用户名: 密码: 验证码:
染料敏化太阳能电池有机光敏分子的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自从20年前发明染料敏化太阳能电池(DSSC)以来,研究人员一直在寻找性能优良的光敏剂用于DSSC,以期改善DSSC的光电性能,提高光电能量转换效率。为了降低DSSC的成本,最近几年研究者们开始关注使用非金属有机光敏剂染料来代替贵金属配合物。经过多年的探索,目前已经认识到适合于高效率DSSC的非金属有机光敏剂分子应该具有“电子给体—共轭桥—电子受体(D—π—A)”型分子结构。
     目前已经合成了多种D—π—A型非金属有机光敏剂,并用于敏化DSSC,使DSSC光电能量转换效率逐步提高。但目前DSSC的光电能量转换效率仍然不到10%,还远没有达到大规模工业化生产的地步。主要问题是:染料分子的吸收光谱位于紫外—可见光光谱的短波区,不能充分利用太阳能;由染料激发态向TiO2电极的电荷转移效率较低。合成吸收光谱明显红移的有机染料光敏剂,是目前DSSC研究的迫切任务。
     由于有机分子结构的多样性,通过分子修饰有可能调整分子的光物理和电化学特性,使之适合于敏化DSSC。在尝试合成染料分子前,如果能够在理论上通过对分子进行修饰并预言其性能而设计新分子,将是非常经济和快捷的方法。本文通过对目前合成的几类染料分子的DFT/TDDFT模拟计算,并与实验结果进行比较,寻找影响DSSC光电性能和光电能量转换效率的光敏剂分子的关键指标;以这些指标为依据,对目前已经合成的两种染料分子进行修饰,从中挑选出性能优良的敏化DSSC的有机分子,为进一步合成高效率非金属有机染料分子提供参考。
     通过对二氢吲哚类、多烯类和呋喃类染料分子的DFT/TDDFT模拟计算,并与实验结果比较发现,染料分子的HOMO和LUMO能级,吸收光谱以及摩尔吸光系数是决定DSSC性能的关键因素。
     通过增加共轭桥(次甲基链、噻吩环、呋喃环)的DFT/TDDFT计算表明,共轭桥的增长,确实能引起分子吸收光谱的红移。但计算结果也表明,共轭桥不宜太长,以1个单元为合适,不宜超过2个单元。
     通过在染料D5分子骨架上的不同部位引入不同的给电子基(-OH,-NH2,-OCH3)和受电子基(-CF3,-F,-CN),设计54种D5同类物分子。通过DFT/TDDFT模拟计算这些分子的几何结构、吸收光谱,以及能级结构,从中筛选出两种分子,由其敏化的DSSC的性能可能优于D5分子。同样,对含呋喃染料F1的分子修饰也筛选出两种分子的性能可能优于染料F1分子。这为进一步合成高效的DSSC光敏剂提供了理论参考。
Since dye sensitized solar cells (DSSCs) were invented twenty years ago, researchers have always sought a good photosensitizer for DSSC. in order to improve the electro-optical properties of DSSC and enhance electro-optical energy conversion efficiency. To reduce the cost of DSSC. researchers have begun to pay close attention to the use of non-metallic organic photosensitizer dye as replacement of precious metal complexes in recent years. In this stage, researchers have recognized that the non-metallic organic photosensitizer molecules suitable for efficient DSSC should have the molecular structure of "electron donor-conjugated bridges-electron acceptor (D-π-A)".
     At present, many kinds of D-π-A non-metallic organic photosensitizer have been synthesized and have been used for sensitized DSSC, in order to gradually enhance the electro-optical energy conversion efficiency of DSSC. However, the electro-optical energy conversion efficiency of DSSC is still less than 10% now, which falls behind large-scale industrial production. There are several facets to this question:on the one hand the adsorption spectra of dye molecules at the short-wave area of ultra-violet visible spectra fail to make full use of solar energy; on the other hand the charge transfer efficiency from the excited state of dye to TiO2 electrode is low. The synthesis of organic dye photosensitizer with significant red-shift adsorption spectra is the urgent task of current research on DSSC.
     Due to the diversity of organic molecular structure, the photo-physical and electro-chemical characteristics of molecules may be adjusted to be suitable for DSSC through molecular modification. It will be a very economic and fast method to design new molecules by theoretically modifying molecules and predicting their properties before trying to synthesizing dye molecules. By DFT/TDDFT simulation calculation for currently synthesized dye molecules and comparison with experimental results, this paper sought the key indicators of the photosensitizer molecules that influence on the electro-optical properties and electro-optical energy conversion efficiency of DSSC; based on these indicators, the currently synthesized two kinds of dye molecules were modified, in order to select the organic molecules with good properties for DSSC, which provides reference for the further synthesis of efficient non-metallic organic dye molecules.
     By DFT/TDDFT simulation calculation for dihydroindole, polyene and furan dye molecules and comparison with experimental results, one found that the HOMO and LUMO energy levels of dye molecules, adsorption spectrum and molar absorption coefficient should be the key factors that determine the properties of DSSC.
     The DFT/TDDFT calculation for the increasement of conjugated bridges (methylidyne chain, thiophene ring and furan ring) show that the increase in conjugated bridges can cause the red-shift of molecular adsorption spectrum indeed. However, the calculation results also show that the conjugated bridges should not be too long, i.e. one unit should be enough, and two units should not be exceeded.
     Through the introduction of different electron-donating groups (-OH,-NH2,-OCH3) and electron-accepting groups (-CF3,-F,-CN) into different parts on the skeleton of dye D5 molecules.54 kinds of D5 analogue molecules were designed. By DFT/TDDFT simulation calculation for geometric structure, adsorption spectrum and energy level structure of these molecules, two kinds of molecules superior to D5 molecules in properties were sieved out. In the same way, by molecular modification for furan-laden dye F1, another two kinds of molecules superior to dye F1 molecules in properties were sieved out. This provides theoretical reference for the further synthesis of efficient DSSC photosensitizer.
引文
[1]O'Regan B, Gratzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films [J]. Nature,1991,353:737-740.
    [2]Hagfeldt A, Gratzel M. Light-Induced Redox Reactions in Nanocrystalline Systems [J]. Chem. Rev.,1995,95:49-68.
    [3]Bach U, Lupo D, Comte P, et al. Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies [J]. Nature,1998,395:583-585.
    [4]Gratzel M. Photoelectrochemical cells [J]. Nature,2001,414:338-344.
    [5]Klein C, Nazeeruddin Md K, Censo D Di, et al. Amphiphilic ruthenium sensitizers and their applications in dye-ensitized solar cells [J]. Inorg. Chem.,2004,43: 4216-4226.
    [6]Nazeeruddin M K, Zakeeruddin S M, Lagref J-J, et al. Stepwise assembly of amphiphilic ruthenium sensitizers and their applications in dye-sensitized solar cell [J]. Coord. Chem. Rev.,2004,248:1317-1328.
    [7]Nakade S, Kanzaki T, Kubo W, et al. Role of Electrolytes on Charge Recombination in Dye-Sensitized TiO2 Solar Cell (1):The Case of Solar Cells Using the I-/I3- Redox Couple [J]. J.Phys. Chem. B,2005,109:3480-3487.
    [8]Robertson N. Optimizing Dyes for Dye-Sensitized Solar Cells [J]. Angew. Chem. Int. Ed. 2006,45:2338-2345.
    [9]Xie P, Guo F. Molecular Engineering of Ruthenium Sensitizers in Dye-Sensitized Solar Cells [J]. Curr. Org. Chem.,2007,11:1272-1286.
    [10]Peter L M. Dye-sensitized nanocrystalline solar cells [J]. Phys. Chem. Chem. Phys. 2007,9:2630-2642.
    [11]Martinson A B F, Hamann T W, Pellin M J, et al. New Architectures for Dye-Sensitized Solar Cells [J]. Chem. Eur. J.,2008,14:4458-4467.
    [12]Ooyama Y, Harima Y. Molecular Designs and Syntheses of Organic Dyes for Dye-Sensitized Solar Cells [J]. Eur. J. Org. Chem.,2009,2903-2934.
    [13]杨述明.染料敏化纳米晶太阳能电池[M].郑州:郑州大学出版社,2007.
    [14]张晓.染料敏化太阳能电池中电解质的研究和染料的量子设计[D]:(博士学位论文).上海:复旦大学,2008.
    [15]田海宁.芳胺类光敏染料用于染料敏化太阳能电池的研究[D]:(博士学位论文).大连:大连理工大学,2009.
    [16]Nazeeruddin Md K, kay A, Gratzel M, et al. Conversion of light to electrieity by cis-X2Bis (2,2'-bipyridyl-4,4'-dicarboxylate) ruthenium(Ⅱ) charge-transfer sensitizers (X=Cl-,Br-, I-, CN-, and SCN-) on nanocrystalline TiO2 electrodes [J]. J. Am. Chem. Soc.,1993,115:6382-6390.
    [17]李文欣,胡林华,戴松元.染料敏化太阳电池研究进展[J].中国材料进展,2009,28(7-8):20-25.
    [18]于哲勋,李冬梅,秦达,等.染料敏化太阳能电池的研究与发展现状[J].中国材料进展,2009,28(7-8):8-15.
    [19]Nazeeruddin Md K, Pechy P, Gratzel M. Efficient panchromatic sensitization of nanocrystalline TiO:films by ablack dye based on a trithiocyanato-ruthenimu complex [J]. Chem. Commun.,1997,1705-1706.
    [20]Nazeeruddin Md K, Zakeeruddin S M, Gratzel M, et al. Acid-base equilibria of (2,2'-bipyridyl-4,4'-dicarboxylic acid)ruthenium(Ⅱ) complexes and the effect of protonation on charge-transfer sensitization of nanocrystalline titania [J]. Inorg. Chem.,1999,38:6298-6305.
    [21]Nazeeruddin Md K, Pechy P, Gratzel M, et al. Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells [J]. J. Am. Chem. Soc.,2001, 123:1613-1624.
    [22]Wang P, Zakeeruddin S M, Gratzel M, et al. High efficiency dye-sensitized nanocrystalline solar cells based on ionic liquid polymer gel electrolyte [J]. Chem. Commun.,2002,2972-2973.
    [23]Wang P, Zakeeruddin S M, Gratzel M, et al. Molecular-scale interface engineering of TiO2 nanocrystals:improving the efficiency and stability of dye-sensitized solar cells [J]. Adv. Mater.,2003,15:2101-2104.
    [24]Wang P, Zakeeruddin S M, Gratzel M, et al. Stable new sensitizer with improved light harvesting for nanocrystalline dye-sensitized solar cells [J]. Adv. Mater.,2004,16: 1806-1811.
    [25]Wang P, Klein C, Gratzel M, et al. A high molar extinction coefficient sensitizer for stable dye-sensitized solar cells [J]. J. Am. Chem. Soc.,2005,127:808-809.
    [26]Kuang D, Ito S, Gratzel M, et al. High molar extinction coefficient heteroleptic ruthenium complexes for thin film dye-sensitized solar cells [J]. J. Am. Chem.Soc. 2006,128:4146-4154.
    [27]Lee Y, Jang S, Vittal R, et al. Dinuclear Ru(Ⅱ) dyes for improved performance of dye-sensitized TiO2 solar cells [J]. New J. Chem.,2007,31(12):2120-2126.
    [28]Gao F, Wang Y, Zhang J, et al. A new heteroleptic ruthenium sensitizer enhances the absorptivity of mesoporous titania film for a high efficiency dye-sensitized solar cell [J]. Chem. Commun.,2008,2635-2637.
    [29]Gao F, Wang Y, Shi D, et al. Enhance the optical absorptivity of nanocrystalline TiO2 film with high molar extinction coefficient ruthenium sensitizers for high performance dye-sensitized solar cells [J]. J. Am. Chem. Soc.,2008,130(32):10720-10728.
    [30]Li X, Gui J, Yang H, et al. A new carbazole-basedm phenanthrenyl ruthenium complex as sensitizer for a dye-sensitized solar cell [J]. Inorg. Chim. Acta.,2008,361(9-10): 2835-2840.
    [31]Chen C, Chen J, Wu S, et al. Multifunctionalized ruthenium-based supersensitizers for highly efficient dye-sensitized solar cells [J]. Angew. Chem. Int. Ed.,2008,47(38): 7342-7345.
    [32]Sauve G, Cass M, Coia G, et al. Dye sensitization of nanocrystalline titanium dioxide with osmium and rutheium polypyridyl complexes [J]. J. Phys. Chem. B,2000,104: 6821-6836.
    [33]Argazzi R, Larramona G, Contado C, et al. Preparation and photoelectrochemical characterization of a red sensitive osmium complex containing 4,4',4"-tricarboxy-2,2',6',2"-terpyridine and cyanide ligands [J]. J. Photochem. Photobiol. A:Chem.,2004,164:15-21.
    [34]Wang Q, Campbell W, Bonfantani E, et al. Efficient light harvesting by using green Zn-porphyrin-sensitized nanocrystailine TiO2 films [J]. J. Phys. Chem. B,2005, 109(32):15397-15409.
    [35]Wang X-F, Zhan C-H, Maoka T, et al. Fabrication of dye-sensitized solar cells using chlorophylls c1 and c2 and their oxidized forms c1 and c2 from Undaria pinnatif ida (Wakame) [J]. Chem. Phys. Lett.,2007,447,79-85.
    [36]Rochford J, Chu D, Hagfeldt A, et al. Tetrachelate Porphyrin Chromophores for Metal Oxide Semiconductor Sensitization:Effect of the Spacer Length and Anchoring Group Position [J]. J. Am. Chem. Soc.,2007,129:4655-4665.
    [37]Eu S, Hayashi S, Umeyama T, et al. Quinoxaline-fused porphyrins for dye-sensitized solar cells [J]. J. Phys. Chem. C,2008,112(11):4396-4405.
    [38]Wang X-F, Koyama Y, Nagae H, et al. Dependence of Photocurrent and Conversion Efficiency of Titania-Based Solar Cell on the Q(?) Absorption and One Electron-Oxidation Potential of Pheophorbide Sensitizer [J]. J. Phys. Chem. C,2008,112:4418-4426.
    [39]He J, Benko G, Korodi F, et al. Modified phthalocyanines for efficient near-IR sensitization of nanostructured TiO2 electrode [J]. J. Am. Chem. Soc.,2002,124: 4922-4932.
    [40]Moranderia A, Lopez-Duarte I, Martinez-Diaz M V, et al. Slow Electron Injection on Ru-Phthalocyanine Sensitized TiO2 [J]. J. Am. Chem. Soc.,2007,129:9250-9251.
    [41]0'Regan B C, L6pez-Duarte I, Martinez-Diaz M V, et al. Catalysis of Recombination and Its Limitation on Open Circuit Voltage for Dye Sensitized Photovoltaic Cells Using Phthalocyanine Dyes [J]. J. Am. Chem. Soc.,2008,130:2906-2907.
    [42]Lee Y L, Lo Y S. Highly Efficient Quantum-Dot2-ensitized Solar Cell Based on Co-Sensitization of CdS/CdSe [J]. Advanced Functional Materials,2009,19 (4) 604-609.
    [43]郑冰,牛海军,白续铎.有机染料敏化纳米晶太阳能电池[J].化学进展,2008,20(6):828-840.
    [44]梁茂,陶占良,陈军.染料敏化太阳能电池中的敏化剂[J].化学通报,2005(120:889-896.
    [45]Hara K, Sayama K, Ohga Y, et al. A coumarin-derivative dye sensitized nanocrystalline TiO2 solar cell having a high solar-energy conversion efficiency up to 5.6%[J]. Chem. Commun.,2001,569-570.
    [46]Hara K, Tachibana Y, Ohga Y, et al. Dye-sensitized nanocrystalline TiO2 solar cells based on novel coumarin dyes [J]. Sol. Energy Mater. Sol. Cells,2003,77:89-103.
    [47]Hara K, Sato T, Katoh R, et al. Molecular Design of Coumarin Dyes for Efficient Dye-Sensitized Solar Cells [J]. J. Phys. Chem. B,2003,107:597-606.
    [48]Hara K, Kurashige M, Dan-oh Y, et al. Design of new coumarin dyes having thiophene moieties for highly efficient organic-dye-sensitized solar cells [J]. New J. Chem., 2003,27:783-785.
    [49]Hara K, Dan-oh Y, Kasada C, et al. Effect of Additives on the Photovoltaic Performance of Coumarin-Dye-Sensitized Nanocrystalline TiO2 Solar Cells [J]. Langmuir,2004,20: 4205-4210.
    [50]Wang Z-S, Hara K, Dan-oh Y, et al. Photophysical and (Photo) electrochemical Properties of a Coumarin Dye [J]. J. Phys. Chem. B,2005,109:3907-3914.
    [51]Hara K, Wang Z-S, Sato T, et al. Oligothiophene-Containing Coumarin Dyes for Efficient Dye-Sensitized Solar Cells [J]. J. Phys. Chem. B,2005,109:15476-15482.
    [52]Furube A, Katoh R, Hara K, et al. Lithium Ion Effect on Electron Injection from a Photoexcited Coumarin Derivative into a TiO2 Nanocrystalline Film Investigated by Visible-to-IR Ultrafast Spectroscopy [J]. J. Phys. Chem. B,2005,109:16406-16414.
    [53]Hara K, Miyamoto K, Abe Y, et al. Electron Transport in Coumarin-Dye-Sensitized Nanocrystalline TiO2 Electrodes [J]. J. Phys. Chem. B,2005,109:23776-23778.
    [54]Wang Z-S, Cui Y, Hara K, et al. A High-Light-Harvesting-Efficiency Coumarin Dye for Stable Dye-Sensitized Solar Cells [J]. Adv. Mater.,2007,19:1138-1141.
    [55]Wang Z-S, Cui Y, Dan-oh Y, et al. Thiophene-Functionalized Coumarin Dye for Efficient Dye-Sensitized Solar Cells:Electron Lifetime Improved by Coadsorption of Deoxycholic Acid [J]. J. Phys. Chem. C,2007,111:7224-7230.
    [56]Wang Z-S, Cui Y, Dan-oh Y, et al. Molecular Design of Coumarin Dyes for Stable and Efficient Organic Dye-Sensitized Solar Cells [J]. J. Phys. Chem. C,2008,112: 17011-17017.
    [57]Hara K, Kurashige M, Ito S, et al. Novel polyene dyes for highly efficient dye-sensitized solar cells [J]. Chem. Commun.,2003,252-253.
    [58]Hara K, Sato T, Katoh R, et al. Novel Conjugated Organic Dyes For Efficient Dye-Sensitized Solar Cells [J]. Adv. Funct. Mater.,2005,15:246-252.
    [59]Hagberg D P, Edvinsson T, Marinado T, et al. A novel organic chromophore for dye-sensitized nanostructured solar Cells [J]. Chem. