算结构力学及其应用,1991,8(1):1-14.
    [120]卓家寿,赵宁.不连续介质静、动力分析的刚体一弹簧元法[J].河海大学学报,1993,21(6):34-43.
    [121]H. Kiyama, T. Nishimura, H. Fujimura, et al. A Proposal of the flow element method for large deformation of a continuum and its application coupled with the distinct element method to ananalysis of stacked-drift-type tunnels. In:Proc. of 8th ISRM Cong. Tokyo. A. A. Balkema,1996:607-610.
    [122]H. Yoshida. H. Horii. H. Uno. Micromechanics-based continuum theory for jointed rock mass and analysis of large-scale cavern excavation. In:Proc. of 8th ISRM Cong. (Tokyo). A. A. Balkema,1996: 689-692.
    [123]G. S. Desai. An application of FEM for underground structures with nonlinear materials and joints. In: Proc. 5th Int. Congr. on Rock Mechanics.1981:209-216.
    [124]B. Singh. Continuum characterisation of jointed rockmass. Int. J. Rock Mech.&. Min. Science. 1973(10):311-349.
    [125]王泳嘉,邢纪波.离散单元法及拉格朗日元法及其在岩土力学中的应用[J].岩土力学,1995,16(2):1-14.
    [126]王泳嘉,邢纪波.离散单元法及其在岩土工程中的应用[M].沈阳:东北工学院出版社,1991.
    [127]刘锦华,吕祖珩.块体理论在工程岩体稳定性分析中的应用[M].北京;水利电力出版社,1986.
    [128]石根华.数值流形元方法与非连续变形分析[M].北京:清华大学出版社,1997.
    [129]周维垣,杨若琼,剡公瑞.流形元法及其在工程中的应用[J].岩石力学与工程学报,1996,15(4):21 1-218.
    [130]王芝银,王思敬,杨志法.岩石大变形的流形方法[J].岩石力学与工程学报,1997,16(5):399-404.
    [131]邬爱清,任放,董学晟.DDA数值模型在岩体工程中的初步应用研究[J].岩石力学与工程学报,1997,16(6):411-417.
    [132]朱以文,曾又文,陈明洋.岩石大变形分析的增量流形方法[J].岩石力学与工程学报,1999,18(1):1-5.
    [133]王水林,葛修润.流形元方法在模拟裂纹扩展中的应用[J].岩石力学与工程学报,1997,16(6):405-410.
    [134]S.K.Sharan. Elasto-brittle-plastic analysis of circular opening in Hoek-Brown media[J]. Int. J. Rock Mech. Min. Sci.2003,40(6),817-824.
    [135]SUN Jin-shan, LU Wen-bo, ZHU Qi-hu, CHEN Ming. Elasto-plastic analysis of circular tunnels in jointed rock masses satisfy the Hoek-Brown failure criterion[J]. Journal of China University of Mining and Technology,2007,17(3):393-398
    [136]林杭,曹平,赵延林,等.强度折减法在Hoek-Brown准则中的应用[J].中南大学学报:自然科学版,2007,38(6):1219-1224
    [137]Kyung-Ho Park, Bituporn Tontavanich, Joo-Gong Lee. A simple procedure for ground response curve of circular tunnel in elastic-strain softening rock masses [J]. Tunnelling and Underground Space Technology, 2008,23(2):151-159.
    [138]Youn-Kyou Lee, S. Pietruszczak. A new numerical procedure for elasto-plastic analysis of a circular opening excavated in a strain-softening rock mass[J]. Tunnelling and Underground Space Technology, 2008,23(5):588-599.
    [139]李宗利,任青文,王亚红.考虑渗流场影响深埋圆形隧洞的弹塑性解[J].岩石力学与工程学报,2004,23(8):1291-1295.
    [140]Seok-Won Lee, Jong-Won Jung, Seok-Woo Nam, In-Mo Lee. The Influence of Seepage Forces On Ground Reaction Curve of Circular Opening[J]. Tunnelling and Underground Space Technology,2006, 22(1):28-38.
    [141]荣传新,程桦.地下水渗流对巷道围岩稳定性影响的理论解[J].岩石力学与工程学报,2004,23(5):741-744.
    [142]Dimitrios Kolymbas, Peter Wagner. Groundwater ingress to tunnels-The exact analytical solution[J]. Tunnelling and Underground Space Technology,2007,22(1):23-27.
    [143]李建林.卸荷岩体力学[M].北京:中国水利水电出版社,2003.
