用户名: 密码: 验证码:
中国湿陷性黄土的结构性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
从土的结构性出发进行土的工程性质的研究已成为土力学发展的新方向,而黄土由于其特殊的结构所具有的湿陷性为黄土地区的建设安全带来了巨大的隐患。湿陷性黄土在天然状态下可以保持较高的强度和较低的压缩性,但遇水浸湿后,结构迅速破坏,发生突然的下沉变形,强度也随之大幅下降,具有极大的危害性。本文依托国家自然科学基金项目“中国黄土的微观结构与湿陷性”(项目编号:50478096),通过选取我国不同黄土地区的典型湿陷性黄土土样,结合大量的室内土工试验,并借助扫描电子显微镜测试技术,对黄土的微结构图像进行了细致的定性分析以及定量评价,从黄土的结构特性出发,对黄土的湿陷机理及湿陷变形规律进行综合研究,提出了造成黄土湿陷的主要结构因素,总结了微结构特征与湿陷性之间的统计关系,为正确评价黄土的湿陷性并有效控制黄土的湿陷变形提供了理论依据,对我国黄土地区的工程建设事业的发展具有积极的意义。
     主要研究成果归纳如下:
     1)通过黄土的颗粒分析试验得出,黄土的颗粒组成以粗粉粒为主,也含有较多的黏粒。土体中黏粒含量的增多在一定程度上会降低黄土的湿陷性,但不能仅根据黏粒的含量来判断黄土的湿陷性。一些地区的土样黏粒含量在30%以上,仍具有较强烈的湿陷性。利用扫描电镜对该土体结构进行观察,发现其原因为黏粒只是存在于团粒的内部,而团粒表面起骨架胶结作用的黏粒很少,团粒之间呈松散排列,土体存在较大的湿陷性,黏粒的高含量对于黄土的湿陷性没有影响。所以考虑黏粒对黄土湿陷性的影响,除考虑其含量外,还要重点确定其在土体中的赋存状态。
     2)通过反复试验,成功研制出一套适合于湿陷性黄土微观结构分析的制样方法,并确定了适用于黄土浸泡的液体材料及配比,在不扰动土体结构的前提下,获得清晰的微观图像,为今后湿陷性黄土的结构研究奠定了基础。
     3)在前人对黄土结构总结的基础上,对黄土的结构进行了更合理的分类。将黄土的基本单元体形式归纳为颗粒状单元体、团粒状单元体;单元体间的连结方式划分为接触连结和胶结连结;根据单元体不同的排列方式而形成的孔隙分为单元体内孔隙、镶嵌孔隙、架空孔隙、大孔隙。
     4)根据孔径的大小将孔隙划分为大孔隙(>500μm)、中孔隙(500-50μm)、小孔隙(50-5μm)和微孔隙(<5μm),并将其与根据单元体的排列形式划分的孔隙类型相对应。单元体内孔隙基本属于微孔隙,镶嵌孔隙与小孔隙相对应,架空孔隙包括中孔隙和孔壁未加固的大孔隙。将各种结构的孔隙形式具体量化,便于今后对孔隙结构进行定量分析。
     5)通过对不同地区黄土微结构的分析总结,并与其湿陷性相对比,得出在黄土结构特征的三个基本要素中,以单元体间的排列方式最为重要。骨架单元体之间松散排列形成的架空孔隙是黄土产生湿陷的根本原因。
     6)根据土样的扫描电镜微观图像为二维图像的特点,确定将孔隙面积比作为微结构定量分析的主要测量参数。对于IPP图像处理软件得出的数据进行了全面的分析和研究,最终确定以放大倍数1000倍,以灰度分布曲线上后方峰值的左侧坡脚(峰值左侧)所对应的阈值,来统计土样的孔隙面积比。
     7)按照确定的放大倍数和阈值取值方法统计出各地土样的孔隙面积比,并与室内土工试验得出的孔隙率相对比进行验证,得出所确定的微结构分析方法合理,统计数据对于土体的微结构特征具有一定的代表性。
     8)根据土样的微结构图像定量分析结果,土样垂直面的结构规律性要好于水平面,垂直面的孔隙面积比随埋深的增加而减小,其变化呈线性关系;湿陷系数随孔隙面积比的增加而增大,孔隙面积比与湿陷系数之间呈对数曲线关系。总结得出了黄土孔隙面积比与埋深之间的线性回归方程式,以及孔隙面积比与湿陷系数间的对数回归方程式。
     9)通过黄土的各项物理性质与湿陷性的关系研究得出,随着含水量、重度、干重度、饱和度的增加,黄土的湿陷系数降低,湿陷性减弱;随着孔隙比、孔隙率的增加,黄土的湿陷系数提高,湿陷性增强。并分析总结了非湿陷性黄土和强湿陷性黄土所对应的各项物理性质指标,对工程实践中正确评价黄土湿陷性具有一定的指导意义。
     10)通过黄土的不同初始含水量固结试验得出,随着初始含水量以及初始饱和度的增加,土样的压缩变形增大,湿陷系数减小,黄土的湿陷性降低。
The study on engineering properties of soil based on its structure has been a new direction in the development of soil mechanics. The collappsibility of loess caused by its special structure brings on the tremendous risks in the large number of constructions on the collapsible loess foundation. Collapsible loess in natural state has relatively high strength and low compressibility, but when it is soaked with the water, its structure will be damaged rapidly and collapsed suddenly, at the same time its strength losts a lot, so collapsibility has great harmfulness. Under the support of project“Microstructure and collapsibility of loess in China”funded by National Nature Science Foundation (Project No. 50478096), this study is conducted and completed. In this study, typical collapsible loess samples were taken from different loess regions in China. After a series of tests to determine their physical and mechanical properties, the samples were observed under the scanning electric microscope. The images of loess were analyzed from both qualitative and quantitative ways. Based on the structural properties, the collapse mechanism and the law of deformation were studied, the main structural factors causing loess collapse were suggested, and the relationship between collapsibility coefficients and microstructure properties of loess specimens were concluded. There is an important positive meaning to provide the theoretical basis for evaluating the loess collapsibility correctly and controlling the loess deformation effectively.
     The main achievements in this study are as follow:
     1) According to the grain size distribution tests, the content of coarse silt particle is the largest portion in loess specimens, and the content of clay particle is rather high in general. To a certain extent, the content of clay particle increasing can decrease the collapsibility of loess. But it is impossible to judge the collapsibilty based only on the content of clay particle. Though the contents of clay particle in some specimens are more than 30%, they still have strong collapsibility. Using scanning electron microscope to observe the structure of these specimens and found that the most of clay particles existed inside the aggregates, while little clay particle existed among the aggregates to cement them, the aggregates were in loose arrangement and the specimens had the high collapsibility. The high content of clay particle doesn’t make a difference on the collapsibility of loess. So to determine the effect of clay particle on the loess collapsibility must consider not only the content of clay particle, but also the clay particle exsiting state in the loess, later one maybe of more importance.
     2) A set of sampling method for collapsibility loess microstructure analysis, the materials for specimen impregnation and their ratio were determined after lots of repeated tests. By this method, large numbers of clear undisturbed microstructural images were obtained what provided the foundation of the loess structure research.
     3) A reasonable classification of loess structure was proposed based on the former research of loess. The basic unit element in loess microstructure composite can be summed up as granular unit and aggregated unit; the link between the basic unit elements can be classified as contact link and cement link; the arrangement of basic unit elements leading to various void in loess can be divided into 4 types, ie, void inside the unit, embedded void, open void and large void.
     4) The voids in loess can be divided into large void (>500μm), middle void (500-50μm), small void (50-5μm) and micro void (<5μm) at their size. This classification is associated with the void form divided by the arrangement of basic unit element. Most of voids inside the unit are mico voids; the embedded voids correspond to the small voids; the open voids include middle voids and large voids with loose void wall. It is possible to quantitatively analyze the void with different structure based on their specific size range.
