用户名: 密码: 验证码:
河流冲刷作用下堤岸稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
江河堤防是我国防洪工程体系的重要组成部分,我国堤防一般傍河而建,堤线选择受到河势条件制约,地基多为第四纪松散沉积物,堤身填筑土的组成及密实程度都具有非均质性,在季节性或周期性发挥作用的过程中造成堤岸冲刷现象十分普遍和严重,对堤防安全构成威胁。因此,河流冲刷作用下的堤岸渗流、变形、稳定性研究对堤防的安全运行和管理具有十分重要的意义。
     河流冲刷作用下堤岸稳定性研究涉及两大方面问题,一是关于堤身填筑土体及堤基土的特性研究,如土体的非饱和特性、反复干湿特性、固结特性、强度特性等;二是关于冲刷力与渗透力、自重应力共同作用下堤防及河床的冲刷稳定性状研究。本文针对广东北江大堤某典型堤段工程对此两方面内容进行了系统研究,主要研究内容与获得的主要成果如下:
     1.利用双压力室非饱和三轴仪进行了非饱和黏土脱湿、等吸力固结和排水剪切试验,研究了非饱和黏土的体变、屈服和强度特性。试验结果表明:(1)在低吸力范围内,非饱和黏土在脱湿过程中的体积收缩呈弹塑性体变性状,验证了非饱和土本构模型中SI(suction increase)屈服曲线的存在;(2)在等吸力固结试验中,黏土固结屈服应力随着吸力增加而增加,LC (loading-collapse)屈服曲线呈二次抛物线变化,固结压力的增长比基质吸力的增长对体变性状的影响效应要大;(3)在剪切试验中,非饱和黏土应力应变关系依赖于净围压和基质吸力的不同组合,基质吸力增强土体应力应变关系的硬化特性;(4)在不同的吸力条件下,固结排水剪的黏聚力与吸力基本呈线性关系,有效内摩擦角基本不变。
     2.通过非饱和土三轴仪测试黏土试样经过多次吸湿-脱湿循环路径后的力学特性,研究了反复干湿循环对非饱和土变形和强度特性的影响效应。试验结果表明:(1)干湿循环使SWCC(土水特征曲线)产生变化,相同含水率所对应的基质吸力减小,收缩特性亦发生改变,干湿循环后试样在基质吸力增加的开始阶段(收缩屈服前)收缩性增强,屈服后收缩特性基本与循环前一致;(2)非饱和土固结屈服后的压缩指数增高,但增高的幅度随基质吸力增大而降低;(3)有些试样经过干湿循环后,剪切时产生了滑裂破坏面,其应力-应变关系表现有明显峰值和应变软化特征;(4)吸湿-脱湿循环过程不仅使非饱和土有效内摩擦角φ′降低,而且对吸力内摩擦角φb值产生一定影响。说明非饱和土经过反复干湿循环的应力路径后,其力学特性将产生不可逆转的变化。
     3.通过理论分析和有限元技术,建立了综合考虑河流冲刷力、渗透力、自重应力耦合力系下的堤岸(水上、水下)与河床的整体分析模型,以直接分析河流冲刷作用对堤岸渗流和变形的影响。数值计算结果表明:(1)渗流流速的最大值出现在堤脚,在不同水位下堤脚都是最易受到渗流影响和出现破坏的地方,冲刷作用使堤脚处的渗流流速有所提高;(2)堤岸坡脚沿外江方向的水平位移明显增加,愈靠近坡脚,河流冲刷作用使外江方向的水平位移增加的幅度愈大;(3)通过比较变形的数值分析结果与实测结果,两者较为吻合;(4)冲刷作用进一步加大了堤岸和河床塑性区范围,对堤岸安全将产生非常不利的影响;(5)河流冲刷对堤岸渗流和变形产生的影响随着河水位的上升而加剧。
     4.采用强度折减有限元法,以分析河流冲刷作用对堤岸边坡整体稳定性的影响,数值计算结果表明:(1)把强度折减有限元法应用到非均质土层渗流-应力耦合的边坡稳定分析,在理论上、数值模拟实现上都是可行的;(2)土坡破坏是一个局部破坏逐渐扩展形成滑裂面的渐进破坏过程,考虑河流冲刷作用能更真实地反映坡脚和河床的变形与破坏情况;(3)堤岸边坡失稳时,在土层的分界面处滑动圆弧塑性区出现不连续现象,等效塑性应变非零区域不仅分布于边坡坡面的滑动圆弧范围,且分布于一定范围的土体内部,依此无法确切地评判和描述边坡失稳状态,只可将塑性区(或者等效塑性应变)从坡脚到坡顶贯通作为边坡失稳的参考依据;(4)河流冲刷使堤岸的安全系数降低,河水位越高,冲刷作用使堤岸的稳定性降低的幅度越大。
     5.通过理论分析,建立了饱和-非饱和渗流应力耦合模型,以分析非饱和土堤岸非稳定渗流场特征,数值计算结果表明:(1)堤岸非饱和区与饱和区之间存在连续的水流,部分水流在基质吸力的作用下向上流入非饱和区;(2)在饱和-非饱和渗流场中,堤脚区域仍是最易发生局部渗透破坏的区域;(3)水位快速上升时,靠近上游坡面土体首先达到饱和,堤脚渗透流速下降后又逐步上升并趋向稳定;(4)河水位骤降时,在渗透性较大的砂土层饱和度下降较快,但在渗透性较小的黏性土层饱和度变化相对滞后,河水位的骤降加大了堤岸的水力梯度,使渗流速度加大,从而降低了堤脚的渗透稳定性。
     6.基于饱和-非饱和渗流应力耦合模型和前述试验结果对非饱和土堤岸的整体稳定性进行了研究,以分析河水位反复升降对非饱和堤岸稳定性的影响。数值计算结果表明:(1)河水位快速上升使堤岸边坡的稳定性降低,此后随着渗流场孔隙水压力的调整,堤岸边坡的安全系数亦有所调整并趋向稳定;(2)河水位骤降使堤岸边坡的稳定性降低,水位下降后120h是较危险的时刻;(3)考虑非饱和土的基质吸力提高了堤岸边坡的安全系数,河水位反复升降后堤岸边坡稳定性降低。
River embankments are the important parts of the flood control engineering system of China. Because embankments of China were built by filling along river generally, the choices of lines of embankments are restricted by condition of river. The foundations of embankmens are made of Quaternary Unconsolidated Sediments, and components and density of filled soils in embankment body are of heterogeneity, and so embankments scour is a very general and seriouse phenomenon in this process that embankments play a role seasonally or periodically. Therefore, research on seepage flow, deformation and stability of embankment under effects of river scouring has a significant meaning to the safe operation and management of embankments.
