用户名: 密码: 验证码:
生物质气化过程中燃料固有氮演变行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物质是一种非常重要的可再生清洁能源。随着能源与环境危机的日渐恶化,废弃生物质资源的综合利用已经成为亟待解决的课题,也是我国目前可再生能源领域的重要研究方向之一。在生物质高温气化过程中,生物质中固有氮(简称燃料氮)通常可以转变为多种形式,如氮气、气相污染物或者污染物前体(包括NH3、HCN和NOX等)是影响生物质气化应用系统的优化设计与污染物控制等方面的重要因素之一,也是目前学术研究领域的焦点课题之一。
     本文针对生物质气化过程中燃料氮的迁移演化行为进行了实验和理论研究。建立了一个小型流化床生物质气化装置,提出了氮平衡方法来研究定量化N2含量。在进行元素分析、工业分析和色谱分析等测试的基础上,总结获得了不同生物质燃料氮的存在形式。结合大量实验数据,重点分析了不同当量比、反应温度、生物质种类等条件下,各种气化产物的质量百分比分布情况与变化规律,由此归纳分析出燃料氮的主要迁移演化途径,尤其是揭示了NH3与N2之间的转换反应对于整个燃料氮演化进程的决定性作用。
     建立了一个小型生物质热解气化装置。通过大量的热解实验,测试了生物质热解产物中挥发分组成以及含氮组分浓度,获得了不同热解条件(气化温度、生物质种类)对生物质热解过程中燃料氮迁移演化的影响规律。就生物质化学组成结构对热解产物的影响进行了深入分析,并与煤炭热解进行了对比,揭示了以氨基酸形式赋存的生物质燃料氮(弱C-N键)迁移演化的重要机理,同时还初步分析了HCN、HCNO等成分的产生形成对燃料氮演化过程中的各种贡献。在上述研究结果基础上,首次提出了生物质气化过程中燃料氮较为完整的迁移演化路径图,具有比较重要的理论指导意义。
     初步建立了流化床生物质气化反应器中燃料氮迁移演变过程的动力学模型,其中考虑了6个总体化学反应、31种组分以及70个单元化学反应,并采用4阶自适应变步长Runge-Kutta方法进行方程离散和数值求解,有效地改善了计算过程的收敛性。在典型气化参数条件下,对模拟计算结果和实验数据之间进行了对比分析。在此基础上,通过动力学模型计算分析了气化过程中主要构成组分含量与反应温度、当量比等影响参数之间的相互依赖关系,同时还对空气气化过程中燃料氮迁移演化区别进行了深入分析,分析了相关含氮气体浓度的变化差异以及内在机理,包括反应物浓度降低而引起的化学反应速率减慢、炭表面活性降低、滞留时间延长等诸多因素,这对于进一步理解生物质燃料氮迁移演化机理奠定了良好基础。
Biomass is a kind of very important renewable clean energy. With the worse and worse situation of energy and environmental crisis, the effective utilization of waste biomass has become a key issue for the research and application of present renewable energy development in China. Fuel bound nitrogen (FBN) in biomass can be converted to molecular nitrogen or gas phase pollutants and pollutant precursors such as ammonia (NH3), hydrogen cyanide (HCN), and oxides of nitrogen (NOx) during the high temperature gasification, which have complex influences on the optimal design of biomass gasification systems and their pollution control. Therefore, the evolution behavior of FBN during gasification is becoming a hot topic that merits academic attention.
     In the present work, an extensive investigation on the evolution behavior of FBN during gasification is performed experimentally and theoretically. Firstly, a small-scale experimental equipment for fluidized biomass gasification is built, where·N2 content is analyzed based on the principle of nitrogen balance method. Based on elementary analysis, industrial analysis and GC analysis, the patterns of FBN existed in different biomass are obtained. Further, the experiment of biomass gasification under different operation parameters including gasification temperature, equivalence ratio, and biomass types is performed. The concentration of nitrogenous contents in gasification gas is obtained, based on which the main approach to the evolution behavior of FBN during gasification is summarized. Especially, the contribution of the conversion reaction between NH3 and N2 to the final process of the evolution of FBN is revealed.
     Secondly, a small-scale pyrolysis experiment of biomass is built. Based on an extensive pyrolysis experiment, the variations of the major nitrogenous volatilizezing contents are obtained under different operation conditions including the reaction temperature and biomass types. Further, the effect of the difference on the chemical structure of FBN in biomass is analyzed and compared with the results of the conventional coal pyrolysis. An important mechanism of the effect of the fact that the nitrogenous contents in biomass come mainly from the amino acid (the weaker C-N bound) on the evolution of FBN is revealed. In addition, the contribution of the formation of HCN and HCNO on the evolution of FBN is discussed. Considering the results mentioned above, a complete mechanism of the evolution of FBN during the gasification and pyrolysis is presented for the first time, which is of great significance to the application of biomass gasification systems.
     Finally, a preliminary reaction dynamic model on the evolution of FBN during the gasification and pyrolysis is presented, where 6 total chemical reactions including 31 kinds of components based on 70 elementary chemical reactions are considered. In order to improve the convergence of the whole calculation process, a self-adaptive fourth order variable-step-length Runge-Kutta method is introduced to make a numerical solution. A comparative analysis between simulated and experimental results is made aiming at some typical operation conditions and parameters. Then, the relationship between the nitrogenous contents, reaction temperature and equlivant ratio during the gasification and pyrolysis is analyzed. Further, a comparison of the evolution of FBN between oxygen and air is performed, and its differences in the nitrogenous contents as well as influencing mechanisms, such as the reduction of chemical reaction velocity caused by the decrease of concentrations of the component contents, the reduction of the surface activity of coal, and the prolong of the lagging time in O2, are discussed in detail. This is helpful to further understand the ultimate evolution behavior of FBN during the gasification and pyrolysis.
引文
[1]中国统计年鉴2001.北京:中国统计出版社,2001.
    [2]Shekar Reddy M, Venkataraman Chandra. Inventory of aerosol and sulphur dioxide emissions from India:Part Ⅱ-Biomass combustion. Atmospheric Environment,2002,36(4):699-712.
    [3]中国国家环境保护总局.中国环境质量公报.北京:中国国家环境保护总局.2000.
    [4]Zhang, X L. China's energy in the transitional economy an overview, Transformation of China's Energy Industry in Market Transition and Its Prospects, Chiba, Japan:Institute of Developing Economies,2001.
    [5]中国农业部美国能源部项目专家组.中国生物质能转换技术发展评价[M].北京:中国环境科学出版社.1998.1-2.
    [6]王革华.我国生物质能利用展望.农业工程学报,1999,15(4):19-22.
    [7]李改莲,王远红,杨继涛等.中国生物质能的利用状况及展望,河南农业大学学报,2004.38.1:100.
    [8]刘军伟.中国生物质发电政策法规分析及发展策略探讨,太阳能,2007.11:6-10.
    [9]李飞,张铺,阴秀丽等.物质整体气化联合循环发电系统的发展现状,可再生能源,2006.116-20.
    [10]“十五”863计划能源技术领域后续能源技术主题专家组,中国可再生能源技术开发与发展方向,中国科技产业,2006.2:19-25.
    [11]Zhang J, Smith K R, Ma Y. Greenhouse gases and other airborne pollutants from household stoves in China:A database for emission factors. Atmospheric Environment,2000,34(26): 4537-4549.
    [12]Andreae M O. Emission of trace gases and aerosols frombiomass burning. Global Biogeochemical Cycles,2001,15(4):4955-4966.
    [13]Jensen A, Johnson J E. Formation of nitric oxide from homogeneous oxidation of hydrogen cyanide a fluidized bed combustion conditions[C]. Proc.12 Int. Conf, onFBC. US Ed. Rubow L N and Commonwealth GASME Press.1993.
    [14]Whalcy H. The development of low.NOx burners under the IEA coal combustion sciences agreement. Proc. Am Power Conf.,1997.
    [15]Williams A, Takarada T, Toyoshima M, et cd. A review of Nox formation and reduction mechnisums in combustion system with particular reference to coal. J. Inst. Energy,1997, 70:102-113.
    [16]Gerry JH. Optimization of Combustion by Testing in a NO Reduction Test Facility, J. Fuel, 1997,76(13):1269-1275.
    [17]Yan Zhiyong, Zhang Huljuan, Qiu Guangming. Technical reformation and experimental analysis on NOx exhaust Reduction by class-fired combustional boiler. Power Engineering, 2000(4):764-770.
    [18]Douglas J, Smith IENG Senior. Coal-fired Plants Reduce NO Emission with Staged Combustion[J]. Power Engineering,2001, (10):71-74.
    [19]刘建禹,翟国勋,陈荣耀等.生物质燃料直接燃烧过程特性的分析,东北农业大学学报,2001(32)3:290-296.
    [20]刘豪,邱建荣,吴昊等.生物质和煤混合燃烧污染物排放特性研究,环境科学学报,2002.(22).4:484-489.
    [21]肖军、段菁春、王华等.低温热解生物质与煤共燃的污染性能和经济性能评价,再生资源利用,2003.2:28-32.
    [22]许昌,吕剑宏.基于生成机理的燃煤电站锅炉NOx排放量神经网络模型,中国电机工程学报,2004.(24).10:233-239.
    [23]芩可法.高效低污染燃烧及气化技术最新研究进展,中国动力工程学报,2005.2:153-159.
    [24]Streets D G, Bond T C, Carmichael G R, et al. An inventory of gaseous and primary aerosol emissions in Asia in the year 2000. Journal of Geophysical Research,2003,108(21):1-23.
    [25]曹国良.中国大陆生物质燃烧排放的污染清单,中国环境科学,2005.25(4):389-393.
    [26]田贺忠,郝吉明.中国生物质燃烧排放S02NOx量的估算,环境科学学报,2002.22(2):204-209.
    [27]康备梦陈利顶,中国环境中氮循环的动态模式,环境科学学报,1991.11(2):142-156.
    [28]张金屯,全球气候变化对自然土壤碳氮循环的影响,地理科学,1998.18(5):463-471.
    [29]Sloss L L. Nitrogen Oxides Control Technology Fact Book, Noyes Data CO., Park Ridge, New Jersey,1992.
    [30]Flagan R C, Seinfeld J H. Fundamentals of air pollution Engineering, Prentice Hall, Englewood Cliffs, New Jersey,1988.
    [31]Zeldovich Y B. The oxidation of nitrogen in combustion and explosions. Acta Physicochim, URSS,1946,21:577-583.
    [32]Fenimore C P. Studies of fuel nitrogen species in rich flame gases,17th Symposium on Combustion, The Combustion Institute, Pittsburgh, PA,1979.
    [33]Smoot L D, Smith P J. Coal Combustion and Gasification, Plenum Press, New York,1985.
    [34]Hayhurst A N, Vince I M, Nitric oxide formation from N2 in flames:the importance of prompt NO, Progr. Energy Combust.Sci.,1980.6:35-51.
    [35]Pershing D W, Wendt J 0. Pulverized coal combustion:the influence of flame temperature and coal composition on thermal and fuel NOX,16th Symposium on Combustion, The combustion Institute, Pittsburgh PA,1976:389-399.
    [36]Tan L L, Li CZ. Formation of NOx and SOx precursors during the pyrolysis of coal and biomass. Part Ⅱ Effect of experimental conditions on the yields of NOx and Sox precursors from the pyrolyssi of a Victorian brown coal, Fuel,2000.79(15):1891-1897.
    [37]陈文敏.我国煤中氮的分布规律及其计算.煤炭科学技术,1988.8(4):20-26.Lyon R K,Kramlich J C, Nitrous oxide:sources, sampling, and science policy, Environmental Science and Technology,1989.23(40):392-393.
    [38]苏学泳,王智微等.生物质在流化床中的热解和气化研究,燃料化学学报,2000.28(4):298-305.
    [39]Ishimura D M. Investigation of nitrogenous compound formation in biomass gasification, MS Thesis, University of Hawaii at Manoa,1994
    [40]Backer E G, Brown M D. Engineering analysis of biomass gasifer product gas cleaning technology, Pacific Northwest Laboratory,1986
    [41]刘建禹,翟国勋等.生物质燃料直接燃烧过程特性的分析,东北农业大学学报,2001.32(3):290-294.
    [42]Furmen A H, Kimura S G. Biomass gasification pilot plant study, General-Electric Company Research and Development,1992.
    [43]Evans R J, Knight R A. Development of biomass gasification to produce substitute fuels, Institute of Gas Technology, DOE of US(AC06-76RL01830),1988.
    [44]Leppalahti J. Nitrogen evolution from coal, peat, and wood during gasification: literature review,Fuel Processing Technology,1995.43:1-45.
    [45]张磊,张世红,王贤华等.生物质与煤流化床混烧的NOx排放规律研究,电站系统工程,2007.01.
    [46]刘豪,邱建荣,吴昊等.生物质和煤混合燃烧污染物排放特性研究,环境科学学报2002,04.
    [47]Miller J A, Bowman C T. Mechanism and modeling of nitrogen chemistry in combustion, Prog. Energy, Combust. Sci.1989.15:287-338.
    [48]Pohl J H, Sarofim A F. Devolatiliztion and oxidation of coal nitrogen,16th Symposium on Combustion, the Combustion Institute, Pittsburgh, PA,1976,491-501.