     5) Contrasting the analysis result of loess structure in different regions to their collapsibility, the conclusion can be drawn that the arrangement of basic unit elements is the most important part in three structural characters. The open void formed by loose arrangement of basic unit elements is the primary cause of loess collapsibility.
     6) The void area ratio of specimen was decided to be the main measurement parameter in the structure quantitative analysis of loess on the basis of the SEM image’s feature of two-dimension. Based on the analysis of data got from IPP image processing software, the method of calculating the void area ratio was determined. The void area ratio of each specimen can be calculated by choosing the image with the magnification of 1000 and selecting the gray scale threshold as the value corresponding to the left foot of the rear peak on the gray distribution curve.
     7) The void aera ratio of specimens in different regions calculated by the method mentioned above was verified by contrasting with the porosity of specimens resulted from the soil tests in laboratory. It is certified that the method of calculating void area ratio is reasonable, and the statistical data has the great representation for the structure of loess.
     8) The quantitative analysis results of specimen image show that the regularity of vertical plane structure of specimen is better than horizontal plane. The void area ratio of vertical plane decreases with the sample depth increases, and increases with the collapsibility coefficient increases. The relationship equations are set up, such as the linear regression equation of void area ratio and depth, the logarithm regression equation of void ratio and collapsibility coefficient.
     9) By the study on the relationship between physical properties and collapsibility of loess, the conclusion can be drawn as follow: with the increasing of water content, unit weight, dry unit weight and saturation degree, the collapsibility coefficient of specimen reduces, the loess collapsibility declines; with the increasing of void ratio and porosity, the collapsibility coefficient of specimen increases, the loess collapsibility enhance. Besides, some physical property indexes are compared and discussed for non-collapsible loess and strong collapsible loess are concluded. The work is significant for evaluating the loess collapsible correctly.
     10) From the consolidation tests of loess with different initial water content, the conclusion can be drawn that with the initial water content and the initial saturation degree increase, the compression of specimen increases, while the collapsibility coefficient decreases, the collapsibility of loess decreases.
引文
[1]刘东生,吴子荣,文启忠等.中国的黄土堆积[M].北京:科学出版社,1965.
    [2]刘东生,陈承惠,吴子荣等.黄土的物质成分和结构[M].北京:科学出版社, 1966.
    [3]刘东生等.黄土与环境[M].北京:科学出版社,1985.
    [4]钱鸿缙,王继唐,罗宇生等.湿陷性黄土地基[M].北京:中国建筑工业出版社,1985.
    [5] Smalley I.J., Jefferson I.F., Dijkstra T.A., etc. Some major events in the development of the scientific study of loess [J]. Earth-Science Reviews, 54(2001) 5-18.
    [6]湿陷性黄土地区建筑规范(GBJ20-66) [S].北京:技术标准出版社, 1966.
    [7]谢定义.讨论我国黄土力学研究中的若干新趋向[J].岩土工程学报, 2001, 23(1): 3-13.
    [8]湿陷性黄土地区建筑规范(GBJ25-90) [S].北京:中国计划出版社, 1991.
    [9]刘祖典.黄土力学与工程[M].西安:陕西科学技术出版社, 1997.
    [10]张炜,张苏民.我国黄土工程性质研究的发展[J].岩土工程学报, 1995, 17(6): 80-88.
    [11]湿陷性黄土地区建筑规范(TJ25-79) [S].北京:中国建筑工业出版社, 1979.
    [12]刘祖典等.陕西关中黄土变形特性和变形参数的探讨[J].岩土工程学报, 1984, 6(3): 24-31.
    [13]陈正汉,刘祖典.黄土的湿陷变形机理[J].岩土工程学报, 1986, 8(2): 1-12.
    [14]湿陷性黄土地区建筑规范(GB50025-2004) [S].北京:中国建筑工业出版社, 2004.
    [15]刘祖典.影响黄土湿陷系数因素的分析[J].工程勘察, 1994, 5: 6-11.
    [16]张炜.黄土力学性质试验中的若干问题[J].工程勘察, 1995, 3: 6-12.