     Research on stability of embankment under effects of river scouring involves in two aspects: one aspect is relate to study on behavior of filled soils in embankment body and foundation, such as unsaturated behavior, the influence of repeated drying and wetting cycles on unsaturated soil, the compression and strength behavior of soils, anather is relate to study on scouring stability of the embankment and the riverbed on interaction among tractive force, seepage force and gravity stress. This thesis carries out a systematic study on the two aspects based on a typical embankment preject on Beijiang River in Guangdong. The main contents and results are listed as follows:
     1. A series of triaxial tests were carried out using double-cell triaxial system for unsaturated soils to investigate the behavior of volume change, yield and strength of unsaturated clays. The stress paths included drying with isotropic stress, isotropic compression and shearing with controlled suction. The test results show:(1) the clay exhibited an elasto-plastic shrinkage upon drying with low suction, indicating the existence of the suction-increase (SI) yield locus. (2) During isotropic compression, the yield stress increases with increase of suction and the loading-collapse (LC) yield curve changes parabolically. Increase of net normal stress has more significant effect on the behavior of volume change than that of matric suction. (3) The stress-strain relationship depends on the combinational style of net normal stress and matric suction, and suction enhances the stress-strain stiffness feature during triaxial shear test. (4) Under conditions of different values of constant suction, the effective friction angle is approximately a constant, and cohesion coefficient versus suction relationship is approximately linear.
     2. A series of tests are performed to measure the variation of deformation and shear strength of unsaturated clays subjected to repeated drying and wetting cycles so as to study the effect of repeated drying and wetting cycles on unsaturated soil by using unsaturated triaxial apparatus. The test results show:(1) Firstly, the matric suction of the same soil moisture in SWCC reduces, and shrinkage behaviors of soil enhance during the pre-yield stage of shrinkage and do not change approximately during the post-yield stage of shrinkage; (2) Secondly, the compression index increases during the post-yield stage of isotropic compression, and the influence on compression behavior decreases with the increasing suction; (3) And thirdly, a few samples subjected to repeated drying and wetting cycles exhibit a slide plane in triaxal shear tests. Consistently, the stress exhibits an obvious peak value and then decreases sharply with the increasing strain. (4) In addition, repeated drying and wetting cycles not only decrease the triaxal shear coefficientφbut also have an effect on coefficientφb with respect to matric suction to a certain extent. It indicates that the change of mechanical properties is irreversible after the unsaturated soil is subjected to repeated drying and wetting cycles.
