用户名: 密码: 验证码:
分布式水文模型构建及在渭河流域水环境解析中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水文循环是联系地球系统中地圈—生物圈一大气圈的纽带,水文循环决定着水资源形成与演变规律,也决定着流域的水环境特性。因此,开展水文循环系统的研究对流域水环境的可持续发展具有重要的意义。由于水文循环过程十分复杂,流域水文模型逐渐成为研究水文循环规律、进行流域水文系统模拟的必然结果,同时也是全面把握水文过程的作用机理、系统评价流域水资源演变规律、客观发现人与水及生态之间存在的不和谐问题等的有效工具。
     分布式水文模型(distributed hydrological model)以水文科学的理论知识为基础,针对流域水文系统的空间分布性和非线性特点,从流域水文循环的物理机制入手,充分考虑流域各处的地形、地貌、土壤、植被、土地利用和降水等基础信息的空间分布特征及变化,通过模拟水文循环的各个环节,全方位获悉流域各水文要素的状态及变化规律。
     渭河是黄河的第一大支流,流经甘肃、宁夏、陕西三省(自治区),自西至东横贯富饶的关中平原。渭河流域不仅在黄河的治理和合理开发中占有重要地位,在区域经济发展和西部大开发中也具有重要的战略意义。随着经济社会的快速发展和人口的增长,受自然变化和人类活动的影响,渭河流域尤其是中下游地区出现了河流流量减小、水资源短缺、水污染加剧和水环境恶化等问题,人与自然的冲突加剧,损伤了流域及社会的可持续发展。因此,迫切需要充分熟谙渭河流域的水文循环规律和水资源信息,并正确认识自然变化和人类活动所引起的流域水文效应,以保护和改善流域水环境,促进人与自然和谐相处。
     论文在已有水文循环系统的作用机制及分布式水文模型研究成果的基础上,基于GBHM (Geography-Based Hydrological Model)模型的方法,引入“山坡”单元对流域进行离散化,构建了基于单元地貌的分布式水文模型。模型以地理信息系统(GIS)和遥感(RS)为技术支持,在流域数字高程模型(DEM)的基础上,利用计算机充分提取流域的地形、地貌特征等水文参数信息。通过对流域进行空间离散,逐级划分流域为若干子流域,子流域沿汇流长度再依次划分为一系列汇流区间,每个汇流区间内又包含若干几何相似的“山坡”单元,最终作为流域水文模拟的基本计算单元。在每一个水文计算单元上,利用模型推求降雨产流及地面径流,再进行河道汇流模拟,求出每个子流域的出口断面流量,以实现对整个流域的坡面产流、地面径流、河道汇流等水文过程的模拟。
     论文面向渭河流域的自然状况、径流特性及水环境现状,将已构建的基于单元地貌的分布式水文模型应用于渭河流域,系统分析了渭河流域陕西片的水文循环规律、径流分布及水资源变化等特性。对流域内的每个“山坡”单元,根据多种土地利用和土壤类型进行组合,可将每个“山坡”单元概化为对称坡面上沿河道方向平行排列的一系列矩形,每个矩形代表一种土地利用和土壤类型的组合,每个矩形所产生的径流均直接汇入子流域的主河道。在“山坡”单元的坡度、坡长、土地利用和土壤类型等水文要素已知的情况下,对每个水文计算单元进行水文过程模拟,并通过模型输出。通过对渭河干流主要断面的流量模拟结果与实测值的比对,二者吻合较好,说明借助基于单元地貌的分布式水文模型对渭河流域复杂的水文循环过程进行模拟是可行的,能够充分反映流域下垫面的空间特性对水文过程的影响。
     认识气候和流域下垫面等变化条件下的水文响应特征,有效预测流域径流和水资源的变化,是“维持健康渭河、实现人水和谐”的科学基础。为了鉴别降雨及土地利用对流域径流的影响,定量描述流域水环境的不确定性变化,本文接着建立了运用分布式水文模型预测流域径流变化规律的情景分析方法。结合渭河流域陕西片的降雨变化趋势,在现状自然条件以及人类活动的基础上,随机设定了一系列降雨和土地利用情景,通过构建的基于单元地貌的分布式水文模型,有效揭示了降雨及土地利用对流域径流及水文循环的影响效应,探讨了渭河流域陕西片的水环境不确定性问题。研究结果表明,对于不同的降雨情景,年降雨总量对年径流总量影响显著,说明渭河流域陕西片的地表水资源主要取决于降雨资源。但是,由于渭河流域陕西片地处干旱半干旱地区,降雨量较少而蒸发量较大,伴随着可能的土地利用方式改变,流域片的径流及水文循环的响应并不显著。
     论文针对渭河干流陕西段水量及水质的变化趋势与波动性,以基于单元地貌的分布式水文模型为框架,关联河流水质模型,构建了分布式水文水质耦合模型,同步模拟了渭河干流陕西段的流量和主要水质的变化趋势与波动性,以及主要污染物的空间分布,对渭河流域陕西片的水环境安全进行了评价和预测。结果表明,渭河流域陕西片水环境安全的未来趋势依然严峻,河流生态健康受到严重威胁,有必要对渭河流域的水环境污染进行修复,以保障流域水环境安全,实现可持续发展和构建和谐社会。
The hydrological cycle is the connection of the earth circle-biocycle-atmosphere system. So, the hydrological cycle decides the formation and evolution pattern of water resources, and the water environment characteristic in a specific basin.Therefore, the research about hydrological cycle has an important implication to keep a basin with sustainable development. Because of the very complicated hydrology process, the hydrological model has inevitable becomes a power tool for studying hydrological cycle and simulating hydrology system. At the same time, the hydrological model is gradually becoming a power tool for overall grasping the laws of the hydrology process mechanism, scientific evaluating the water resources and its evolution pattern, and objective discovering the disharmony problem among human, water and ecosystem.
     The aim of the distributed hydrological model is to simulate each aspect during hydrological cycle with taking the basic knowledge of hydrology science as its foundation. Due to the spacial and non-linear characteristics of the hydrological system in a basin, the model starts with physical mechanism of the hydrological cycle, with adequately considering landform, geography, soil type, vegetation, land use and rainfall overall the basin, in order to comprehensively grasping the status and change of the main hydrological factor in a basin.
     The Weihe River is the biggest distributary of the Yellow River, flowing from west to east through three provinces (autonomous region) in Gansu, Ningxia and Shaanxi.The Weihe River basin not only significantly contributes to the management in the Yellow River, and occupies an important role in Shaanxi economy development, but also has an important strategic meaning in the west development. With the development of productive forces and the population growth, the conflict of the human and nature is increasingly severe, more and more problems appeared in the Weihe River basin such as the stream flow is decrease, the water pollution is serious, the hydrological disaster is severe, resulting in the deterioration of water environment, and the ecological enviroment in the watershed is damaged. All these issuses will prevent the sustainable development of the watershed and the community. Therefore, the research of the hydrological circle and the water environment in the Weihe river basin is of great significance. For promoting the harmony between human and nature, we need know well the theory of the hydrological cycle and the chang of water resources, and understand correctly the hydrology effect on the nature chang and the human activity in the Weihe river basin. On the basis of above scientific research, the protection and improvement for the water environment in Weihe river basin will be carried out accordingly.
     First, on the foundation of the water recycle mechanism and the research achievement on the distributed hydrological model, according to "hillslope" method, a geography based hydrological model was constructed in this paper. The model takes geography information system(GIS) and remote sensing(RS) as its technique supports, and withdraws the hydrology parameter informations such as geography and geography characteristic on the foundation of the digital elevation model (DEM). Accordingly, the whole basn is divided into some sub-basin, fter these Carrying on space through a convection area is long-lost, pursue class demarcation river valley is some sub-river valleys, sub-river valley along with remit to flow length again one by one in order divide the line to remit to flow zone for a series, each one remits to flow inside the zone again include some several what likeness of unit in"hillside" is finally the basic calculation unit that the river valley hydrology imitates.On each hydrology calculation unit, make use of model to reason rain to produce to flow and the ground path flow, again carry on course of river to remit to flow emulation, beg the exit cross section of an each statures river valley discharge, produce to flow to the whole ascent noodles of river valley by realization, the ground path flow, the course of river remit the emulation of flowing the etc. hydrology process.
     Secondly, for the natural state of the runoff and water quality characteristics in Weihe River basin, the constructed geography based hydrological model is applied to analyzing the main problem of the water environment in Weihe River basin. The hydrological components, including runoff generation from the hillslopes and the flow routing in the river network are modeled using physically-based approaches. The hydrological characteristics, the change of the flow and water quality, and the law of formation and transformation of water resources in Weihe River basin is also studied. The whole basin is divided into a number of sub-basins firstly, each sub-basin along the convergence of the length of interval is then divided into a series of convergence, and each convergence zone contains a number of geometric similarity of the hillslope unit as the basic calculation of hydrological modeling unit. Using the hillslope unit, the net rain of each hydrological unit is calculated firstly, then, the convergence of river network each sub-basin is calculated, and the whole export flow of each sub-basin is finally obtained. According to this simplified calculation method, the basin-wide hydrological processes is generalized and implemented. The results of this paper showed that the construction of the integrated hydrological and quality model can give a better simulation and forecast with less number of mesh and high-precision process, and has been satisfied with the analytical results of the water environment in the Weihe River basin. Through applying the model in the Weihe River basin to simulate natural water circle, the features and the applicability was well verified. The using of Basic Hydrology Unit could not only reflect the human activities impacting the rainfall-runoff process wit h physics-based parameters, but also greatly reduce the computation time.
     Roundly grasping the hydrology respond to the change of climate and characteristic in a basin, and effectively predicting the future trend of runoff, hydrological cycle and water resources in Weihe River basin are the science foundation to "maintaining healthy Weihe River, and achieveing human and water harmony". in order to explore climate change and human activities on water environment in response to the Weihe River basin, a quantitative description of the uncertainty change in water environment is discussed. The different rainfall and land-use scenarios are set to simulate the change and trend in the future of hydrology, water quality, water resources and water environment in the Weihe River basin, also using the integrated hydrological and quality model as the technical support. Finally, an objective assessment of the influence of natural changes and human activity on the uncertainty of the water environment changes in Weihe River basin is given. At the same time, the water quality under the different rate of flow in the main stream of the Weihe River in Shaanxi Province is evaluated and predicted.