    [17]张苏民.湿陷性黄土的术语和基本概念[J].岩土工程技术, 2000, 1: 42-46.
    [18]卢肇钧,张惠明,陈建华等.非饱和土的抗剪强度与膨胀压力[J].岩土工程学报, 1992, 14(3): 1-8.
    [19]党进谦,李靖.非饱和黄土的强度特征[J].岩土工程学报, 1997, 19(2): 56-61.
    [20]党进谦,李靖,张伯平.黄土单轴拉裂特性的研究[J].水力发电学报, 2001, 4: 44-48.
    [21]郭敏霞,张少宏,邢义川.非饱和原状黄土湿陷变形及孔隙压力特性[J].岩石力学与工程学报, 2000, 19(6): 785-788.
    [22]邢义川,谢定义,李振.非饱和土有效应力参数研究[J].水利学报, 2000, 12: 77-81.
    [23]邢义川,谢定义,李振.非饱和土应力传递机理与有效应力原理[J].岩土工程学报, 2001, 23(1): 53-57.
    [24]邢义川,谢定义,李永红.非饱和黄土湿陷过程中有效应力变化规律[J].岩石力学与工程学报, 2004, 23(7): 1100-1103.
    [25]巫志辉,方彦.原状黄土在增湿时的震陷特性[C].第三届全国土动力学学术会议.上海, 1990, 285-290.
    [26]谢定义,余雄飞.原状黄土动力特性研究中一些问题的讨论[C].全国土工建筑物及地基抗震学术讨论会论文汇编.西安, 1986.
    [27]张振中,孙崇绍,段当文,王兰民.黄土地震灾害预测[M].北京:地震出版社, 1999.
    [28]王兰民,张振中.随机地震荷载作用下黄土动强度的试验方法[J].西北地震学报, 1991, 13(3).
    [29]高国瑞.黄土湿陷变形的结构理论[J].岩土工程学报, 1990, 12(4): 1-20.
    [30]穆斯塔伐耶夫, A. A.,湿陷性黄土地基与基础的计算[M].北京:水利水电出版社,1984.
    [31]高国瑞.近代土质学[M].南京:东南大学出版社, 1990.
    [32] Van Olphen, H. An Introduction to clay colloid chemistry [C]. John Wiley & Sans, 1977, 82-110.
    [33]高国瑞.兰州黄土显微结构和湿陷机理的探讨[J].兰州大学学报, 1979, 2: 123-134.
    [34]高国瑞.中国黄土的微结构[J].科学通报, 1980, 24: 945-948.
    [35]高国瑞.黄土显微结构分类与湿陷性[J].中国科学, 1980, 12: 1203-1208.
    [36]高国瑞.黄土显微结构分析及其在工程勘察中的应用[J].工程勘察, 1980, 6: 25-28.
    [37]沈珠江.土体结构性的数学模型—21世纪土力学的核心问题[J ].岩土工程学报, 1996, 18(1): 95-97.
    [38] Casagrande, A., The structure of clay and its importance in foundation engineering [J]. J Boston Soc. Civ. Engin., 1932, 19, 168-208.
    [39] Lambe, T. W., The structure of compacted clay [J]. Journal of the Soil Mechanics and Foundations Division. Proc. ASCE. 1958,Vol.84, SM2, paper 1654, 1-34.
    [40] Yong, R. N., and Warkentin, B. P., Soil properties and behavior [M]. Megill University. Montreal, Canada, 1975.
    [41] Collins, K., and McGown, A., The form and function of microfabric features in a variety of natural soils [J]. Geotechnique 24(2): 223-254.
    [42] Mitchell, James K.,高国瑞译.岩土工程土性分析原理[M].南京:南京工学院出版社, 1988.
    [43] Tovey, N. K., A digital computer technique for orientation analysis of micrographs of soil fabric [J]. J of Microscopy, 1990, 120: 303-315.
    [44] Smart, P., and Tovey, N. K., Electron microscopy of soils and sediments techniques [M], 1982, Oxford University Press.