     3. Considered tractive force of river, gravity stress and seepage force comprehensively, an whole analysis model about the bank slope (above water and underwater) and the riverbed subjected to coupling force system was established to study directly the influence of river scour effect on seepage flow and deformation in embankment by using theory analysis and finite element technique. The results of numeric simulation indicated that:(1) Maximum value of seepage velocity distributes in the bottom of embankment bank slope where suffers from the influence of seepage flow and seepage failure occurs most easily for different water levels. Besides, river scours improves seepage velocity in embankment bank slope to some extent. (2) Horizontal displacement increases greatly at embankment bank slope, and the closer to the bottom of embankment bank slope, the more increase of horizontal displacement appears. (3) Through the comparison between numerical results and measured results of deformation, there is very good inosculation between them. (4) plastic-strain range expands further in embankment and riverbed when the effect of river scour is considered, and it will have negative effect on the safety of embankment. (5) Influence of river scour on seepage flow and deformation in embankment increases with the risetime of water level of river.
     4. The influence of river scour on whole stability of embankment bank slope was analyzed by strength reduction FEM. The results of numeric calculation indicated that:(1) It is feasible in the theory and numeric simulation that strength reduction FEM is applied to seepage-stress coupling slope stability analysis for heterogeneous soils. (2) The process of unstable failure of soil slope is a progressive precess that partial failure extends gradually to whole failure, and the results considering river scour can reflect reallier the deformation and failure of embankment and riverbed. (3) The contours of plastic strain in layered position of sliding circular Arc appears discontinuous phenomenon during unstable failure of the embankment bank slope, and the zero-free region of the equivalent plastic strain distributes not only in sliding circular Arc on slope, but also within a certain range of internal soil layers. It thus is impossible to judge and describe accurately unstable state of the slope according to plastic strain area, and it only is a reference basis for unstable state of the slope that the plastic strain (the equivalent plastic strain) area is connected from slope top to slope bottom. (4) The safety factor of embankment reduces when the effect of river scouring is considered, and this influence on safety factor of embankment increases with the risetime of water level of river.
     5. A saturated-unsaturated seepage-stress coupling model was established to analyze unsteady seepage flow in unsaturated embankment by using theory analysis. The results of numeric simulation indicated that:(1) There is continuous water flow between saturated zone and unsaturated zone in embankment, and some water flow enters upward to unsaturated zone under the action of the matric suction. (2) The bottom of embankment bank slope is still the region where the local seepage failure appears most easily in saturated-unsaturated seepage flow field. (3) The soils on upstream bank slope reach saturation firstly after rapid risetime of river water level, and the seepage velocity in the bottom of embankment bank slope decreases firstly, and then increases gradually and tends to be stable. (4) The degree of saturation in sandy layer of greater permeability decreases fastly and that in clayey soil of lower permeability changes slowly after rapid drawdown of river water level. In addition, rapid drawdown of river water level increases the hydraulic gradient and the seepage velocity of embankment bank slope, therefore decreases seepage stability at the bottom of embankment bank slope.
     6. Whole stability of unsaturated embankment was studied to analyze the influence of repeated risetime and drawdown of river water level on the stability of unsaturated embankment based to the saturated-unsaturated seepage-stress coupling model and the test results obtain above. The results of numeric simulation indicated that:(1) Rapid risetime of river water level decreases whole stability of embankment, and then the safety factor of embankment bank slope is somewhat adjusted and tends to be stable with adjustment of pore water pressure in seepage flow field. (2) Rapid drawdown of river water level decreases whole stability of embankment, and 120h after river level drawdown is a dangerous time raletively. (3) Considering the matric suction of unsaturated soils increases the safety factor of embankment bank slope and the repeated risetime and drawdown of river water level decreases the stability of embankment bank slope.
引文
[1]Osman A M, Thorne C R. Riverbank stability analysis I:Theory[J], ASCE, Journal of Hydraulic Engineering,1988,114 (2):134-150.
    [2]Thorne C R, Osman A M. Riverbank stability analysis II:application[J]. Journal of Hydraulic Engineering,1988,114 (2):151-172.
    [3]Darby, S.E., and Thorne, C.R. Thorne. Development and testing of riverbank-stability analysis[J], ASCE, Journal of Hydraulic Engineering,1996,122 (8):443-454.
    [4]Darby, S.E., and Thorne, C.R. Numerical simulation of widening and bed deformation of straight sand-bed rivers I:model developmen[J], Journal of Hydraulic Engineering,1996,122(4):184-193.