     Finally, a distributed coupling model based on the geography based hydrological model and the river quality model was established in this paper, and the discharge and the quality of the main section on the Weihe River in Shaanxi piece was simulated simultaneously in order to reflect the trends of the amount of water and water quality changes. Accordingly, the spatial distribution of the main pollutants and the safety evaluation of water environment in Weihe River basin are also made. The results showed that water environment situation of Weihe River basin is still grave and serious, and it threats to the ecological health of river. On this basis, the proposal to restoring the water quality of Weihe River is proposed in order to protecting the water environment security, achieving sustainable development and building a harmonious society.
引文
[1]左其亭,王中根.现代水文学[M].郑州:黄河水利出版社,2002.
    [2]赵人俊.流域水文模拟[M].北京:水利电力出版社,1984.
    [3]文康,等.地表径流过程的数学模拟[M].北京:水利电力出版社,1991.
    [4]袁作新.流域水文模型[M].北京:水利电力出版社,1990.
    [5]任立良.流域水文物理过程的数字模型研究[D].河海大学博士学位论文,1999.
    [6]陈志恺,王浩,汪党献.西北地区水资源配置生态环境建设和可持续发展战略研究[M].北京:科学出版社,2004.
    [7]王文科,王钊,等.关中地区水资源分布特点与合理开发利用模式[J].自然资源学报,2001,16(6):499-504.
    [8]左其亭,陈曦.面向可持续发展的水资源规划与管理[M].北京:中国水利水电出版社,2003.
    [9]吴险峰,刘昌明.流域水文模型研究的若干进展[J].地理科学进展,2002,21(4):341-348.
    [10]芮孝芳.流域水文模型研究中的若干问题[J].水科学进展,1997(1):94-98.
    [1 1]夏军.水文学科发展与思考:21世纪中国水文科学研究的新问题新技术和新方法[M].北京:科学出版社,2001.
    [12]Thian Yew Gan, Gem Fana Biflu. Automatie calibration of conceptual rainfall-runof models: optimization algorithms, catchment conditions, and model structuer[J]. Water resources research,1996,32(12):3513-3524
    [13]赵强,宫辉力,等.分布式水文概念性模型及应用[J].水利水电技术,2005,36(05):4-6.
    [14]赵强,宫辉力,等.月分布式水文概念性模型及应用[J].水文地质工程地质,2005,32(06):34-37.
    [15]康尔泅,程国栋,等.概念性水文模型在出山径流预报中的应用[J].地球科学进展,2002,17(1):18-26.
    [16]Grayson R B, Moore I D, et al. Physically based hydrologic modeling,1:A terrain-based model for investigative purposes[J]. Water Resources Research,1992a,28(10):2639-2658.
    [17]Grayson R B, Moore I D, et al. Physically based hydrologic modeling,1:A terrain-based model for investigative purposes[J]. Water Resources Research,1992b,28(10):2659-2666.
    [18]Beven K J, Kirkby M J. A physically variable contributing model of basin hydrology[J]. Hydrological Sciences Bulletin,1979,24(1):43-69.
    [19]Freeze R A, Harlan R L. Blueprint for a physically-based digitally-simulated hydrological response model[J]. Hydrology,1969(9):237-258.
    [20]Abbott M B, Bathurst J C, et al. An introduction to the European Hydrologiical System-Systeme Hydrologique Europeen, "SHE",1:History and philosphy of a physically-based, distributed modeling system[J]. Hydrology,1986a(87):45-59.
    [21]Abbott M B, Bathurst J C, et al. An introduction to the European Hydrologiical System-Systeme Hydrologique Europeen, "SHE",2:History and philosphy of a physically-based, distributed modeling system[J]. Hydrology,1986b(87):61-77.
    [22]芮效芳.产汇流理论[M].北京:水利电力出版社,1995.
    [23]赵人俊.流域水文模拟[M].北京:水利电力出版社,1984.
    [24]樊明兰.基于DEM的分布式水文模型在中尺度径流模拟中的应用研究[M].四川大学,2004.
    [25]董先勇,樊明兰.基于分布式水文模型的尺度分析[J].东北水利水电,2004,22(9):33-35.
    [26]分布式水文模型理论与方法研究[D].河海大学,2006.
    [27]Garbrecht J, and Martz L. W. The Assignment of Drainage Direction over Flat Surfaces in Raster Digital Elevation Models[J]. Hydrology,1997(193):204-213.
    [28]Martz W, Garbrecht J. Numerical definition of drainage Network and subcatchment Areas from digital elevation models [J]. Computers & Geosciences,1992,18(6):747-761.
    [29]任立良,刘新仁.基于DEM的水文物理过程模拟[J].地理研究,2000,19(4):369-376.
    [30]郭生练,熊立华.基于DEM的分布式流域水文物理模型[J].武汉水利电力大学学报,2000,33(6):1-5.
    [31]王中根,刘昌明,等.基于DEM的分布式水文模型构建方法[J].地理科学进展,2002(5):430-438.
    [32]王中根,刘昌明,等.基于DEM的分布式水文模型研究综述[J].自然资源学报,2003,1 8(2):168-172.
    [33]顾用红,舒振文,等.DEM在流域水文特征分析中的应用[J].人民珠江,2001(4):5-6,38.
    [34]刘建梅,裴铁王番.水文尺度转换研究进展[J].应用生态学报,2003,14(12):2305-2310.
    [35]王加虎,等.基于DEM和主干河网信息提取数字水系研究[J].河海大学学报,2005,33(2):119-122.
    [36]汤国安,赵牡丹.地理信息系统[M].北京:科学出版社,2001.
    [37]康玲.流域水文模拟理论与方法研究[D].华中科技大学,2004.
    [38]Goodchild M F. The state of GIS for environmental problem-solving [A]. Goodchild M F ed. Environmental Modeling with GIS[C]. New York:Oxford University Press,1993.
    [39]Ross M A, Tara P D. Integrated hydrologic modeling with geographic information system[J]. Water Resources Planning and Management,1993(119):129-139.
    [40]Pullar D, Springer D. Towards integrating GIS and catchment models [J]. Environmental Modeling and Software,2000 (15):451-459.
    [41]Desconnets J, Vieux B, et al. A GIS for hydrological modeling in the semi-arid, HAPEX-Sahel experiment area of Niger Africa[J]. Transactions in GIS,1996(2):82-94.
    [42]Aral M.M., Orban Gunduz. Analysis of coastal Georgia ecosystem stressors using GIS integrated remotely sensed imagery and modeling:a pilot study for lower Altamaha Basin, INTERIM report. Atlanta, Georgia 30332,2001,03.
    [43]Moore LD., Turner A.K., et al. GIS and Land-Surface-Subsurface Process Modeling in M. F. Goodchild, B. O. Parks, and L. T. Steyaert (Eds) Environmental Modeling with GIS[C]. New York:Oxford University Press,1993.
    [44]Jenson, S. K., J.O. Domingue. Extracting topographic structure from digital elevation data for geographical information system analysis[J]. Photogranmretric engineering and remote sensing,1988,54(1):1593-1600.
    [45]赵强.GIS在分布式水文模型中的应用—以北京雁栖河流域为例[J].干旱区资源与环境,2007,21(3):60-62.
    [46]刘志雨.ArcTOP:TOPKAPI与GIS紧密连接的分布式水文模型系统[J].水文,2005,25(4):18-22.
    [47]朱芮芮,李兰,等.基于GIS的无定河流域分布式水资源模拟[J].人民黄河,2006,28(3):28-32.
    [48]魏文秋,于建营.地理信息系统在水文学和水资源管理中的应用[J].水科学进展,1997(3):296-300.
    [49]杨井,郭生练,等.基于GIS的分布式月水量平衡模型及其应用[J].武汉大学学报(工学版),2002,35(4):22-26.
    [50]万洪涛,周成虎,等.地理信息系统与水文模型集成研究述评[J].水科学进展,2001,12(4):164-172.
    [51]王疆霞,等.GIS技术及其在水文学和水资源管理方面的应用[J].西北地质,2003,36(1):109-113.
    [52]吕爱锋,等.基于GIS的分布式水文模型系统开发研究[J].中国科学院研究生院学报,2004,21(1):52-62.
    [53]万洪涛.地理信息系统支持下的水文模型建模[D].中国科学院博士学位论文,2000.
    [54]Horrit M S, Bstes P D. Effects of spatial resolution on a raster based model of flood flow[J]. Journal of Hydrology,2001(253):239-249.
    [55]Mancini M, Hoeben R, Troch PA. Multifrequency radar observations of bare surface soil moisture content:A laboratory experiment[J]. Water Resour. Res.,1999,35(6):1827-1838.
    [56]Fortin,J.P., Villeneuve,J.P., Guibot,A. et al. Development of a modular hydrological forecastin model based on remotely sensed data,for interactive utillization on a microcomputer[J]. IAHS Publ.,1986(160):307-319.
    [57]Schultz GA. Remote Sensing applications to hydrology:runoff[J]. Hydrological Science, 1996(4):453-476.
    [58]Biftu G F, Gan TY. Semi-distributed, physically based, hydrologic modeling of Paddle River Basin, Alberta, using remotely sensed data[J]. Hydrology,2001(244):137-156.
    [59]Choudhury B. J. Estimation land surfacee vaporation using multispectral satellite and ancillary data. In:Kite, G W, Pietroniro, A., Pulta,T (Eds.). Applications of rmote sensing in hydrology. Proc. Symp. No 17, NHRI,5as ke too n, Canada 1997.
    [60]Albert Bango. Snow hydrology processes and remote sensing[J]. Hydrological Porcesses, 1993(7):1210-1238.
    [61]Harlan L. Mckitn, Ⅳ. Water resource modeling using remote sensing and object-oriented simulation[J]. Hydrological Processes,1993(7):153-165.
    [62]李道峰,刘昌明.基于RS与GIS技术的分布式水文模型模拟径流变化刍议[J].水土保持学报,2004,18(04):16-19.
    [63]郑红星,王中根,等.基于GIS/RS的流域水文过程分布式模拟—Ⅱ模型的校检与应用[J].水科学进展,2004,15(04):38-43.
    [64]何延波.遥感(RS)和地理信息系统(GIS)在水文模型中的应用—以普定后寨河流域为例[D].中国科学院博士论文,1998.
    [65]杨立民,朱智良.全球及区域尺度土地覆盖士地利用遥感研究的现状和展望[J].自然资源学报,1999,14(4):340-344.
    [66]李纪人.遥感和地理信息系统在分布式流域水文模型研制中的应用[J].水文,1997(6):8-12.
    [67]Miller C L. The digital terrain model-Theory and application[J]. Photogrammetric Engineering,1958,24(3):137-145.
    [68]任立良,刘新仁.数字高程模型信息提取与数字水文模型研究进展[J].水科学进展,2000,11(4):463-469.