    [49]冯波,刘皓,袁建伟等.鼓泡流化床煤燃烧中燃料氮转化的研究(Ⅰ)影响因素,煤炭转化,1996.01.
    [50]Beer J M, Sarofim A F. NO formation and reduction in fluidized bed combustion of coal, J. of the Institute of Energy,1981.38:38-47.
    [51]Johnsson JE. Modling of NOx formation in fluidized bed combustion, Proceedings of the International Conference on Fluidization, New York,1989,435-442.
    [52]Amand L E, Leckner B. Formation of N20 in Circluating fluidized bed boilers, Energy and Fuels,1991.5:815-823.
    [53]Pels JR, Wojtowicz MA. Trade-off between NOx and N20 in fluidized bed combustion of coals, Energy and Fuels,1995.9:743-752.
    [54]Goel S, Zhang B. NO and N20 formation during char combustion:is is HCN or surface attached nitrogen, Combustion and Flame,1996.104:213-217.
    [55]Leppalahti J. Reactions of fuel bound nitrogen in gasification processes, Research Report, Technical Center of Finland,1994.
    [56]Blair DW, Wendt JO, Bartok W. Evolution of nitrogen and other species during controlled pyrolysis of coal,16th Symposium on Combustion, The combustion Institute, Pittsburgh PA, 1976:475-489.
    [57]周昊,翁安心,岑可法等.不同煤种挥发氮析出过程的数值模拟与试验研究,热能动力工程,2004.02.
    [58]Nelson PF, Buckley A N. Functional forms of nitrogen in coals and the release of coal nitrogen as NOx Precursors(HCN and NH3),24th Symposium on Combustion, the combustion Institute,1992:1259-1267.
    [59]王蓉,斯东波,池作和等.煤热解过程中氮分配规律的试验研究,热力发电,2005.11.
    [60]刘海峰,刘银河,车得福等.热解及燃烧过程中燃料氮的N2转换特性,西安交通大学学报,2008.42(8):350-354.
    [61]董小瑞,刘汉涛,张翼等.不同反应气氛下燃料氮的析出规律,动力工程,2008.28(3):438-442.
    [62]Bassilakis R, Zhao Y.Sulfur and nitrogen evolution in the Argonne coals:experiment and modeling, Energy and Fuels,1993.7:710-720.
    [63]Solomon P R, Colket M B. Evoluton of fuel nitrogen in coal devolatilization, Fuel, 1978.57:749-755.
    [64]Kamara S, Takarada T, Yamamoto Y. Relation between functional forms of coal nitrogen and formation of NOx precursors during rapid pytolysis, Energy and Fuels,1993.7:1013-1020.
    [65]Baumann H, Moller P. Pyrolysis of hard coals under fluidized bed combustor conditions-distribution of nitrogen compounds on volatiles and residual char, Erdol-Kohle-Erdgas-Petrochemie,1991,7:710-720.
    [66]Reed T B. Biomass Gasification Principles and Technology, Noyes Data CO., New Jersey, 1981.
    [67]江淑琴.生物质燃料的燃烧与热解特性,太阳能学报,1995.16(1):40-48.
    [68]De Soete G G. Heterogeneous N2O and NO formation from bound nitrogen atomos during coal char combustion,23th Symposium on Combustion, the Combustion Institute, 1990,1257-1264.
    [69]Wojtowica M A, Pels J R. The rate of nitrogen functionalities in coal during pyrolysis and combustion, Fuel,1995.74(4):507-516.
    [70]Lecker B, Karlsson M. gaseous emissons from circulating fluidized bed combustion of wood, Biomass and Bioenergy,1993.4:379-389.
    [71]张全国,雷廷宙主编.农业废弃物气化技术[M].北京:化学工业出版社,2006.
    [72]张无敌,周长平,字尚斌等.生物质能—未来能源的希望.能源研究与利用,1995(4):3-6.
    [73]蒋剑春.生物质能源应用研究现状与发展前景(J),林产化学与工业,2002。22(2).38-45.
    [74]姚向君,田宜水等.生物质能资源清洁转化利用技术,北京:化学工业出版社,2005.
    [75]吴创之,马隆龙主编.生物质能现代化利用技术,北京:化学工业出版社,1992.
    [76]Reed, TB. Biomass gasification principles and technologies, Noyes Data Co., New Jersey, 1981.
    [77]Kinoshita CM, Wang Y, Takahashi PK. chemical equilibrium computations for gasification of biomass to produce methanol, enegy Sources,1991.13:361-368.