    [5]Darby, S.E., and Thorne, C.R. Numerical simulation of widening and bed deformation of straight sand-bed rivers II:model evaluation[J], Journal of Hydraulic Engineering,1996,122(4):194-202.
    [6]Amiri-Tokaldany, E., Darby, S.E., and Tosswell, P. Bank stability analysis for predicting reach-scale land loss and sediment yield [J]. Journal of the American Water Resources Association,2003.39(4): 897-909.
    [7]Amiri-Tokaldany,E., M.ASCE; Darby, S.E.; and Paul Tosswell. Coupling Bank Stability and Bed Deformation Models to Predict Equilibrium Bed Topography in River Bends [J]. Journal of Hydraulic Engineering,2007,133(10):1167-1170.
    [8]韩其为,何明民.细颗粒泥沙成团起动及其流速的研究.湖泊科学[J],1997(4):307-316.
    [9]夏军强,王光谦,吴保生.游荡型河流演变及其数值模拟[M].北京:中国水利水电出版社,2005.
    [10]Nagata, N., Hosoda, T., and Muramoto, Y. Numerical analysis of river channel processes with bank erosion[J], ASCE, Journal of Hydraulic Engineering,2000,126(4):243-252.
    [11]Pizzuto, J. E, Numerical simulation of gravel river widening [J], Water Resource Research, 1990,26(9):1971-1980.
    [12]钱宁、张仁、周志德.河床演变学[M].北京:科学出版社,1989.
    [13]Simons, Li and Associates. Engineering Analysis of Fluvial Systems[M], Fort Collins, CO:Simons, Li& Associates,1982.
    [14]Bridge, J. S. and J. Jarvis, Flow and Sedimentary Processes in the Meandering River South Esk, Glen Clova., Scotland[J], Earth Surface Processes.1976,Vol.1:303-306.
    [15]Rhodes D G, Knight D W. Distribution of shear force on boundary of smooth rectangular duct[J]. Journal of Hydraulic Engineering,1994,120 (1):787-807.
    [16]Ghosh S N and N. Roy. Boundary Shear Distribution in Open Channel Flow[J]. Journal of Hydraulics Division, ASCE,1970,96(Hy4):966-994.
    [17]ASCE Task Committee on Hydraulic, Bank Mechanics, and Modeling of Riverbank Width Adjustment. River Width Adjustment I:Processes and Mechanisms [J]. Journal of Hydraulic Engineering, ASCE,1998,124(9):881-902.
    [18]Ippen A T and P A Drinker. Boundary Shear Stress in Curved Trapezoidal Channels[J]. Journal of Hydraulics Division, ASCE,1962,88(Hy5):143-179.
    [19]Hooke R L. Distribution of Sediment Transport and Shear Stress in A Meander[J]. Journal of Geology, 1975,83:543-565.
    [20]Bathurst, J. C. Distribution of Boundary Shear Stress in River[A], Adjustments of the Fluvial System[C], Ed. By D. D. Rhodes and G.P. Williams, Dubuqu, Lowa:Kendall/Hunt Pub. Co., 1979:95-116.
    [21]夏军强,王光谦,吴保生.游荡型河流演变及其数值模拟[M].北京:中国水利水电出版社,2005.
    [22]王延贵,匡尚富.河岸淘刷及其对河岸崩塌的影响[J],中国水利水电科学研究院学报,2005.3(4).P251-257.
    [23]段红东,何华松,朱辰华.河流输沙力学[M].郑州:黄河水利出版社,2001年第一版,P53-56.
    [24]张瑞瑾.河流输沙动力学[M].北京:中国水利水电出版社,1998年第二版,P73-76.
    [25]Van Rijn L C. Sediment transport, part I:bed load transport[J]. Journal of Hydraulic Engineering, 1984,110 (10):431-455.
    [26]唐存本.泥沙起动规律[J].水利学报.1963(2):1-12.
    [27]华景生,万兆惠.黏性土及黏性土夹沙的起动规律研究[J].水科学进展,1992(4):271-278.
    [28]黄岁梁,陈亚聪,府仁寿.粘性类土的起动模式研究[J].水动力学研究与进展(A辑),1997,12(1):1-7.
    [29]徐伦.水库黏性淤积体溯源冲刷试验研究[A].水利水电科学研究院科学研究论文集[C].第33集.北京:水利水电科学研究院,1986.
    [30]Smerdon E F, Beasley R P. Tractive force theory applied to stability of open channels in cohesive soils[R]. Res Bull No 715, Agri Exp Sta, Univ Missouri,1959.60-68.
    [31]许炯心.边界条件对水库下游河床演变的影响[J].地理研究,1983,(4),P60-71.
    [32]周建军,林秉南,王连祥.平面二维泥沙数学模型研究及其应用[J].水利学报,1993,(11),P10-19.
    [33]Thorne, C. R. "Processes and mechanisms of river bank erosion." Gravel-bed rivers[M], Edited by R.D. Hey, J.C. Bathurst, and C.R. Thorne, Chichester, England:John Wiley and Sons, Inc., 1982:227-259.
    [34]Darby, S.E. and Thorne, C.R. Closure of Discussion of "Development and testing of riverbank-stability analysis" [J], ASCE, Journal of Hydraulic Engineering,1997, (11):1052-1053.
    [35]FREDLUND D G. RAHARDJO H.非饱和土土力学[M].北京:中国建筑工业出版社,1997.
    [36]ALONSO E E, GENS A, JOSA A. A constitutive model for partially saturated soils[J]. Geotechnique, 1990,40(3):405-430.
    [37]GENS A, ALONSO E E. A framework for the behavior of unsaturated expansive clays[J]. Canadian Geotechnical Journal,1992,29:1013-1032.
    [38]WHEELER S J, SIVAKUMAR V. An elasto-plastic critical state framework for unsaturated soil [J]. Geotechnique,1995,45(1):35-53.
    [39]Vanapalli S K, Fredlund D G, Pufahl D E, et al, Model for the prediction of shear strength with respect to soil suction[J]. Canadian Geotechnical Journal,1996,33:379-392.
    [40]Oloo S Y, Fredlund D G. A method for determination of φb for statically compacted soils[J].
    Canadian Geotechnical Journal,1996,33:272-280.
    [41]FREDLUND D G., XING A, FREDLUND M D, BARBOUR S L. The relationship of the unsaturated soil shear strength to the soil-water characteristic curvefJ]. Canadian Geotechnical Journal,1996, 33(3):440-448.
    [42]VAVAPALLA S K, FREDLUND D G, PUFAHL D G. The relationship between the soil-water characteristic curve and the shear strength of a compacted glacial till[J]. Geotechnical Testing Journal, 1996,19(3):259-268.
    [43]包承纲,詹良通.非饱和土性状及其与工程问题的联系[J].岩土工程学报,2006,28(2):129-136.
    [44]徐永福,陈永战,刘松玉,殷宗泽.非饱和膨胀土的三轴试验研究[J].岩土工程学报,1998,20(3):14-18.
    [45]詹良通,吴宏伟.非饱和膨胀土变形和强度特性的三轴试验研究[J].岩土工程学报,2006,28(2):196-201.
    [46]叶为民,陈宝,卞祚庥等.上海软土的非饱和三轴强度[J].岩土工程学报,2006,28(3):317-321.
    [47]陈正汉,王永胜,谢定义.非饱和土的有效应力探讨[J].岩土工程学报,1994,16(3):62-69.
    [48]凌华,殷宗泽.非饱和土强度随含水量变化[J].岩石力学与工程学报,2007,26(7):1499-1503.
    [49]杨和平,张锐,郑建龙.非饱和膨胀土总强度指标随饱和度变化规律[J].土木工程学报,2006,39(4):58-62.
    [50]曹玲,罗先启.三峡库区千将坪滑坡滑带土干-湿循环条件下强度特性试验研究[J].岩土力学,2007,28(增刊):93-97.
    [51]杨和平,肖夺.干-湿循环效应对膨胀土抗剪强度的影响[J].长沙理工大学学报(自然科学版),2005,2(2);1-5.
    [52]龚壁卫,吴宏伟,王斌.应力状态对膨胀土SWCC的影响研究[J].岩土力学,2004,25(12):1915-1918.
    [53]汪东林,栾茂田,杨庆.非饱和重塑黏土干湿循环特性试验研究[J].岩石力学与工程学报,2007,26(9):1862-1867.
    [54]龚壁卫,周小文,周武华.干-湿循环过程中吸力与强度关系研究[J].岩土工程学报,2006,28(2):207-209.
    [55]陈晓平,茜平一,梁志松,张芳枝,吴起星.非均质土坝稳定性的渗流场和应力场耦合分析[J].岩土力学,2004,25(6):860-864.
    [56]Oda M. An equivalent continuum model for coupled stress and fluid flow analysis in jointed rock masses[J]. Water Resources Research,1986, (13):1854-1865.
    [57]陈平,张有天.裂隙岩体渗流与应力耦合分析[J].岩石力学与工程学报,1994,13(4):299-308.
    [58]张国,朱济详,庄军,薛玺成.岩质边坡稳定性的渗流耦合分析[J].天津大学学报,1999,32(5):560-564.