    [45] Tovey, N. K., and Krinsley, D. H., Mapping of the orientation of fine-grained minerals in soils and sediments [J]. Bulletin of IAEG, 1992, 46: 93-101.
    [46] Pye, K., and Krinsley, D., Petrograpgic examination of sedimentary rocks in the SEM using back-scattered electron detectors [J]. J Sed Petr, 1984, 54: 877-888.
    [47] Bai, X., and Smart, P., Change in microstructure of Kailin in consolidation and undrained shear [J]. Geotechnique, 1997, 47(5): 1009-1017.
    [48] Bazant. Microplane model for creep of anisotropic clay [J]. Jr of Engrg Mech Div, ASCE, 1985, 101(1): 57-78.
    [49] David, Frost J., and Saussus, Denis R., Efficient mitigation of edge effects in nearest-neighbor analysis [J]. Journal of Testing and Evaluation, JTEVA, 2000, 28(1): 3-11.
    [50] Santamarina, J. Carlos, Soil behavior at the microscale: particle forces. Proc. Symposium on SoilBehavior and Soft Ground Construction, in honor of Charles C. Ladd, October, 2001, Massachusetts Institute of Technology.
    [51]王永炎,腾志宏.黄土与第四纪地质[M].西安:陕西人民出版社, 1982.
    [52]雷祥义.中国黄土的孔隙类型与湿陷性[J].中国科学(B辑), 1987, 12: 1309-1316.
    [53]胡瑞林,官国琳,李向全等.黄土压缩变形的微结构效应[J].水文地质工程地质, 1998, 3: 30-35.
    [54]谭罗荣.某些膨胀土的基本性质研究[J].岩土工程学报, 1987, 5: 73-85.
    [55]施斌,李生林.击实膨胀土微结构与工程特性的关系[J].岩土工程学报, 1988, 10(6): 80-87.
    [56]施斌.黏性土击实过程中微观结构的定量评价[J].岩土工程学报, 1996, 18(4): 57-62.
    [57]谭罗荣,张梅英.一种特殊土的微观结构特性的研究[J].岩土工程学报, 1982, 4(2): 26-35.
    [58]李向全,胡瑞林,张莉.黏性土固结过程中的微结构效应研究[J].岩土工程技术, 1999, 3: 52-56.
    [59] Bai, X., Smart, P., and Leng, X. Polarizing micro-photometric analysis [J]. Geotechnique, 1994, 44(4): 175-180.
    [60]吴义祥.工程黏性土微观结构的定量评价[J].中国地质科学院院报, 1991, 23: 143-150.
    [61] Jiang, M., and Shen, Z., Microscopic analysis of shear band in structure clay [J]. Chinese Journal of Geotechnical Engineering, 1998, 20(2): 102-108.
    [62]蒋明镜,沈珠江.结构性黏土试样人工制备方法研究[J].水利学报, 1997, 1: 56-61.
    [63]高国瑞,韩爱民.中国区域性土的分布和岩土性质的形成[J].岩土工程学报, 2005, 27(5): 511-515.
    [64]李生林,施斌,杜延军.中国膨胀土工程地质研究[J].自然杂志, 1997, 19(2): 82-86.
    [65]谭罗荣,孔令伟.某类红黏土的基本特性与微观结构模型[J].岩土工程学报, 2001, 23(4): 458-462.
    [66]孔令伟,吕海波,汪稔等.海口某海域软土工程特性的微观机制浅析[J].岩土力学, 2002, 23(1): 36-40.
    [67]孔令伟,吕海波,汪稔等.湛江海域结构性海洋土的工程特性及其微观机制[J].水利学报, 2002, 9: 82-88.
    [68]雷华阳,肖树芳.天津海积软土微观结构与工程性质初探[J].地质与勘探, 2002, 2002, 38(6): 81-85.
    [69]雷华阳,肖树芳.天津软土的次固结变形特性研究[J].工程地质学报, 2002, 10(4): 385-389.
    [70]王家澄,张学珍,王玉杰.扫描电子显微镜在冻土研究中的应用[J].冰川冻土, 1996, 18(2): 184-188.
    [71]张洪武.微观接触颗粒岩土非线性力学分析模型[J].岩土工程学报, 2002, 24(1): 12-15.
    [72]刘源,缪馥星,苗天德.二维颗粒堆积体中力的传递与分布研究[J].岩土工程学报, 2005, 27(4): 468-473.
    [73]汪益敏,贾娟,张丽娟等. ISS加固土的微观结构及强度特征[J].华南理工大学学报(自然科学版), 2002, 30(9): 96-99.
    [74]颜志平.高水速凝材料-软土微结构的SEM研究[J].岩土力学, 2004, 25(2): 275-278.
    [75]王立朝,胡瑞林,李耀刚等.强夯法加固填土地基的现场试验与微观结构分析[J].岩土力学, 2004,25(11): 1832-1836.
    [76]陈东佐.强夯前后潞城黄土显微结构的研究[D].太原:太原工业大学, 1983.
    [77]王梅,白晓红.强夯法加固湿陷性黄土的微观研究[J].岩土力学, 2006, 27(suup.2): 810-814.
    [78]王梅,白晓红,梁仁旺,陈平安.生石灰与粉煤灰桩加固软土地基的微观分析[J].岩土力学, 2001, 22(1): 67-70.
    [79] Barden, L., The collapse mechanism in partly saturated soil [J]. Eng. Geol. 1973, (7): 49-60.
    [80] Rogers, C. D. F., Dijkstra T. A., and Smalley, I. J., Hydroconsolidation and subsidence of loess: Studies from China, Russia, North America and Europe [J]. Engineering Geology, 1994, 37(2): 83-113.
    [81] Derbyshire, E., Dijkstra, T. A., Smalley, I. J., and Li, Y., Failure mechanisms in loess and the effects of moisture content changes on remoulded strength [J]. Quaternary International, 1994, 24: 5-15.
    [82] Dijkstra, T. A., Smalley, I. J., and Rogers, C. D., FParticle packing in loess deposit and the problem of structure collapse and hydroconsolidation [J]. Engineering Geology, 1995, 40: 49-64.
    [83] Dibben, S. C., Jefferson, I. F., and Smalley, I. J., The“Loughborough Loess”Monte Carlo model of soil structure [J]. Geocomputation & Geoscience, 1998, 24(4): 345-352.
    [84] Assallay, A. M., Rogers, C. D. F., and Smalley, I. J., Formation and collapse of metastable particle packings and open structures in loess deposits [J]. Engineering Geology, 1997, 48: 101-115.
    [85] Assallay, A. M., Jefferson, I. F., Rogers, C. D. F., and Smalley, I. J., Fragipan formation in loess soils: development of the Bryant hydroconsolidation hypothesis[J]. Geoderma, 83, 1-16.
    [86] Miller, H., Djerbib, Y., Jefferson, I. F., and Smalley, I. J., Modelling the collapse of metastable loess soils [C]. Proceedings of the 3rd International conference on Geocomputation, R. J. Abrahart, Publisher“Geocomputation CD-ROM (ISBN 0-9533477-0-2)”, University of Bristol, United Kingdom, 1998, 17-19.
    [87] Derbyshire, E., Meng, Xingmin, Wang, Jingtai et. al. Collapsible loess on the loess plateau of China [C], Genesis and properties of collapsible soils, Proc. Workshop, Loughborough, 1994, Edited by E. Derbyshire & others, 1995, 267-293.
    [88] J. Feda. Mechanism of collapse of soil structure [C]. Genesis and properties of collapsible soils, Proc. Workshop, Loughborough, 1994, Edited by E. Derbyshire & others, 1995, 149-172.
    [89]刘东生,张宗祜.中国的黄土.地质学报[J], 1962, 42(1).
    [90]朱海之.黄河中游马兰黄土颗粒及结构的若干特征[J].地质科学, 1963, 2: 88-100.
    [91] Gao Guorui. Formation and development of the structure of collapsing loess in China [J]. Engineering Geology, 1988, 25: 235-245.