    [69]任立良,刘新仁.数字高程模型在流域水系拓扑结构计算中的应用[J].水科学进展,1999,10(2):129-134.
    [70]詹仕坚,孙志鸿.网格式数值高程模型摘取河系集流阈值之探讨[J].地理学报,2000,(28):27-45.
    [71]李志林,朱庆.数字高程模型[M].武汉:武汉测绘大学出版社,2000.
    [72]万洪涛,周成虎,等.流域水文模型计算域离散方法[J].地理科学进展,2001,20(4):1-8.
    [73]李硕,曾志远,等.数字地形分析技术在分布式水文建模中的应用[J].地球科学进展,2002,17(5):769-775.
    [74]章孝灿.快速高精度DEM生成技术研究[D].浙江大学,2002.
    [75]熊立华,等.利用DEM提取地貌指数的方法述评[J].水科学进展,2002,13(6):775-780.
    [76]李丽,等.基于DEM的流域特征提取综述[J].地球科学进展,2003,18(2):251-256.
    [77]李春红,任立良,等.数字流域水系构建方法浅析[J].水文,2002,22(6):1-4.
    [78]张珂,等.基于DEM的流域信息提取方法及应用实例[J].水力发电,2005,31(2):251-256.
    [79]林金辉.基于GIS的数字化渭河流域地理特性研究[M].西安建筑科技大学,2007.
    [80]张秋文,张勇传,等.数字流域整体构架及实现策略[J].水电能源科学,2001,19(3):4-6.
    [81]Wang M, Hjelmfelt A T. DEM based overland flow routing model[J]. Hydrologic Engineering, 1998,3(1):1-8.
    [82]Kwan T L. Generating design hydrographs by DEM assisted geomorphic runoff simulation:a case study[J]. Water Resources Association,1998,(2):375-384.
    [83]Band L E. Topographic partition of watersheds with digital elevation models[J]. Water Resources Research,1986(2):15-24.
    [84]Qian Yadong, Lu Guonian, Chen Zhongming. Study for networks of runoff and sediment transport from grid digital elevation data[J]. Sediment Research,1997(3):24-31.
    [85]Wang M, Hjelmfelt A T. DEM based overland flow routing model[J]. Hydrologic Engineering, 1998,3(1):1-8.
    [86]Fairchild, J., P. Leymarie, Drainage networks from grid digital elevation models[J]. Water Resources Research,1991,27(4):29-61.
    [87]Martin P. Lacorix, W. Manz et al. Using digital terrain analysis modeling techniques for the parameterization of a hydrologic model[J]. Enviornmental Modeling and Software,2002(17): 127-136.
    [88]Wang M, Hjelmfelt A T. DEM based overland flow routing model[J]. Hydrologic Engineering, 1998,3(1):1-8.
    [89]Jensen S.K, and Domingue J.O. Extracting Topographic Structure from Digital Elevation Data for Geographic Information System Analysis[J]. Photogrammetric Engineering and Remote Sensing,1988,54(11):1593-1600.
    [90]康玲.流域水文模拟理论与方法研究[D].华中科技大学,2004.
    [91]Michaud J, Sorooshian S. Comparison of simple versus complex distributed runoff models on a midsized semiarid watershed[J]. Water Resources Research,1994a,30(3):593-605.
    [92]Michaud J, Sorooshian S. Effect of rainfall-sampling errors on simulations of desert flash floods[J]. Water Resources Research,1994b,30(10):2765-2776.
    [93]Senarath U S. On the calibration and verification of two dimensional, distributed, Hortonian, continuous watershed models[J]. Water Resources Research,2000,36(6):1495-1510.
    [94]Refagaard J C. Parameterisation calibration and validation of distributed hydrological models[J]. Hydrology,1997(198):69-97.
    [95]Dunn SM, Mc Alister E, Ferrier R C. Development and application of a distributed catchment scale hydrological model for the River Y than, N E Scotland[J]. Hydrological Processes,1998(12):401-416.
    [96]Michael B. Abbott and Jens Christian Refsgaard. Distributed hydrological modeling[M]. Published by Kluwer Academic Publishers,1996.
    [97]Wigmosta M S, Vail L W, Lettenmaier D P. A distributed hydrology-vegetation model for complex terrain [J].Water Resources Research,1994(6):1665-1679.
    [98]Michaud J.Sorooshian S.Comparison of simple versus complex distributed runoff models on a midsized semiarid watershed[J]. Water Resources Research,1994a,30(3):593-605.
    [99]Senarath U S.On the calibration and verification of two dimensional, distributed, Hortonian, continuous watershed models[J]. Water Resources Research,2000,36(6):1495-1510.
    [100]Refagaard J C. Parameterisation,calibration,and validation of distributed hydrological models[J]. Hydrology,1997(198):69-97.
    [101]Abbot M.B.,J.C. Refsgaard. Distributed hydrological modeling[M]. Kluwer Academic Publishers, Dordrecht, No ther land.1996.
    [102]J.R. Thompson, H. Refstrup Sorenson. Application of the coupled MIKE SHE/MIKE modelling system to a lowland wet grassland in southeast England[J]. Hydrology,2004(293): 151-179.
    [103]Keith J Beven. Distributed Hydrological Modelling:Applications of the TOPMODEL Concept [J]. Advance in Hydrological Processes,1997(11):1069-1085.
    [104]M. J. Kirkby. TOPMODEL:A personal View[J]. Advance in Hydrological Processes, 1997(11):1086-1096.
    [105]Beven K J, Kirkby M J. A physically based, variable contributing area model of basin hydrology[J]. Hydrological Bulletin,1979(24):43-69.
    [106]Steve Anderton, Mine Latorn, Francesc Gallart. Sensitivity analysis and multi-ersponse, multi-criteria evaluation of a physically based distributed model [J]. Hydorlogical porcesses, 2002(16):333-353.
    [107]王书功,康尔泗,李新.分布式水文模型的进展及展望[J].冰川冻土,2004,(1):61-65.
    [108]于澎涛.分布式水文模型的理论、方法和应用[D].中国林业科学研究院博士学位论文,2001.
    [109]刘金清,陆建华.国内外水文模型概论[J].水文,1996,16(4):4-8.
    [110]黄平,赵吉国.流域分布型水文数学模型的研究及应用前景展望[J].水文,1997(5):5-10.
    [111]张建云,等.气候异常对我国水资源及水分循环影响的评估模型研究.国家“九五”重中之重科技攻关项目,2000.
    [112]郭方,刘新仁,等.以地形为基础的流域水文模型—TOPMODEL及其拓宽应用[J].水科学进展,2000(3):296-301.
    [113]任立良,刘新仁.基于DEM的水文物理过程模拟[J].地理研究,2000,19(4):369-376.
    [114]任立良,刘新仁.数字高程模型信息提取与数字水文模型研究进展[J].水科学进展,2000,11(4):463-469.
    [115]王建平,任立良,吴益.一种新的DEM填洼处理算法[J].地球信息科学,2005,7(3):51-54.
    [116]袁飞,任立良,姜红梅.栅格型水文模型的方法及应用[J].河海大学学报(自然科学版),2004,32(5):483-487.
    [117]姜红梅,任立良,袁飞.降水空间不均匀性对径流过程模拟的影响[J].水文,2004,24(2):1-6.
    [118]郭生练.大尺度分布式水文模型发展概况和展望[J].水资源研究,1997,18(2):32-36.
    [119]熊立华,郭生练.分布式流域水文模型[M].北京:中国水利水电出版社,2004.
    [120]夏军,王纲胜,等.水文非线性系统与分布式时变增益模型[J].地球科学,2004,34(11):1062-1071.
    [121]夏军,王纲胜,等.分布式时变增益流域水循环模拟[J].地理学报,2003,58(5):789-793.
    [122]王中根,刘昌明,等.SWAT模型的原理、结构及应用研究[J].地理科学进展,2003,22(1):79-86.
    [123]杨桂莲,郝芳华,等.基于SWAT模型的基流估算及评价—以洛河流域为例[J].地理科学进展,2003,22(5):463-470.
    [124]王中根,夏军,刘昌明.分布式水文模型的参数率定及敏感性分析探讨[J].自然资源学报,2007,22(4):649-655.
    [125]Xia, J, Wang,Z.G, Wang G.S. The Renewability of Water Resources and its Quantification of the Yellow River in China[J]. Hydrological Process. Special Issue,2004(18):2327-2336.
    [126]王中根,郑红星,刘昌明.基于模块结构的分布式水文模拟系统研究[J].地理科学进展,2005,24(6):109-115.
    [127]朱利,张万昌.基于径流模拟的汉江上游区水资源对气候变化响应的研究[J].资源科学,2005,27(2):1 6-22.
    [128]王中根,刘昌明,左其亭,等.基于DEM的分布式水文模型构建方法[J].地理科学进展,2002,2 1(5):430-439.
    [129]熊立华,郭生练,等.基于DEM基于DEM的分布式流域水文模型及应用[J].水科学进展,2004,15(4):33-36.
    [130]张思聪,唐莉华,等.北京市水土保持生态环境管理信息系统设计[J].中国水土保持,2004,(3):109-115.
    [131]Huaxia Yao, Michio Hashino. A completely-formed distributed rainfall-runoff model for the catchment scale [J]. IAHS Publ.,2001,(270):183-190.
    [132]Jia Yangwen, Guangheng Ni, Yoshihisa Kawahara, et al. Development of WEP Model and Its Application to an Urban Watershed[J]. Hydrological Processes,2001(15):2175-2194.
    [133]Jia Y, G. Ni, T. Kinouchi, J. Yoshitani, Y. Kawahara and T. Suetsugi, Assessing the Effects of Infiltration and Storm-water Detention Facilities in an Urban Watershed Using a Distributed Hydrological Model, Proc. of 29th Congress of International Association of Hydraulic Research (IAHR), Beijing, China, Sept.,2001, Theme C, pp.379-384.
    [134]Jia Yangwen, Nobuyuki Tamai. Integrated Analysis of Water and Heat Balances in Tokyo Metropolis with a Distributed Model[J]. Japan Soc. Hydrol.& Water Resour.,1998, 11(2):150-163.
    [135]赵人俊.流域水文模拟—新安江水文模型和陕北模型[M].北京:水利电力出版社,1984.
    [136]杨大文,李种,等.分布式水文模型在黄河流域的应用[J].地理学报,2004,59(1):143-154.
    [137]Dawen Yang. Comparison of different distributed hydrological models for characterization of catchment spatial variability[J]. Hydrological Process,2000(14):403-416.
    [138]Dawen Yang, Herath, S., et al. Application of distributed hydrological model in Asian monsoon tropic region with a perspective of coupling with atmospheric models[J]. The Meteorological Society of Japan (JMSJ),2001,79(1B):373-385.
    [139]Dawen Yang, Srikantha Herath, et al. Spatial resolution sensitivity of catchment geomorphologic properties and the effect on hydrological simulation[J]. Hydrological Processes,2001(11):2085-2099.
    [140]许继军.分布式水文模型在长江流域的应用研究[D].清华大学博士学位论文,2007.
    [141]Yang, D., T. Oki, S. Herath, and K. Musiake. A Geomorphology-Based Hydrological Model and Its Applications. In V.P. Singh & D.K. Frevert (ed.) Mathematical Models of Small Watershed Hydrology and Applications[M]. Water Resources Publications, Littleton, Colorado.2002,Chapter 9:259-300.
    [142]Yang, D. and K. Musiake. A continental scale hydrological model using distributed approach and its application to Asia[J]. Hydrological Processes,2003(17):2855-2869.
    [143]Dawen Yang, T. Koike and H. Tanizawa. Effect of precipitation spatial distribution on the hydrological response in the upper Tone River of Japan[J]. IAHS publication, 2003(282):194-202.
    [144]Yang D., T. Koike and H. Tanizawa. Application of distributed hydrological model and weather radar observation for flood management in the upper Tone River of Japan[J]. Hydrological Processes,2004(18):3119-3132.
    [145]杨大文,等.分布式水文模型在黄河流域的应用研究[J].地理学报,2004,59(1):143-154.
    [146]Yang, D., C. Li, H. Hu, Z. Lei, S. Yang, T. Kusuda, T. Koike, and K. Musiake. Analysis of water resources variability in the Yellow River of China during the last half century using historical data[J]. Water Resour. Res.,2004.
    [147]王磊,杨大文,等.GBHM模型原理及其在中尺度流域的应用[J].冰川冻土,2006,28(2):1 5-1 9.
    [148]Reggiani P, Sivapalan M, Hassanizadeh S M. Conservation equations governing hillslope response:exploring the physical basis of water balance[J]. Water Resources Research, 2000(36):1845-1863.
    [149]Beven KJ. Linking parameters across scales:sub-grid parameterizations and scale dependent hydrological models [J]. Hydrological Processes,1995(9):507-526.
    [150]丙孝芳,姜广斌.流域汇流理论与计算方法的若干进展与评价[J].水利水电技术,1 997,28(9):43-45.
    [151]Jenson K, Dominique J O. Extracting topographic structure from digital elevation data for geographical information system analysis[J]. Photogrammetric engineering and remote sensing,1988,54(11):1593-1600.
    [152]O'Callaghan F, Mark D M. The extraction of drainage networks from digital elevation data[J]. Computer Vision, Graphics and Image Processing,1984(28):323-344.
    [153]Fairfield J, Leymarie P. Drainage networks from grid digital elevation models[J]. Water Resour. Res.,1991,27(4):29-61.
    [154]Martz W, Garbrecht J. Numerical definition of drainage network and subcatchment areas from digital elevation models[J]. Computers & Geosciences,1992,18(6):747-761.
    [155]石安荣,贾宝玉,等.ArcGIS 8 Desktop地理信息系统应用指南[M].北京:清华大学出版社,2003.
    [156]朱良峰,等.GIS中矢量多边形网格化问题研究[J].地理与地理信息科学,2004,20(1):12-15.
    [157]赵串串.分布式水文模型在渭河流域水资源综合管理中的应用研究[M].西安建筑科技大学,2007.
    [158]党安荣.ERDAS IMAGINE遥感图像处理方法[M].北京:清华大学出版社,2003.
    [159]杨大文,楠田哲也.水资源综合评价模型及其在黄河流域的应用[M].北京:中国水利水电出版社,2005.
    [160]Yang, D., S. Kanae, et al. Global potential soil erosion with reference to land use and climate changes[J]. Hydrological Processes,2003(17):2913-2928.
    [152]Ditoro, D.M.. Probability model of stream quality due to runoff[J]. Environmental Engineering,1984,110 (3):607-628.
    [153]Chpman Tom. A comparison of algorithms for stream flow recession and baseflow separation[J]. Hydrological processes,1990(13):701-714.
    [154]Letenmaier, D., T. Y. Gan. Hydrologic sencitivies of the Sacramento-San Joaquin river basin, Califonriato Global warming[J]. Water resources research,1990,26(1):69-86.
    [155]Lyne, V., M. Hollick. Stochastic time-variable rainfall runoff modeling. In:Hydrology and water resources symposium, Berth,1979, Proceedings. National committee on Hydrology and water resources of the institution of Engineers, Australia.1979:89-92.
    [156]Roger.P. Hydrology and water quality Changes in land use and land cover-A global perspective [M]. Cambridge University Press,1994.
    [157]Carpenter.S.R, S.GFisher. Global change and Freshwater ecosystems. Annu. Rev. of Eco. Syst, 1992(23):119-140.
    [158]Stodkon, C. W., W. R. Boggess. Geo-Hydrological implications of climate change on water resource development. U.S.Armay Coastal Engineering Eenter. Virginia.1979.
    [159]Kite G W., Kouwen, C. D. Land cover, NDVI, LAI, and evapotraspiration in hydrological modeling. In:Application of remote sensing in hydrology, ed. Kite G W., A. Pietronim, T. D. Paulta. Proceeding Symphony. Saskaton, Canada,1995(14):223-240.