    [59]王媛,徐志英,速宝玉.复杂裂隙岩体渗流与应力耦合弹塑性全耦合分析[J].岩石力学与工程学报,2000,19(2):177-181.
    [60]冉启全,顾小芸.油藏渗流与应力耦合分析[J].岩土工程学报,1998,20(2):69-73.
    [61]王晓鸿,仵彦卿.渗流场—应力场耦合分析[J].勘察科学技术,1998,(4):3-6.
    [62]杨林德,李燕,李鹏.各向异性岩体渗流应力耦合模型[J].地下空间与工程学报,2006,2(10):757-759.
    [63]耿克勤,吴永平.拱坝和坝肩岩体的力学和渗流的耦合分析实例[J].岩石力学与工程学报,1997,16(2):125-131.
    [64]盛金昌,速宝玉,赵坚等.溪落渡拱坝坝基渗流-应力耦合分析研究[J].岩土工程学报,2001,23(1):104-108.
    [65]王媛.多孔介质渗流与应力的耦合计算方法[J].工程勘察,1995,(2):33-37.
    [66]杨林德,杨志锡.各向异性饱和土体的渗流耦合分析和数值模拟[J].岩石力学与工程学报,2002,21(10):1447-1451.
    [67]柴军瑞,仟彦卿.均质土坝渗流场与应力场耦合分析的数学模型[J].陕西水力发电,1997,13(3):4-7.
    [68]罗玉龙,彭华淋.溪河水电站大野坪滑坡体渗流应力耦合分析[J].岩土力学,2008,29(12):3443-3450.
    [69]褚卫江,徐卫亚.分形介质饱和渗流应力耦合数值模拟研究[J].岩石力学与工程学报,2007,26(增1):2641-2647.
    [70]柴军瑞,李守义.三峡库区泄滩滑坡渗流场与应力场耦合分析[J].岩石力学与工程学报.2004,23(8):1280-1284.
    [71]李术才,李树忱,朱维申等.泰安抽水蓄能电站围堰稳定性的流-固耦合分析[J].岩石力学与工程学报.2004,23(8):1275-1279.
    [72]丁秀丽,付敬,张奇华.三峡水库水位涨落条件下奉节南桥头滑坡稳定性分析[J].岩石力学与工程学报,2004,23(17):2913-2919.
    [73]郑颖人,赵尚毅,宋雅坤.有限元强度折减法研究进展[J].后勤工程学院学报.2005.3:1-6.
    [74]张鲁渝,郑颖人,赵尚毅,时卫民.有限元强度折减系数法计算土坡稳定安全系数的精度研究[J].水利学报,2003.1:21-27.
    [75]蒋鑫,邱延峻,魏永幸.基于强度折减法的斜坡软弱地基填方工程特性分析[J].岩土工程学报,2007,29(4):622-627.
    [76]刘金龙,刘洁群,陈陆望.倾斜软弱地基上路堤的变形特征研究[J].西安建筑科技大学学报(自然科学版),2006,28(3):818-823.
    [77]刘金龙,王吉利,梁昌望等.库水位变化对边坡稳定性影响的有限元模拟[J].水力发电,2007,33(10):41-45.
    [78]李湛,栾茂田,刘占阁.渗流作用下边坡稳定性分析的强度折减弹塑性有限元法[J].水利学报,2006,37(5):554-559.
    [79]赵尚毅,时为民,郑颖人.边坡稳定性分析的有限元法[J].地下空间,2001,21(5):450-454.
    [80]Grifiths D V. Lane P A. Slope stability analysis by finite dements[J]. Geotechnique,1999,49(3): 387-403.
    [81]Dawson E M, Both W H, Dreacher A. Slope stability analysis by strength reduction[J]. Geotechnique, 1999,49(6):835-840.
    [82]赵尚毅,郑颖人,时卫民等.用有限元强度折减法求边坡稳定安全系数[J],岩土工程学报,2002,24(3):343-346.
    [83]郑颖人,赵尚毅.有限元强度折减法在土坡与岩坡中的应用[J].岩石力学与工程学报,2004,23(19):3381-3388.
    [84]赵尚毅.有限元强度折减法及其在土坡与岩坡中的应用[D].重庆:后勤工程学院,2004.
    [85]郑颖人,赵尚毅.用有限元强度折减法求滑(边)坡支挡结构的内力[J].岩石力学与工程学报,2004,23(20):3552-3558.
    [86]郑宏,李春光,李焯芬,等.求解安全系数的有限元法[J].岩土工程学报,2002,24(5):323-328.
