用户名: 密码: 验证码:
原位条件下水合物形成与分解研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天然气水合物是一种高效、储量大、新型洁净能源,本文以天然沉积物中水合物形成机理及热力学特性为研究目的,利用新建的水合物相平衡测试系统,研究了堆积层中孔隙尺寸、盐分浓度、气体组成等对天然多孔介质中水合物相平衡特性的影响,定量把握其热力学特性。对阐明水合物形成机理,分布规律及其赋存状态具有重要意义。
     实验结果显示多孔介质中甲烷水合物容易生成、诱导时间短。在其它条件一致情况下,随着孔隙尺寸的增加,甲烷水合物相平衡曲线向高温、低压方向移动;随着盐分浓度的增加,甲烷水合物相平衡曲线向低温、高压方向移动;混合气体中随着甲烷浓度的减少,相平衡曲线向低压、高温方向移动。
     为了进一步研究盐分对甲烷水合物相平衡的影响,利用正交试验设计方法研究了不同离子组成和浓度条件下多孔介质中甲烷水合物相平衡特性。研究发现在本实验条件下四种阳离子对甲烷水合物相平衡影响的影响程度从大到小依次为Mg2+、Ca2+、Na+、K+。四种卤素阴离子(F-、Cl-、Br-、I-)对甲烷水合物相平衡影响效果一致;三种常规阴离子(Cl-、CO32-、SO42-)浓度对甲烷水合物相平衡影响均显著。
     研究发现二氧化碳初始状态的不同导致二氧化碳水合物形成过程中热力学现象发生变化。随着溶液中氯化钠浓度的增加,二氧化碳水合物相平衡曲线向低温、高压方向移动。当温度降低到冰点以下时,氯化钠溶液对二氧化碳水合物相平衡的影响很小,可以忽略。相同条件下二氧化碳水合物与甲烷水合物相平衡存在很大差异,二氧化碳水合物相平衡曲线处于高温、低压区域,也就是说二氧化碳水合物相对于甲烷水合物而言更容易形成。
     提出了预测含电解质溶液多孔介质中水合物的相平衡预测模型,将电解质对气-液表面张力的影响引入到预测模型;利用该模型对大体积水和多孔介质中甲烷、二氧化碳水合物相平衡进行了预测,误差分析显示,相对于传统预测模型而言本模型预测结果平均相对误差较小。计算结果同实验数据对比研究表明,该模型预测结果良好。
     搭建了适用于核磁共振成像(MRI)系统的二氧化碳水合物形成与分解实验测试装置;MRI追踪水中氢原子进行成像,直观的显示岩芯管中液态水分布情况,并结合MRI强度信号进行精确的分析;MRI图像显示二氧化碳水合物具有多个初始形成点和初分解始点,即多点形成、多点分解;对不同升温速度下二氧化碳水合物的分解过程进行了研究。
Natural gas hydrates (NGH) is a kind of new clean energy with high efficiency and huge amounts deposits. In this study, a set of experimental device has been built up to find the formation mechanisms and thermodynamic characters of gas hydrate in natural sediment. The effects of pore size, salinity and different gas component on the formation and dissociation of hydrate in sediment have been measured. The results can provides quantitatively thermodynamic character and explain the formation mechanisms, distribution, state of stability of NGH, and provide important date for the investigation and exploration about NGH.
     The results indicate that the induction time of gas hydrates formation in porous media is shorter than that in bulk-water. The decrease in the pore size, induced by decreased glass bead size, leads to the enhancement in the equilibrium pressure as the salinity and the temperature are kept the same, in other words, lower temperature and higher pressure are required for the formation of methane hydrate in glass beads. While the increase of salinity makes the equilibrium pressure increase too as the pore size and the temperature are kept the same. Through the experiment of gas hydrate formation and dissociation in simulated sediments, phase equilibrium of gas hydrate composed of methane, ethane and propane has been obtained. It can be concluded that the equilibrium at the condition of decreased methane concentration needs a lower pressure and a higher temperature.
     The effects of anions and cations on the phase equilibrium of methane hydrate in porous media were studied by using the orthogonal experimental design. Analysis of variance demonstrated that only Mg2+ had significantly influence on the equilibrium point of methane hydrate. The influences of all halogen ions on methane hydrate phase equilibrium are similar, which can be explained by the similar mean ionic activity coefficients of sodium halides at experimental concentrations. The influences of three normal anions concentration on the equilibrium point of methane hydrate were all significant.
     Two kinds of hydrate formation cases were obtained due to the different initial P-T conditions of CO2. The results indicated the present of glass bead leads to the enhancement in the equilibrium pressure as the salinity and the temperature are kept the same. The increase of NaCl concentration caused the enhancement in the equilibrium pressure as the pore size and the temperature are kept the same. The effects of NaCl solution on hydrate equilibrium can be neglect when temperature was lower than ice points. This can be explained with that the vapor pressure of solution was equal to that of solid phase (ice) when the equilibrium temperature gets to ice point. Comparison of methane and CO2 equilibrium conditions shows the lower temperature and higher pressure are required for the formation of methane hydrate.
     An improved model was proposed to predict the hydrates equilibrium in marine sediment environment. According to the mechanical equilibrium relations to H-L-V system, interfacial energy between hydrate and liquid was corrected by the function that is expressed with temperature and electrolyte concentration when electrolyte was in pore water. The activity of water is calculated using the Pitzer model and the interfacial energy between liquid and gas is solved using the Li's method. The model was used to predict methane hydrate equilibrium in bulk water and in porous media containing electrolyte or not. The prediction results show a good agreement with the experimental data.
     Since Magnetic resonance imaging (MRI) is an effective tool for hydrate investigations, a series of experiments were carried out to study CO2 hydrate formation in porous medium using it. The results indicated that the MRI data could visualize hydrate formation and was good agreement with the pressure change. The hydrate formation rate was also quantified using MRI data. The result also shows there are multi-sites for CO2 hydrates initial formation and dissociation in the experimental condition. The effects of heating rate on the hydrate dissociation were also investigated in this work.
引文
[1]Sloan E D. Clathrate Hydrates of Natural Gases [M].2nd ed. New York:Marcel Decker Inc,1998.
    [2]史斗,孙成权,朱岳年,等.国外天然气水合物研究进展[M].兰州:兰州大学出版社,1992.
    [3]天然气地球科学(天然气水合物专辑)[J].1998,9(3-4).
    [4]Katz D L, Cornell D, Kobayashi R, et al. Handbook of Natural Gas Engineering [M]. New York:McGraw-Hill,1959.
    [5]Kuuskraa V A.气体水合物的概念模型[M].国家技术信息中心,1995.
    [6]周怀阳,彭小彤,叶瑛.天然气水合物[M].北京:海洋出版社,2000.
    [7]Collett T, Kuuskraa V.世界天然气资源中的水合物量[J].油气杂志,1998.
    [8]Kvenvolden K A, Ginsburg G D, Solovyev V A. Worldwide distribution of subaquatic gas hydrates [J].Geo Mar Lett,1993,13:32-40.
    [9]方银霞,黎明碧,金翔龙.东海冲绳海槽天然气水合物的资源前景[J].天然气地球科学,2001,12(6):32-37.
    [10]姚伯初.南海天然气水合物的形成和分布[J].海洋地质与第四纪地质,2005,25(2):82-90.
    [11]徐学祖,程国栋,俞祁浩.青藏高原多年冻土区天然气水合物的研究前景和建议[J].地球科学进展,1999,14(2):201-203.
    [12]李其京,许维秀.天然气水合物与全球环境保护的关系[J].科技信息,2006,4,115-116.
    [13]Kvenvolden K A. Gas hydrates geological perspective and global change [J]. RevGeophys,1993,31(2):73-187
    [14]陈汉宗,周蒂.天然气水合物与全球变化研究[J].地球科学进展,1997,12(1):37-42.
    [15]梅平,刘华荣,陈武等.天然气水合物的勘探、开采及环境效应研究进展[J].化学与生物工程,2007,24(10):1-4.
    [16]Gudmundsson J S, Parlaktuna M, Khokhar A A. Storing natural gas as frozen hydrate [J]. SPE Production and Facilities,1994,9(1):69-73.
    [17]Gudmundsson J S, Boslashrrehaug A. Frozen hydrate for transport of natural gas [C]. Procceeding 5th international offshore and polar engineering conference, The Hague, 1995,I:282-288.
    [18]杜晓春,黄坤,孟涛.天然气水合物储运技术的研究和应用[J].石油与天然气工,2005,34(2):94-96.
    [19]李化,罗小武,江伍英,等.天然气水合物储运技术综述[J].天然气与油气开采,2006,24(3):62-64.
    [20]陈宝宏,韩璐,李良君,等.天然气水合物相关技术研究进展[J].河南石油,2004,18(3):63-65.
    [21]Ogawa T, Ito T, Watanabe K, et al. Development of a novel hydrate-based refrigeration system:A preliminary overview [J]. Applied thermal Engineering,2006, 26:2157-2167.
    [22]Elliot G, Barraclough B. Apparatus for recovering gaseous hydrocarbons from hydrocarbon-containing solid hydrate [P]. US:4424858,1984.
    [23]Lee, L. Method for separation of gas constituents employing hydrate promote [P]. US:6602326,2003.
    [24]樊拴狮,程宏远,陈光进,等.水合物法分离技术研究[J].现代化工,1999,19(2):11-15.
    [25]许维秀,李其京,陈光进.水合物法分离炼厂气的技术进展[J].河南化工,2006,23(6):14-17.
    [26]Sloan E D, Koh C A. Clathrate hydrates of natural gase [M]. Boca Raton:CRC Press, 2008.
    [27]Berecz E, Balla-Achs M. Gas hydrate [M]. Tran. L. Paksy. Amsterdam:Elsevier Science Publishers B. V.,1983.
    [28]Carson D B, Katz D L. Natural Gas Hydrates [J]. Trans. AIME,1942,146:150-58.
    [29]Hammerschmidt E G. Formation of Gas Hydrates in Natural Gas Transmission Lines [J]. Industrial Engineering & Chemistry,1934,26:851-855.
    [30]Roberts 0 L, Brownscombe E R, Howe L S. Methane and ethane hydrates [J]. Oil Gas J.,1940,5:37-40.
    [31]Deaton W M, Frost E M, Jr. Gas Hydrates and their Relation to the Operation of Natural-Gas Pipe Lines[M], U.S. Bureau of Mines Monograph,1946,8:101.
    [32]Marshall D R, Saito S, Kobayaski R. Hydrates at High Pressures Methane-Water and Argon-Water Systems [J]. AIChE J.,1964,10:202-205.
    [33]Jhaveri J, Robinson D B, Hydrates in the methane/nitrogen system [J]. J. Chem. Eng.1965,43:75-78.
    [34]McLeod H 0, Campbell J M, Natural gas hydrates at pressures to 10000 psia [J]. J. Petl Tech.,1961,222:590-594.