    [160]Kyung-Ja Ha, Hyun-Mi Oh, Ki-Young Kim. Inter-Annual and Intro-Annual Variabilities of NDVI, LAI and Ts Estimated by AVHRR in Korea Koeran[J]. Jounral of remote sensing, 2001,17(2):111-119.
    [161]Justice C O, B. N. Hoben, M. D. Gwynne. Monitoring East A frican vegetation using AVHRR data[J]. Intenrational journal of remote sensing,1994,15(17):3567-3586.
    [162]Pierce, L.L.J., T.I.Walke, T.R. Dowling, et al. Ecohydrolgical changes in the Murray-Darling basin,Ⅲ,. A simulation of regional hydrological changes[J]. Journal of applied ecology, 1993(30):283-294.
    [163]Junfeng Chen. Analysis Land-use Changes of the Suomo Basin Based on Remote Sensing Images. Proceedings of International Symposium on Remote Sensing, Korea,2002.
    [164]邓慧平、李秀彬、陈军锋等.流域土地覆被变化水文效应的模拟[J].地理学报,2003,58(1):53-62.
    [165]陈军锋、张明.梭磨河流域气候和土地覆被变化对年径流深影响的模拟研究[J].地理研究,2002,21(6):48-52.
    [166]邓慧平,李秀彬,等.气候与土地覆被变化对梭磨河流域水文影响分析[J].地理科学,2001,21(6):493-497.
    [167]高庆先,徐影.中国干旱地区未来大气降水变化趋势分析[J].中国工程科学,2002,4(6):36-42.
    [168]何新林,郭生练.气候变化对新祖玛纳斯河流域水文水资源的影响[J].水科学进展,1998,9(1):77-83.
    [169]金栋梁.森林对水文要素的影响[J].人民长江,1989,(1):28-35.
    [170]金林.山西省森林植被对径流泥沙影响的研究[J].西北水资源与水工程,2002,13(3):53-56.
    [171]康玲玲,王云璋,等.黄河中游河龙区间降水分布及其变化特点分析[J].人民黄河,1 999,21(8):3-5.
    [172]可素娟,王玲,等.黄河流域降水变化规律分析[J].人民黄河,1997,(7):18-22.
    [173]李昌锋,高俊峰,等.土地利用变化对水资源影响研究的现状和趋势[J].土壤,2002,(4):191-205.
    [174]吕世华,陈玉春.西北植被覆盖对我国区域气候变化影响的数值模拟[J].高原气象,1 999,1 8(3):4 1 6-424.
    [175]刘春蓁.气候变异与气候变化对水循环影响研究综述[J].水文,2003,23(4):1-7.
    [176]刘春荞,杨建青.我国西南地区年径流变异及变化趋势研究[J].气候与环境变化,2002,7(4):415-422.
    [177]王云璋,康玲玲,等.河龙区间近十年降水特点及其变化趋势分析[J].人民黄河,1 999,2 1(8):6-8.
    [178]张建云,刘九夫.气候异常对水资源影响评估分析模型[J].水科学进展,2000,11(增刊):1-9.
    [179]张勃,丁文晖,等.干旱区土地利用的地下水水文效应分析[J].干旱区地理,2005,28(6):764-769.
    [180]吴燮中,董雪娜.当代黄河流域的气温和降水特征与变化[J].人民黄河,1990,(5):50-54.
    [181]香宝.东亚季风区土地覆盖对气候变化的响应研究[D].中国科学院博士学位论文,2000.
    [182]王礼先,张志强.干早地区森林对流域径流的影响[J].自然资源学报,2001,16(3):439-444.
    [183]王礼先,张志强.森林植被变化的水文生态效应研究进展[J].世界林业研究,1998,(6):14-23.
    [184]王国庆,史忠海.气候变化对黄河上游水文的影响[J].河南气象,2000,(4):20-22.
    [185]石培礼,李文华.森林植被变化对水文过程和径流的影响效应[J].自然资源学报,2001,12(5):481-487.
    [186]范广洲,吕世华,等.华北地区夏季水资源特征分析及其对气候变化的响应(Ⅱ):华北地区夏季水量丰、枯与气候变化的关系[J].高原气象,2002,21(1):45-51.
    [187]刘毅,陈吉宁,等.环境模型参数识别与不确定性分析[J].环境科学,2002,23(6):6-10.
    [188]张蕾娜,李秀彬,王兆锋,等.一种可用于表征土地利用变化水文效应的水文模型探讨[J].水文,2004,24(3):4-8.
    [189]L. Zhang, W.R. Dawes, et al. Growth and ground water uptake responses of Lucerne to changes in groundwater levels and salinity:lysimeter, isotope and modelling studies[J]. Agricultural Water Management,1999(39):265-282.
    [190]Liu L. L, Z. F. Yang, Z. Y. Shen. Estimation of water renewal times for the middle and lower sections of theYellow river[J]. Hydrological processes.2003,17(10):1941-1950
    [191]Liu C, Zheng H. Changes of hydrological cycle elements of second half 20 century in the Yellow River basin [J]. Hydrological Processes,2004,18(12):2337-2345.
    [192]赵庆建.河北省水环境安全评价体系及水资源可持续利用技术研究[D].哈尔滨工业大学,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700