    [87]连镇营,韩国城,孔宪京.强度折减有限元法研究开挖边破的稳定性[J].岩土工程学报,2001,23(4):406-411.
    [88]栾茂田,武亚军,年廷凯.强度折减有限元法中边坡失稳的塑性区判据及其应用[J].防灾减灾工程学报,2003,23(3):1-8.
    [89]TAN C P,DONALD I B. Finite element calculation of dam stability [C]//Proceedings of the 11th International Conference on Soil Mechanics and Foundation Engineering. San Francisco:[s. n.], 1985,4:2041-2044.
    [90]刘金龙,栾茂田,赵少飞,等.关于强度折减有限元方法中边坡失稳判据的讨论[J].岩土力学,2005,26(8):1345-1348.
    [91]郑颖人,赵尚毅.有限元强度折减法在土坡与岩坡中的应用[J].岩石力学与工程学报,2004,23(19):3381-3388.
    [92]赵尚毅,郑颖人,时为民,等.用有限元强度折减法求边坡稳定安全系数[J].岩土工程学报,2002,24(3):343-346.
    [93]刘金龙,栾茂田,赵少飞等.关于强度折减有限元方法中边坡失稳判据的讨论[J].岩土力学,2005,26(8):1345-1348.
    [94]吕庆,孙红月,尚岳全.强度折减有限元法中边坡失稳判据的研究[J].浙江大学学报(工学版),2008,42(1):83-87.
    [95]戴自航,卢才金.边坡失稳机理的力学解释[J].岩土工程学报,2006,28(10):1191-1197.
    [96]杨雪强,凌平平,向胜华.基于系列Drucker-Prager破坏准则评述土坡的稳定性[J].岩土力学,2009,30(4):865-870.
    [97]董玉文,郭航忠,任青文.屈服准则对土质边坡稳定安全度计算的影响分析[J].重庆建筑大学学报,2006,28(3):51-55.
    [98]董璞,刘金龙,李亮辉.强度折减有限元法分析边坡稳定性的精度探讨[J].四川建筑科学研 究,2009,35(2):146-150.
    [99]段庆伟,王玉杰.试论强度折减有限元法变形参数折减的必要性和相应判据[J].水利学报,2008,39(11):1251-1256.
    [100]李信,高骥,汪自力等.饱和-非饱和土的渗流三维计算[J].水利学报,1992,(11):63-69.
    [101]赖小玲,刘印.非饱和土石坝渗流分析[J].灾害与防治工程,2008,(2):57-61.
    [102]刘海宁,王俊梅,王思敬.黄河下游堤防非饱和土边坡渗流分析[J].岩土力学,2006,27(10):1835-1840.
    [103]廖红建,姬建.深基坑开挖中饱和-非饱和土体渗流-沉降的耦合分析[J].应用力学学报,2008,25(4):637-641.
    [104]徐炎兵,韦昌富,李幻等.非饱和土渗流与变形耦合问题的有限元分析[J].岩土力学,2009,30(5):1490-1497.
    [105]陈建余.非稳定饱和-非饱和渗流场数值计算关键技术及其应用研究[D].河海大学博士学位论文.2003.
    [106]张培文.降雨条件下饱和-非饱和土径流渗流耦合数值模拟研究[D].大连理工大学博士学位论文.2002.
    [107]廖红建,姬建,曾静.考虑饱和-非饱和渗流作用的土质边坡稳定性分析[J].岩土力学,2008,29(12):3229-3235.
    [108]郭剑峰,陈正汉,孙树国等.考虑非饱和特性的小浪底大坝边坡稳定分析[J].后勤工程学院学报,2007,23(4):45-49.
    [109]张文杰,陈云敏,凌道盛.库岸边坡渗流及稳定性分析[J].水利学报,2005,36(12):1510-1516.
    [110]何秉顺,丁留谦.面板砂砾石坝异常状态渗流计算及稳定分析[J].防灾减灾工程学报,2008,28(1):75-79.
    [111]贾苍琴,黄茂松,王贵和.水位骤降对土坡稳定性的影响分析[J].同济大学学报(自然科学版),2008,36(3):304-309.
    [112]王瑞钢.降雨渗流作用下高填土路堤的稳定研究[D].天津大学博士学位论文.2003.
    [113]李荣建,于玉贞,邓丽军等.非饱和土边坡稳定分析方法探讨[J].岩土力学,2007,28(10):2060-2064
    [114]李荣建,于玉贞,李广信.强度折减有限元法在非饱和土边坡稳定分析中的应用[J].水利水电技术,2006,37(3):42-45.