    [144]王贤能,黄润秋.岩石卸载破坏特征与岩爆效应[J].山地研究,1998,16f41:281-285.
    [145]徐则民,黄润秋,罗杏春,等.静荷理论在岩爆研究中的局限性及岩爆岩石动力学机制的初步研究[J].岩石力学与工程学报,2003,22(8):1255-1262.
    [146]易长平,卢文波,许红涛,等.岩体开挖过程初始应力的瞬态卸荷效应研究[J].岩石力学与工程学报,2005,24(增1):4750-4754.
    [147]卢文波,陈明,严鹏,等.高地应力条件下隧洞开挖诱发围岩振动特征研究[J].岩石力学与工程学报,2007,26(增1):3293-3299.
    [148]徐则民,吴培关,王苏达,等.岩爆过程释放的能量分析[J].自然灾害学报,2003,12(3):104-110.
    [149]陈顺,姚孝新,耿乃光.应力路径、岩石的强度和体积膨胀[J].中国科学,1979,22(11):1093-1100
    [150]吕爱钟,焦春茂.岩石力学中两个基本问题的探讨[J].岩石力学与工程学报,2004,23(23):4095-4098.
    [151]HAZZARD J F, YOUNG R P. Dynamic modeling of induced seismicity[J]. International Journal of Rock Mechanics and Mining Sciences,2004,41(12):1365-1376.
    [152]TANG C A,KAISER P K. Numerical simulation of cumulative damage and seismic energy release during brittle rock failure-pan Ⅰ:fandam entals[J]. International Journal of Rock Mechanics and Mining Sciences,1998,35(2):113-121.
    [153]哈秋龄,李建林,张永兴,等.节理岩体卸荷非线性岩体力学[M].北京:中国建筑工业出版社,1998.
    [154]于亚伦.岩石动力学[M].北京:北京科技大学出版社,1990.
    [155]严鹏,卢文波,周创兵.非均匀应力场中初始应力动态卸载所诱发的围岩振动分析[J].岩石力学与工程学报,2008,27(4):773-781.
    [156]沈军辉,王兰生,王青海,等.卸荷岩体的变形破裂特征[J].岩石力学与工程学报,2003,22(12):2028-2031.
    [157]李天斌,王兰生.卸荷应力状态下玄武岩变形破坏特征的试验研究[J].岩石力学与工程学报,1993,12(4):321-327.
    [158]王贤能,黄润秋.岩石卸荷破坏特征与岩爆效应[J].山地研究,1998,16(4):281-285.
    [159]陶履彬,夏才初,陆益鸣.三峡工程花岗岩卸荷全过程特性的试验研究[J].同济大学学报(自然科学版),1998,26(3):330-334.
    [160]李宏哲,夏才初,闫子舰,等.锦屏水电站大理岩在高应力条件下的卸荷力学特性研究[J].岩石力学与工程学报,2007,26(10):2104-2109.
    [161]高春玉,徐进,何鹏,等.大理岩加卸载力学特性的研究[J].岩石力学与工程学报,2005,24(3):456-460.
    [162]谢红强,何江达,徐进.岩石加卸载变形特性及力学参数试验研究[J].岩土工程学报,2003,25(3):336-338.
    [163]杨小艳,王岳,黄达.大型硬岩地下洞室围岩二次应力场特征弹脆塑性分析[J].水文地质工程地质,2007,(5):6-11.
    [164]CAI M, KAISER P K, TASAKAY, et al.Generalized crack initiation and crack damage stress thresholds of brittle rock masses near underground excavations[J].International Journal of Rock Mechanics and Mining Sciences,2004,41(5):833-847.
    [165]XTR01-01型微机控制电液伺服岩石三轴试验仪使用说明书,长春市新特技术有限责任公司.
    [166]Tan Tjong-kie, Kang Wen-fa. Lock in stress, creep and dilatancy of rocks and constitutive equation.Rock Mechanics.1980,13:5-22.
    [167]陈宗基,康文法.岩石的封闭应力、蠕变和扩容以及本构方程[J].见:第四届国际岩石力学会议论文集[C].北京:冶金工业出版社,1985:499-51.
    [168]陈至达,有理力学[M].北京:北京大学出版社,1988.
    [169]孙钧.岩土材料流变及其工程应用[M].北京:中国建筑工业出版社,1999.
    [170]Wang Y. Ground response of circular tunnel in poorly consolidated rock[J]. ASCE Journal of Geotechnical and Geoenvironmental Engineering,1996,122:703-708.
    [171]黄与宏.板结构[M].北京:人民交通出版社,1992,1-37.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700