    [78]易维明,柏雪源等.生物质闪速热解挥发特性的模型研究.农业工程学报.2005 21(10).
    [79]Bilodeau, JE, Therien N, Proulx p, Czernik S. a mathematical model of fluidized bed iomass gasification, THe Canadian Journal of chmeical enginnering,1993.71:549-557.
    [80]Wang Y, Kin oshita cm. kinetics model of biomass gasification, solar energy, 1993.51(1):19-25.
    [81]王昶,徐敬,贾青竹等.植物类生物质热解特性及动力学研究.天津科技大学学报,2007.22(01).
    [82]Bettagli N, Desideri U. a biomass combustion gasification model:validation and sensiticity analysis, J of energy Resoures Technology,1995.117:329-336.
    [83]Ishimura DM. investigation of nitrogenous compound formation in biomass gasification, MS Thesis, department of mechanical engieering, UNiversity of Hawaii at Manoa,1994.
    [84]周密,阎立峰等.生物质洁净能源研究中的流化床动力学模型.化学物理学报,2003.16:350-356.
    [85]Rajan, R. R. Wen CY. a comprehensive model for fluidized bed coal combustors, AIChe Journal,1980.26(4):642-655.
    [86]Smoot L D, Smith P J. coal combustion and gasification, plenum Press, New York,1985.
    [87]吴学成王勤辉等.气化参数影响气流床煤气化的模型研究(Ⅰ).浙江大学学报:工学版,2004,38(10):1361-1365.
    [88]Fiveland, WA, Wessel RA. a model for predicting formation and reduction of NOx in three dimensional furnaces burning pulverized fuel, Journal of institure of energy,1991.41-54.
    [89]Liu, H.;Gibbs, B. M. Modelling of NO and N2O emissions from biomass-fired circulating fluidized bed combustors. Fuel 2002,81:271-80.
    [90]Zhou JC. Fuel-bound Nitrogen Evolution During Biomass Gasification, University of Hawaii,1998.
    [91]Miller JA, Bowman cT. mechanism and modeling of nitrogen chemistry in combustion, Prog. Energy combust. Sci.,1989.15:287-338.
    [92]Kipinen, P, Glarborg. P, reburning chemistry:a kinetic modeling study, Ind. Eng. Chem. Res,1992.31:1477-1490.
    [93]S Schafer. Hydrolysis of HCN as an important step in nitrogen oxide formation in fluidized combustion, Fuel,2000.79:1239-1246.
    [94]K M Hansson, J Samulesson. Formation of HNCO, HCN, and NH3from the pyrolysis of bark and nitrogen-contaning model compounds, Combustion and Flame,2004.137:265-177.
    [95]Li CZ, Nelson P. Interactions of quartz, ziron sand and stainless steel with ammonia: implications for the measurement of ammonia at high temperatures, Fuel,1996.75(4):525-526.
    [96]赵炜,常丽萍,冯志华等.煤热解过程中生成氮化物的研究.燃料化学学报,2002,30(5):408-412.
    [97]Nunn T R, Howard JB, Longwell J P. Product compositions and kinetics in the rapid pyrolysisof sweet gum hardwood[J]. Industril & Engineering Chemistry Process,1985,24(3):836-844.
    [98]MJ Aho, JP Hamalainen. Combustion and Flame,1993.95:22-30.
    [99]林建英,李文英,常丽萍等.煤岩有机显微组分热解过程中HCN和NH3生成规律的研究.燃料化学学报.2004,32(6):663-667.
    [100]M Kleemann, M Elsener. Industrial Engineering Chemical Research,2000.39:4120-4126.
    [101]赖艳华,马春元等.生物质燃料层热解过程的传热传质模型研究,热科学与技术,2005,4(3):219-223.
    [102]Reed, T.B., Das, A. Handbook of biomass downdraft gasifier engine systems, Golden, Colorado.
    [103]Leckner, karlsson M. gaseous emissions from circulting fluidzed bed combusiton of wood, Biomass and Bioenergy,1993.4:379-389.
    [104]李刚,陈冠益等.循环流化床气化过程中燃料氮迁移的数学模型.2005年中国生物质能技术与可持续发展研讨会论文集,2005.
    [105]Yaws, C.L. Chemical Properties Handbook, McGraw-Hill,1999.
    [106]Shinji K, Takayuki T, Masaru T. Relation between functional forms of coal nitrogen and NOx emission from pulverized coalcombustion[J]. Fuel,1995,74(9):1247-1253.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700