    [115]李荣建,于玉贞,李广信.抗滑桩加固非饱和土边坡三维稳定性分析[J].岩土力学,2008,29(4):968-972.
    [116]周桂云,李同春.基于非饱和土固结理论的有限元强度折减法[J].岩土力学,2008,29(4):1133-1137.
    [117]徐丈杰,王立朝,胡瑞林.库水位升降作用下大型土石混合体边坡流-固耦合特性及其稳定性分析[J].岩石力学与工程学报,2009,28(7):1491-1498.
    [118]岳庆河,刘福胜.库水位回落条件下土石坝边坡稳定分析[J].水利水运工程学报.2008,(3):81-85.
    [119]黄茂松,贾苍琴.考虑非饱和非稳定渗流的土坡稳定分析[J].岩土工程学报,2006,28(2):202-206.
    [120]于玉贞,林鸿州,李荣建.非稳定渗流条件下非饱和土边坡稳定分析[J].岩土力学,2008,29(11):2892-2898.
    [121]贾苍琴,黄茂松,王贵和.非饱和非稳定渗流作用下土坡稳定分析的强度折减有限元方法[J].岩石力学与工程学报,2007,26(6):1290-1297.
    [122]张芳枝,陈晓平.非饱和黏土变形和强度特性试验研究[J].岩石力学与工程学报,2009,28(S2)):3808-3814.
    [123]张芳枝,陈晓平.反复干湿循环对非饱和土的力学特性影响研究[J].岩土工程学报.2010.32(1):41-46.
    [124]Vanapalli S K, Fredlund D G, Pufahl D E. The influence of soil structure and stress history on the soil-water characteristics of compacted till[J]. Geotechnique,1999,49(2):143-159.
    [125]李炜,徐孝平.水力学[M].武汉:武汉水利电力大学出版社,.2000:132-136.
    [126]毛昶熙.渗流计算分析与控制[M].北京:中国水利水电出版社,2003:4-27.
    [127]毛昶熙,段祥宝,李祖贻.渗流数值计算与程序应用[M].南京:河海大学出版社,1999:162-170.
    [128]吴林高.工程降水设计施工与基坑渗流理论[M].北京:人民交通出版社,2003:132-143.
    [129]李广信.高等土力学[M].北京:清华大学出版社,2004.
    [130]王勖成,邵敏.有限单元法基本原理和数值方法[M].北京:清华大学出版社,1997:30-35.
    [131]凌道盛,徐兴.非线性有限元及程序[M].杭州:浙江大学出版社,2004:101-110.
    [132]朱以文,蔡元奇,徐晗.ABAQUS与岩土工程分析[M].香港:中国图书出版社,2005:85-89,24-37.
    [133]Hibbitte, Karlsson, Sorenson, INC. ABAQUS/Standard User's Manual[S].2002.
    [134]沈细中.深基坑工程基本过程数值模拟及实时优化研究[D].武汉大学博士学位论文,2004.
    [135]王金昌,陈页开.ABAQUS在土木工程中的应用[M].浙江大学出版社.杭州.2006.6.
    [136]Hibbit, Karlsson& Sorensen, Inc. ABAQUS Theory manual[S].2005.
    [137]武亚军.基坑工程中土与支护结构相互作用及边坡稳定性的数值分析[D].大连理工大学博士学位论文,2003.
    [138]赵尚毅,郑颖人,张玉芳.有限元强度折减法中边坡失稳的判据讨论[J].岩土力学,2005,26(2):332-336.
    [139]徐干成,郑颖人.岩土工程中屈服准则应用的研究[J].岩土工程学报,1990,12(2):93-99.
    [140]庄茁,张帆,岑松等.ABAQUS非线性有限元分析与实例[M].北京:科学出版社,2005:187-194.
    [141]黄文熙.土的工程性质[M].北京:水利电力出版社,1983.
    [142]黄茂松,钱建固,吴世明.土坝动力应变局部化与渐进破坏的自适应有限元分析[J].岩土工程学报,2001,23(3):306-310.
    [143]贾苍琴.考虑非饱和非稳定渗流和剪胀性的土坡稳定分析[D].同济大学博士学位论文,2006.
    [144]Fredlund D G, Xing Anqing. Equations for the soil-water characteristic curve[J]. Canadian Geotechnical Journal,1994,31(3):521-532.
    [145]Fredlund D G, Xing Anqing, Huang Shangyan. Predicting the permeability function for unsaturated soils using the soil-water characteristic curve[J]. Canadian Geotechnical Journal,1994,31(3): 533-546.
    [146]暨南大学.北江大堤西南镇险段护岸工程后评价[R].2005.12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700