    [35]de Roo J L, Peters C J, Lichtenthaler R N, Diepen GAM. Occurrence of Methane Hydrate in Saturated and Unsaturated Solutions of Sodium Chloride and Water in Dependence of Temperature and Pressure[J]. AIChE J.,1983,29:651-657.
    [36]梅东海.廖健.王璐琨.杨继涛.郭天民.气体水合物平衡生成条件的测定及预测[J].高校化学工程学报.1997,11(3):226-231.
    [37]业渝光,张剑,刁少波,等.海洋天然气水合物模拟实验技术[J].海洋地质与第四纪地质.2003,23(1):119-123.
    [38]Makogon Y F. Hydrates of Natural Gas [M], PennWell:Tulsa.1981.
    [39]Kamath V A. Study of Heat Transfer Characteristics During Dissociation of Gas Hydrates in Porous Media [D], University of Pittsburgh, Ph. D. Dissertation, Univ. Microfilms. 1984.
    [40]Handa Y P, Stupin D. Thermodynamic properties and dissociation characteristics of methane and propane hydrate in 70-A-radius silica gel pores [J]. J. Phys. Chem,1992, 96:8599-8603.
    [41]Uchida T, Ebinuma T, Ishizaki T. Dissociation condition measurement of methane hydrate in confined small porous glass [J]. J. Phys. Chem.B,1999,103:3659-3662.
    [42]Seshadri K, Wilder J W, Smith D H. Measurements of Equilibrium Pressures and Temperatures for Propane Hydrate in Silica Gels with Different Pore-Size Distributions [J], J. Phys. Chem.,2001,105(13):2627-2631.
    [43]Smith D H, Wilder J W, Seshadri. Methane Hydrate Equilibria in Silica Gels with Broad Pore-Size Distributions [J]. AIChEJ,2004,48(2):393-400.
    [44]Wu B X, Lei H Y. Experimental simulation on equilibrium temperature and pressure of methane hydrate in sediment system [J], Petroleum exploration and development.2008, 31(4):22-25.
    [45]吴青柏,蒲毅彬,蒋观利.冻结粗砂土中甲烷水合物形成CT试验研究[J].天然气地球科学.2006,17(2):239-243.
    [46]Li M C, Fan S S, Zhao JZ. Experimental studies on formation of gas hydrate in porous medium [J]. Natural gas Industry,2006,26(5):27-28.
    [47]Maekawa T, Itoh S, Sakata S. Pressure and temperature conditions for methane hydrate dissociation in sodium chloride solutions [J]. Geochemical Journal.1995, 29:325-329.
    [48]Mei D H, Guo TM. Experimental and modeling studies on the hydrate formation of a methane+nitrogen gas mixture in the presence of aqueous electrolyte solutions [J]. Ind Eng Chem Res.1996,35(11):4342-4347.
    [49]Mei D H, Guo TM. Hydrate formation of a synthetic natural gas mixture in aqueous solutions containing electrolyte, methanol and (electrolyte+methanol) [J].Chem. Eng. Data.1998,43(2):178-182.
    [50]Mohammadi A H, Afzal W, Richon D. Gas Hydrates of Methane, Ethane, Propane and Carbon Dioxide in the Presence of Single NaCl, KC1 and CaC12 Aqueous Solutions:Experimental Measurements and Predictions of Dissociation Conditions [J]. J. Chem. Thermodynamics.2008, 40:1693-1697.
    [51]Masoudia R, Tohidi B. Measurement and prediction of gas hydrate and hydrated salt equilibria in aqueous ethylene glycol and electrolyte solutions [J]. Chemical Engineering Science.2005,60:4213-4224.
    [52]刘昌岭,陈强,业渝光.多孔介质中甲烷水合物生成的排盐效应及其影响因素[J].石油学报,2006,27(5):56-60.
    [53]Vu VQ, Suchaux P D, Furst W. Use of a predictive electrolyte equation of state for the calculation of the gas hydrate formation temperature in the case of systems with methanol and salts [J]. Fluid Phase Equilibri.2002, (194-197):361-370.
    [54]蒋少涌,凌洪飞,杨竞红.海洋浅表层沉积物和孔隙水的天然气水合物地球化学异常识别标志[J].海洋地质与第四纪地质.2003,23(1):89-92.
    [55]Mohammadi AH, Kraouti I, Richon D. Methane hydrate phase equilibrium in the presence of NaBr, KBr, CaBr2, K2CO3, and MgCl2 aqueous solutions:Experimental measurements and predictions of dissociation conditions [J]. J. Chem. Thermodynamics.,2009,41:779-782.
    [56]Lin W., Chen G J., Sun C Y. et al. Effect of surfactant on the formation and dissociation kinetic behavior of methane hydrate [J]. Chemical Engineering Science,2004, 59:4449-4455.
    [57]Chen L T, Sun C Y, Nie Y Q et al. Hydrate Equilibrium Conditions of (CH4+C2H6 +C3H8) Gas Mixtures in Sodium Dodecyl Sulfate Aqueous Solutions [J]. J. Chem. Eng.2009, 54:1500-1503.
    [58]Ganji H, Manteghian M, Sadaghiani zadeh K, Omidkhah M R, Rahimi Mofrad H. Effect of different surfactants on methane hydrate formation rate, stability and storage capacity [J]. Fuel,2007,86(3):434-441.
    [59]Ganji H, Manteghian M, Rahimi Mofrad H. Effect of mixed compounds on methane hydrate formation and dissociation rates and storage capacity [J]. Fuel Processing Technology,2007, 88(9):891-895
    [60]Khokhar A A, Gudmundsson J S, Sloan E D. Gas storage in structure H hydrates [J]. Fluid Phase Equilibria,1998,150-151:383-392.
    [61]Wang X L, Huang Q, Chen L T. Measurement and calculation of hydrate formation conditions for natural gases [J]. Journal of Chemical Industry and Engineering (China).2006, 57(10):2417-2419.
    [62]Ivanic J, Huo Z, Sloan E D. Improved hydrate equilibrium measurements in ternary gas and black oil systems [J]. Fluid Phase Equilibria.2004,222-223:303-310.
    [63]Maekawa T. Equilibrium conditions for clathrate hydrates formed from methane and aqueous propanol solutions [J]. Fluid Phase Equilibria.2008,267:1-5.
    [64]廖健.梅东海.杨继涛.郭天民.含盐和甲醇体系中气体水合物的相平衡研究1.平衡生成条件的测定[J].石油学报(石油加工).1998.14(3):80-84.
    [65]孙志高,樊栓狮,郭开华,石磊,王如竹.天然气水合物形成条件的实验研究与理论预测[J].西安交通大学学报.2002,36(1):17-20.
    [66]王蕾艳,刘爱贤,郭绪强,陈光进,刘祺凤.甲烷+氨水体系水合物生成条件实验测定及计算[J].化工学报,2008,59(2):276-280.
    [67]杨继盛,刘建仪.采气实用计算[M].北京:石油工业出版社,1994.
    [68]杨继盛.采气工艺基础[M].北京:石油工业出版社,1992.
    [69]van der Waals J H, Platteeuw J C. Clathrate Solution [M]. Adv. Chem. Phys.1959.
    [70]Parrish W R, Prausnitz J M. Dissociation Pressures of Gas Hydrates Formed by Gas Mixtures [J]. Ind Eng Chem Process Des Dev,1972,11 (1):26-35.
    [71]Ng H J., Robinson D B. The measurement and prediction of hydrate formation in liquid hydrocarbon-water systems [J].Ind. Eng. Chem. Fundam.1976,15:293-298.
    [72]Holder G D, Corbin G, Papadapoulos K D. Thermodynamic and Molecular Properties of Gas Hydrates from Mixtures Containing Methane, Argon, and Krypton [J]. Ind. Eng. Chem. Fundam, 1980,19:282-286.
    [73]Englezos P, Bishnoi P R. Prediction of gas hydrate formation conditions in aqueous electrolyte solutions [J]. AIChE J.1988,34:1718-1721.
    [74]Tohidi B, Danesh A, Todd A C. Modelling single and mixed electrolyte solutions and its applications to gas hydrates [J]. Chem. Eng. Res. Des.1995.73(A):464-472.
    [75]Chen G J, Guo T M. A New Approach to Gas Hydrate Modeling [J]. Chem. Eng. J,1998, 71(2):145-151.
    [76]Ballard A L, Sloan E D, Jr. The next generation of hydrate prediction I. Hydrate standard states and incorporation of spectroscopy [J]. Fluid Phase Equilibria.2002,194-197: 371-383.
    [77]Lee S Y, Holder G D. Model for Gas Hydrate Equilibria Using a Variable Reference Chemical Potential:Part 1[J]. AIChE Journal.2002,48(1):161-167.
    [78]Clennell M B, Hovland M, Booth J S, et al. Formation of natural gas hydrates in marine sediments 1. Conceptual model of gas hydrate growth conditioned by host sediment properties [J]. J. Geophys. Res,1999,104(B10):22985-23003.
    [79]Henry P, Thomas M, Clennell M B. Formation of Natural Gas Hydrates in Marine Sediments 2. Thermodynamic Calculations of Stability Conditions in Porous Sediments [J]. J. Geophys. Res.1999,104(B10):23005-23022.
    [80]KlaudaJ B, Sandler S I. Modeling gas hydrate phase equilibria in laboratory and natural porous media [J].Ind. Eng. Chem. Res.2001,40:4197-4208.
    [81]Klauda J B, Sandler S I. Predictions of gas hydrate phase equilibria and amounts in natural sediment porous media [J]. Mar. Pet. Geol.2003,20:459-470.
    [82]Yousif M H, Sloan E D. Experimental investigation of hydrate formation and dissociation in consolidated porous media [J]. SPE Reservoir Engineering,1991,6:452-458.
    [83]Clarke M A, Darvish M P, Bishnoi P R. A Method To Predict Equilibrium Conditions of Gas Hydrate Formation in Porous-Media [J]. Ind. Eng. Chem. Res.,1999,38(6):2485-2490.
    [84]Wilder J W, Seshadri K, Smith D H. Modeling Hydrate Formation in Media with Broad Pore Size Distributions [J]. Langmuir,2001,17(21):6729-6735.
    [85]Wilder J W, Smith D H. Dependencies of Clathrate Hydrate Dissociation Fugacities on the Inverse Temperature and Inverse Pore Radius[J]. Ind. Eng. Chem. Res.,2002,41(11): 2819-2825.
    [86]喻西崇等.地层多孔介质中水合物生成条件的预测[J].天然气工业,2002,22(6):102-105.
    [87]Turner D J, Cherry R S, Sloan E D, Sensitivity of methane hydrate phase equilibria to sediment pore size [J], Fluid Phase Equilibria,2005,228-229:505-510.
    [88]李明川.樊栓狮.赵金州.多孔介质对天然气水合物形成的影响[J].石油物探.2007,46(1):13-16.
    [89]Turner D, Sloan E D. Hydrate phase measurement and predictions in sediments [C]. Proceedings of the 4th International Conference on Gas Hydrates, Yokohama, Japan,2002.
    [90]Nasrifar K, Moshfeghian M, Maddox R N. Prediction of equilibrium conditions for gas hydrate formation in the mixtures of both electrolytes and alcohol [J]. Fluid Phase Equilibria,1998,146(1-2):1-13.
    [91]Javanmardi J, Moshfeghian M. A new approach for prediction of gas hydrate formation conditions in aqueous electrolyte solutions [J]. Fluid Phase Equilibria.2000,168(2):135-148.
    [92]Nasrifar K. A model for prediction of gas hydrate formation conditions in aqueous solutions containing electrolytes and/or alcohol [J]. J. Chem. Thermodynamics,2001,33(9): 999-1014.
    [93]Sun R, Huang Z, Duan Z. Anew equation of state and Fortran 77 program to calculate vapor-liquid phase equilibria of CH4-H2O system at low temperatures [J]. Comput. Geosci. 2003,29:1291-1299.
    [94]Sun R, Duan Z. Prediction of CH4 and C02 hydrate phase equilibrium and cage occupancy from ab initio intermolecular potentials[J]. Geochim. Cosmochim. Acta.2005,69: 4411-4424.
    [95]Chen G J, Guo T M. Thermodynamic Modeling of Hydrate Formation Based on New Concepts [J]. Fluid Phase Equilibria,1996,122(1/2):43-65.
    [96]Fan S S, Chen G J, Ma Q L, et al. Experimental and modeling studies on the hydrate formation of C02 and C02-rich gas mixtures [J]. Chemical Engineering Journal,2000,78(2-3): 173-178.
    [97]郝永卯,薄启炜,陈月明.天然气水合物降压开采实验研究[J].石油勘探与开发.2006,33(2):217-220.
    [98]李金平,吴疆,梁德青.纳米流体中气体水合物生成过程的实验研究[J].西安交通大学学报.2006,40(3):366-369.
    [99]宁伏龙,蒋国盛,张凌.天然气水合物实验装置及其发展趋势[J].海洋石油.2008,28(20):68-72.
    [100]孙长宇,马昌峰,陈光进,等.二氧化碳水合物分解动力学研究[J].石油大学学报(自然科学版).2001,25(3):8-10.
    [101]李素侠,赵仕俊.天然气水合物试验装置的智能化设计[J].计算机工程与设计.2006,27(1):159-161.
    [102]张亮,刘道平,樊燕.喷雾反应器对生成甲烷水合物影响研究[J].齐鲁石油化工,2008,36(3):165-168.
    [103]窦斌等.天然气水合物合成及微钻实验装置设计[J].天然气工业,2004,24(6):77-79.
    [104]张汉沛,侯学志,杨学军,等.天然气水合物形成的检测[J].化学分析计量.2004,13(6):42-44.
    [105]Riestenberg D, West 0, Lee S, McCallum S, et al. Sediment surface effects on methane hydrate formation and dissociation [J]. Marine Geology.2003,198:181-190.
    [106]Eaton M, A novel high-pressure apparatus to study hydrate-sediment interactions [J]. Journal of Petroleum Science and Engineering.2007,56(1-3):101-107.
    [107]田龙,樊栓狮,郝文峰.甲烷水合物常压分解[J].武汉理工大学学报.2006,28(7):23-26.
    [108]Rovetto L J, Is gas hydrate formation thermodynamically promoted by hydrotrope molecules? [J]. Fluid Phase Equilibria.2006,247(1-2):84-89.
    [109]Buffett B A, Zatsepina 0 Y. Formation of gas hydrate from dissolved gas in natural porous media [J]. Marine Geology,2000,164:69-77.
    [110]Kono H 0, Narasimhan S, Song F, et al. Synthesis of methane gas hydrate in porous sediments and its dissociation by depressurizing [J]. Powder Technology.2002,122:239-246.
    [111]Biot M A. Theory of elasticity and consolidation for a porous anisotropic solid [J]. Journal of Applied Physics.1955,26:182-185.
    [112]顾轶东,林维正,张剑.模拟岩芯中天然气水合物超声检测技术[J].声学技术.2006,25(3):218-221.
    [113]赵仕俊,徐建辉,陈琳.多孔介质中天然气水合物二维模拟实验装置[J].自动化技术与应用.2006,25(9):65-67.
    [114]Baldwinl B A, Moradi-Araghi A, Stevens J C. Monitoring hydrate formation and dissociation in sandstone and bulk with magnetic resonance imaging[J]. Magnetic Resonance Imaging.2003,21 (9):1061-1069.
    [115]吴自成,吕新彪,王造成.青藏高原多年冻土区天然气水合物的形成及地球化学勘查[J].地质科技情报.2006,25(4):9-14.
    [116]郭琴,张金功.泥质岩和砂岩渗透率特征及其影响因素初步分析[J].兰州大学学报(自然科学版),2008,44:46-53.
    [117]Seo Y, Lee H, Uchida T. Methane and carbon dioxide hydrate phase behavior in small porous silica gels:three-phase equilibrium determination and thermodynamic modeling [J], Langmuir,2002,18:9164-9170.
    [118]Sun X F, Mohanty K K. Kinetic simulation of methane hydrates formation and dissociation in porous media [J]. Chemical Engineering Science.2006,61:3476-3495.
    [119]Abud A M. Optimization of osmotic dehydration of yam bean using an orthogonal experimental design [J].Journal of Food Engineering,2008,84:413-419.