    [92]王永炎,林在贯.中国黄土的结构特征及物理力学性质[M].北京,科学出版社, 1990.
    [93]雷祥义.黄土显微结构类型与物理力学性质指标之间的关系[J].地质学报, 1989, 2: 182-191.
    [94] Bai, X. and Smart, P., Engeering properties of Lucheng loess in Shanxi [J]. Chinese Journal of Geotechnical Engeering, 2002, 24(4): 515-518.
    [95]胡瑞林,李向全,官国琳等.分形理论在黄土湿陷性的微结构效应研究中的应用[J].非线性动力学学报, 1996, 3(4): 360-366.
    [96]胡瑞林,李焯芬,王思敬等.动荷载作用下黄土的强度特征及结构变化机理研究[J].岩土工程学报, 2000, 22(2): 174-181.
    [97]胡瑞林,官国琳,李向全等.黄土湿陷性的微结构效应[J].工程地质学报, 1999, 7(2): 161-167.
    [98]蒲毅彬,陈万业,瘳全荣.陇东黄土湿陷过程的CT结构变化研究[J].岩土工程学报, 2000, 22(1): 49-54.
    [99]雷胜友,唐文栋,王晓谋等.原状黄土损伤破坏过程的CT扫描分析[J].兰州理工大学学报, 2004, 30(4): 110-114.
    [100]邓津,王兰民,张振中.黄土显微结构特征与震陷性[J].岩土工程学报, 2007, 29(4): 542-548.
    [101]汤连生.黄土湿陷性的微结构不平衡吸力成因论[J].工程地质学报, 2003, 11(1): 30-35.
    [102]郭玉文,宋菲,加藤诚.黄土中碳酸钙分布的能谱分析[J].岩土工程学报, 2005, 27(9): 1004-1007.
    [103]郭玉文,加藤诚,宋菲等.黄土高原黄土团粒组成及其与碳酸钙关系的研究[J].土壤学报, 2004, 41(3): 362-368.
    [104]郭玉文,加藤诚.从团粒结构失稳角度探讨由灌溉引起的黄土湿陷发生机理[J].兰州大学学报, 2007, 43(5): 6-10.
    [105]张德华,白晓红.黄土湿陷性的微观研究[J].西部探矿工程, 1996, 8: 7-9.
    [106] Wang, M., and Bai, X., Collapse property and microstructure of loess [C]. Advances in Unsaturated Soil, Seepage and Environmental Geotechnics, ASCE, 2006, 111-118.
    [1]张炜.黄土力学性质试验中的若干问题[J].工程勘察, 1995, 3: 6-12.
    [2]湿陷性黄土地区建筑规范(GB50025-2004) [S].北京:中国建筑工业出版社, 2004.
    [3]刘东生等.黄土的物质成分和结构[M].北京:科学出版社, 1996.
    [4]钱鸿缙,王继唐,罗宇生等.湿陷性黄土地基[M].北京:中国建筑工业出版社,1985.
    [5]谭罗荣,孔令伟.特殊岩土工程土质学[M].北京:科学出版社, 2006.
    [1]白冰,周健.扫描电子显微镜测试技术在岩土工程中的应用与进展[J].电子显微学报, 2001, 20(2): 154-160.
    [2] Mitchell, James K.,高国瑞译.岩土工程土性分析原理[M].南京:南京工学院出版社, 1988.
    [3]高国瑞.近代土质学[M].南京:东南大学出版社, 1990.
    [4]谭罗荣,孔令伟.特殊岩土工程土质学[M].北京:科学出版社, 2006.
    [5]蒲毅彬,陈万业,廖全荣.陇东黄土湿陷过程的CT结构变化研究[J].岩土工程学报, 2000, 22(1): 49-54.
    [6]蒲毅彬. CT用于冻结土、岩及冰的无损动态试验研究[J].自然科学进展, 1998, 8(2): 251-253.
    [7]张梅英,袁建新.岩土介质微观力学动态观测研究[J].科学通报, 1993, 38(10): 920-924.
    [8]张梅英,袁建新,古流祥等.适用于实验细观力学研究的小型剪切仪[J].岩土力学, 1996, 17(1): 22-26.
    [9]蒋明镜,沈珠江.结构性粘土试样人工制备方法研究[J].水利学报, 1997, 1: 56-61.
    [10] Fitzpatrick, E. A., Micromorphology of Soils [M]. London, New York: Chapman and Hall Ltd, 1984.
    [1]刘东生.中国黄土的地质环境[J].科学通报, 1978, 23(1): 1-9.
    [2]王永焱,藤志宏.中国黄土的微结构及其在时代和区域上的变化[J].科学通报, 1982, 27(2): 102-105.
    [3]雷祥义.中国黄土的孔隙类型与湿陷性[J].中国科学(B辑), 1987(12): 1309-1316.
    [4]高国瑞.黄土显微结构分类与湿陷性[J].中国科学, 1980, 12: 1203-1208.
    [1]高国瑞.近代土质学[M].南京:东南大学出版社, 1990.
    [2] Bai, X., Smart, P., and Leng, X., Polarizing micro-photometric analysis [J]. Geotechnique, 1994, 44(4): 175-180.
    [3] Smart, P., Image analysis [M]. Glasgow: Glasgow University Press, 2007.
    [4]施斌.粘性土击实过程中微观结构的定量评价.岩土工程学报, 1996, 18(4): 57-62.
    [5]胡瑞林,李向全,官国琳等.分形理论在黄土湿陷性的微结构效应研究中的应用[J].非线性动力学学报, 1996, 3(4): 360-366.
    [6]胡瑞林,李焯芬,王思敬等.动荷载作用下黄土的强度特征及结构变化机理研究[J].岩土工程学报, 2000, 22(2): 174-181.
    [7]谢定义. 21世纪土力学的思考[J].岩土工程学报, 1997, 19(4): 111-114.
    [8]徐清浩.数字图像分析程序在土的微观结构研究中的应用以及数据分析[D].太原:太原理工大学, 2008.
    [1]曾国红,孟宪唚,裘以惠.关于黄土湿陷起始压力、湿陷起始含水量的探讨[J].太原工业大学学报, 1997, 28(Supp.): 17-20.
    [2]郭玉文,加藤诚.从团粒结构失稳角度探讨由灌溉引起的黄土湿陷发生机理[J].兰州大学学报(自然科学版), 2007, 43(5): 6-10.
    [3]湿陷性黄土地区建筑规范(GB50025-2004).北京:中国建筑工业出版社, 2004.
    [4]谢定义.讨论我国黄土力学研究中的若干新趋向[J].岩土工程学报, 2001, 23(1), 3-13.
    [5]张苏民,张炜.减湿和增湿时黄土的湿陷性[J].岩土工程学报, 1992, 14(1): 57-61.
    [6]张苏民.郑建国.湿陷性黄土(Q3)的增湿变形特征[J].岩土工程学报, 1990, 12(4): 21-31.
    [7]曾国红,裘以惠.含水量增加时湿陷性黄土变形特性研究[J].西部探矿工程, 1996, 8: 4-5.
    [8]张爱军,邢义川.黄土增湿湿陷过程的三维有效应力分析[J].水力发电学报, 2002, 76(1): 21-27.
    [9]刘保健,谢定义,郭增玉.黄土地基增湿变形的实用算法[J].岩土力学, 2004, 25(2): 270-274.
    [10]张茂花,谢永利,刘保健.增(减)湿时黄土的湿陷系数曲线特征[J].岩土力学, 2005, 26(9): 1363-1368.
    [11]杨晶.影响黄土湿陷性因素的试验及微观研究.太原理工大学硕士学位论文,太原, 2007
    [12]曾国红.含水量增减时湿陷性黄土变形特征研究.太原工业大学硕士学位论文,太原, 1995.
    [13]土工试验规程SDS 01-79.水利出版社.
    [14]白晓红,张德华,王梅.潞城黄土的微观结构特征与湿陷性的关系[C].湿陷性黄土研究与工程,中国建筑工业出版社, 2001: 93-96.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700