    [120]Yamini Y. Orthogonal array design for the optimization of supercritical carbon dioxide extraction of platinum (Ⅳ) and rhenium (Ⅶ) from a solid matrix using cyanex 301 [J]. Purif. Technol.2007,61:109-114.
    [121]Liao X G. The geochemistry of pore water in Bohai Gulf[J]. Acta Oceanologica Sinica.1984,6(5):615-625.
    [122]邬黛黛.南海天然气水合物的早期成岩作用和地球化学特性研究[D].浙江:浙江大学,2008.
    [123]Tomaru H, Lu Z, Snyder G T, et al. Origin and age of pore waters in an actively venting gas hydrate field near Sado Island, Japan Sea:Interpretation of halogen and 1291 distributions [J]. Chemical Geology.2007,236(3-4):350-366.
    [124]Egeberg P K, Dickens G R. Thermodynamic and pore water halogen constraints on gas hydrate distribution at ODP Site 997 (Blake Ridge) [J]. Chemical Geology.1999,153(1-4): 53-79.
    [125]Patel N C, Teja A S, A new cubic equation of state for fluids and fluid mixtures [J]. Chemical Engineering science,1982,37(3):463-473.
    [126]Patel N C. Improvements of the Patel-Teja equation of state [J]. International Journal of Thermophysics.1996,17(3):673-682.
    [127]Kang S, Chun M, Lee H. Phase equilibria of methane and carbon dioxide hydrates in the aqueous MgCl solutions [J]. Fluid Phase Equilibria,1998,147:229-238.
    [128]Sun D L, Wu Q, Zhang B Y. Reaction mechanism between "memory effect" and induction time of gas hydrate formation, Journal of coal science and engineering [J].2008, 14(2):280-282.
    [129]Pappa G D, Perakis C, Tsimpanogiannis I N, et al. Thermodynamic modeling of the vapor-liquid equilibrium of the C02/H20 mixture[J]. Fluid Phase Equilibria,2009, 284(1):56-63.
    [130]IPCC,2001c:Climate Change 2001, The Scientific Basis Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change [M]. Cambridge University Press, Cambridge, UK.2001.
    [131]Gipe P. Wind Power:Renewable Energy for Home [M]. Farm & Business, Chelsea Green Publishing Co., USA.2004.
    [132]Goldemberg J, Johansson T B. World Energy Assessment, Overview:2004 Update [M]. United Nations Development Programmer, New York,2004.
    [133]Marchetti C. On geo-engineering and the CO2 problem [J]. Climate Change,1977, 1:59-68.
    [134]Cole K H, Stegen G R, Spencer D. The capacity of the deep oceans to absorb carbon dioxide [J]. Energy Conversion and Management,1993,34(9-11):991-998.
    [135]Blunt M, Fayers F J, Orr Jr F M. Carbon Dioxide in Enhanced Oil Recovery [J]. Energy Conversion and Management,1993,34(9-11):1197-204.
    [136]Stevens S H, Gale J. Geologic CO2 sequestration [J]. Oil and Gas Journal,2000, 15:40-44.
    [137]Koide H, Tazaki Y, Noguchi Y, et al. Subterranean containment and long-term storage of carbon dioxide in unused aquifers and in depleted natural gas reservoirs [J]. Energy Conversion and Management.1992,33(5-8):619-626.
    [138]Gunter W D, Gentzis B A, Rottengusser R, et al. Deep coalbed methane in Alberta, Canada:a fuel resource with the potential of zero greenhouse gas emissions [J]. Energy Conversion and Management,1997,38:217-222.
    [139]Korbol R, Kaddour A. Sleipner Vest C02 disposal-injection of removed C02 into the Utsira formation [J]. Energy Conversion and Management,1995,36(3-9):509-512.
    [140]Baklid A, Korbil R, Owren G. Sleipner Vest C02 disposal:C02 injection into a shallow underground aquifer [C]. Paper presented at the 1996 SPE Annual Technical Conference, Denver, Colorado, USA. SPE paper,36600,1996:1-9.
    [141]Gale J, Christensen N P, Cutler A, et al. Demonstrating the Potential for Geological Storage of CO2, the Sleipner and GESTCO Projects [J]. Environmental Geosciences, 2001,8 (3):160-165.
    [142]Aresta M. Carbon dioxide as a source of carbon biochemical and chemical use World Energy Assessment, Overview:2004 Update [M]. Kluwer, the Hague.1987.
    [143]Seifritz W. CO2 disposal by means of silicates [J]. Nature,1990,345:486.
    [144]Dunsmore H E. A geological perspective on global warming and the possibility of carbon dioxide removal as calcium carbonate mineral [J]. Energy Conversion and Management, 1992,33(5-8):565-572.
    [145]Seifritz W. The terrestrial storage of CO2-ice as a means to mitigate the greenhouse effect [M]. Hydrogen Energy Progress IX (C. D. J. Pottier and T. N. Veziroglu (eds)), 1992:59-68.
    [146]Uchida T, Hondo T, Mae S, et al. Physical data of CO2 hydrate. In direct ocean disposal of carbon dioxide [M]. N. Handa and T. Ohsumi (eds), Terrapub, Tokyo.1995:45-61.
    [147]Steinberg M, The carnol process for CO2 mitigation from power plants and the transportation sector [J]. Energy Conversion and Management,1996,37(6-8):843-848.
    [148]Wendland M, Hasse H, Maurer G. Experimental Pressure-Temperature Data on Three-and Four-Phase Equilibria of Fluid, Hydrate, and Ice Phases in the System Carbon Dioxide-Water [J]. J. Chem. Eng. Data.1999,44:901-906.
    [149]Yang S 0, Yang I M, Kim Y S, et al. Measurement and prediction of phase equilibria for water+C02 in hydrate forming conditions [J]. Fluid Phase Equilibria,2000,175(1-2): 75-89.
    [150]Englezos P, Hall S. Phase Equilibrium Data on Carbon Dioxide Hvdrate in the Presence of Electrolytes, Water Soluble Polirners and Montmorillonite. The Canadian Journal of Chemical Engineering,1994,72:887-893.
    [151]Breland E, Englezos P. Equilibrium hydrate formation data for carbon dioxide in aqueous glycerol Solutions[J]. J. Chem. Eng. Data,1996,41:11-13.
    [152]Dholabhai P D, Scott Parent J, Bishnoi P R. Carbon Dioxide Hydrate Equilibrium Conditions in Aqueous Solutions Containing Electrolytes and Methanol Using a New Apparatus [J]. Ind. Eng. Chem. Res.1996,35:819-823.
    [153]Dholabhai P D, Scott Parent J, Bishnoi P R. Equilibrium conditions for hydrate formation from binary mixtures of methane and carbon dioxide in the presence of electrolytes, methanol and ethylene glycol[J]. Fluid Phase Equilibria,1997,41(1-2):235-246.
    [154]Chun M K, Lee H. Phase Equilibria of Carbon Dioxide Hydrate System in the Presence of Sucrose, Glucose, and Fructose [J]. J. Chem. Eng. Data,1999,44:1081-1084.
    [155]Zatsepina 0 Y, Buffet B A. Nucleation of C02 hydrate in porous medium[J]. Fluid Phase Equilibria,2002,200:263-275.
    [156]Smith D, Wilder J, Seshadri K. Thermodynamics of Carbon Dioxide Hydrate Formation in Media with Broad Pore-Size Distributions [J]. Environ. Sci. Technol.2002,36:5192-5198.
    [157]Kumar A. Formation and dissociation of gas hydrates in porous media[D]. University of Calgary,2005.
    [158]Fan S S, Guo T M. Hydrate Formation of C02-Rich Binary and Quaternary Gas Mixtures in Aqueous Sodium Chloride Solutions [J]. J. Chem. Eng. Data 1999,44:829-832.
    [159]Kumar R, Wu H J, Englezos P. Incipient hydrate phase equilibrium for gas mixtures containing hydrogen, carbon dioxide and propane [J]. Fluid Phase Equilibria,2006,244(2): 167-171.
    [160]Yang M J, Song Y C, Liu Y, et al. Influence of Pore Size, Salinity and Gas Composition upon the Hydrate Formation Conditions [J]. Chinese Journal of Chemical Engineering.2010,18(2):292-296.
    [161]朱维耀,黄延章.多孔介质对气-液相变过程的影响[J].石油勘探与开发.1988,1:51-55.
    [162]“偷梁换柱”开发海底可燃冰[EB/OL].(2009,04,15)http://bbs. simosolar. com/viewthread. php?tid=12777.
    [163]刘志安.天然气水合物生成机理和热力学模型研究[D].中国石油大学.山东.2007.
    [164]Holder G D, Zetts S P, Prodhan N. Phase behavior in systems containing clathrate hydrate-A Review [J]. Review in chemical engineering,1988,5(1-4):1-70.
    [165]陈光进,马庆兰,郭天民.气体水合物生成机理和热力学模型的建立[J].化工学报.2000,51(5):627-632.
    [166]Masoudi R, Arjmandi M, Tohidi B. Extension of Valderrama-Patel-Teja equation of state to modeling single and mixed electrolyte solutions [J]. Chemical Engineering Science, 2003,58 (9):1743-1749.
    [167]Wang HT, Tsai T C, Chen Y P. A cubic equation of state for vapor-liquid equilibrium calculations of nonpolar and polar fluids [J]. Fluid Phase Equilibria,1997,138 (1-2):43-59.
    [168]陈光进,等.化工热力学[M].石油工业出版社.2006.
    [169]MoKoy V, Sinangolu O. Theory of Dissociation Pressures of Some Gas Hydrates [J]. Journal of Chemical Physics,1963,38(12):2946-2956.
    [170]Mehta A P, Sloan E D. Improved Thermodynamic Parameters for Prediction of Structure H Hydrate Equilibria[J]. AIChE Journal,1996,42(7):2036-2046.
    [171]Tohidi B, Danesh A, Burgass R W. Equilibrium Data and Thermodynamic Modelling of Cyclohexane Gas Hydrates [J]. Chem Eng Sci.1996,51 (1):159-163.
    [172]Tohidi B, Danesh A, Todd A C. Equilibrium Data and Thermodynamic Modeling of Cyclohexane and Neopentane Hydrates [J]. Fluid Phase Equilibria,1997,138:241-250.
    [173]Munck J. Computations of the formation of gas hydrates [J]. Chem Eng Sci,1988, 43(10):2661-2672.
    [174]Wei Y S, Sadus R J. Equations of state for the calculation of fluid-phase equilibria [J]. AIChE Journal,2000,46(1):169-196.
    [175]Redlich 0, Kwong J N S. On the thermodynamics of solutions, V:An equation of state [J]. Fugacities of gaseous solutions. Chem. Rev,1949,44(1):233-244.
    [176]Soave G. Equilibrium constant from a modified Redlich-Kwong equation of state[J]. Chemical Engineering Science.1972,27(6):1197-1203.
    [177]Masoudi R, Tohidi B. A new approach in modelling phase equilibria and gas solubility in electrolyte solutions and its applications to gas hydrates [J]. Fluid Phase Equilibria.2004,215(2):163-174.
    [178]Sun R, Duan Z. An accurate model to predict the thermodynamic stability of methane hydrate and methane solubility in marine environments [J]. Chemical Geology,2007,244(6): 248-262.
    [179]梅东海.廖健.杨继涛.郭天民.电解质水溶液体系中气体水合物生成条件的预测[J].石油学报(石油加工).1998,14(2):86-93.
    [180]Pieroen A P. Gas Hydrates-Approximate Relations between Heat of Formation, Composition and Equilibrium Temperature Lowering by Inhibitors [J]. Recueil Trav. Chim, 1955,74:995-1002.
    [181]Pitzer K S, Mayorga G. Thermodynamics of electrolytes Ⅱ:Activity and osmotic coefficients for strong electrolytes with one or both ions univalent[J]. J. Phys. Chem. 1973,77(19):2300-2308.
    [182]李以圭,陆九芳.电解质溶液理论[M].清华大学出版社.2005.
    [183]Macedo E A, Skovborg P, Rasmwen P. Calculation of phase equilibria for solutions of strong electrolytes in solvent/water mixtures [J]. Chem. Eng. Sci,1990,45(4):875-882.
    [184]Aasberg-Petersen K, Stenby E, Fredenslund A. Prediction of high-pressure gas solubilities in aqueous mixtures of electrolytes[J]. Ind. Eng. Chem. Res.1991,30(9): 2180-2185.
    [185]Benavente D, Garcia del Cura M A, Garcia-Guinea J, et al. Role of pore structure in salt crystallisation in unsaturated porous stone [J]. Journal of Crystal Growth 2004,260 (3-4):532-544.
    [186]Li Z B, Li Y G, Lu J F. Surface tension model for concentrated electrolyte aqueous solutions by the Pitzer Equation [J]. Ind. Eng. Chem. Res.1999,38:1133-1139.
    [187]Li X S, Zhang Y. Gas hydrate equilibrium dissociation conditions in porous media using two thermodynamic approaches [J]. J. Chem. Thermodynamics.2008,40(9):1464-1474.
    [188]李小森,张郁,陈朝阳,等.利用两种模型预测多孔介质中气体水合物平衡分解条件[J].化学学报,2007,65(19):2187-2196.
    [189]Emschwiller G, Equilibre en Solutions Phenomenes de surface [J]. Chilie Physique, 1961,2:791-796.
    [190]Najibi H, Chapoy A. Experimental determination and prediction of methane hydrate stability in alcohols and electrolyte solutions [J]. Fluid Phase Equilibria.2008,275(2): 127-131.
    [191]Uchida T, Ebinuma T, Takeya S, et al. Effects of Pore Sizes on Dissociation Temperatures and Pressures of Methane, Carbon Dioxide, and Propane Hydrates in Porous Media [J]. J. Phys. Chem. B.2002,106:820-826.
    [192]Smith D H, Joseph W W, Kal S et al. Equilibrium Pressure and Temperatures for Equilibria Involving SI and SII Hydrate, Liquid Water, and Free Gas in Porous Media[C]. Proceedings of the Fourth International Conference on Gas Hydrates, Yokohama, Japan,2002: 295-300.
    [193]George Coates,肖立志,Manfred Prammer.核磁共振测井原理与应用[M].石油工业出版社,2007.
    [194]Hirai S, Kuwano K, Ogawa K, et al. High-pressure magnetic resonance imaging up to 40 MPa[J]. Magnetic Resonance Imaging,2000,18:221-225.
    [195]Hirai S, Tabe Y, Kuwano K, et al. MRI Measurement of Hydrate Growth and an Application to Advanced C02 Sequestration Technology [J]. Annals of the New York Academy of Sciences,2001,912(GAS HYDRATES:CHALLENGES FOR THE FUTURE):246-253.
    [196]Suekane T, Soukawa S, Iwatani S, et al. Behavior of supercritical C02 injected into porous media containing water[J]. Energy,2005,30:2370-2382.
    [197]Kvamme B, GraueA, Buanes T, et al. Storage of CO2 in natural gas hydrate reservoirs and the effect of hydrate as an extra sealing in cold aquifers [J]. International journal of greenhouse gas control,2007,1(2):236-246.
    [198]Stevens J C, Howard J J, Baldwin B A, et al. Experimental hydrate formation and gas production scenarios based on CO2 sequestration [C]. Proceedings of the 6th International Conference on Gas Hydrates (ICGH 2008), Vancouver, British Columbia,2008.
    [199]Huseb(?) J, Ersland G, Graue A, et al. Effects of salinity on hydrate stability and implications for storage of CO2 in natural gas hydrate reservoirs [J]. Energy Procedia, 2009,1:3731-3738.
    [200]Ersland G, Husebo J, Graue A, et al. Transport and storage of CO2 in natural gas hydrate reservoirs [J]. Energy Procedia,2009,1:3477-3484.
    [201]Baldwin B A, Stevens J, Howard J J, et al. Using magnetic resonance imaging to monitor CH4 hydrate formation and spontaneous conversion of CH4 hydrate to CO2 hydrate in porous media [J]. Magnetic Resonance Imaging,2009,27(5):720-726.
    [202]Rovetto L J, Dec S F, Koh C A, et al. NMR studies on CH4+CO2 binary gas hydrates dissociation behavior [C]. Proceedings of the 6th International Conference on Gas Hydrates (ICGH 2008). Vancouver, British Columbia, CANADA,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700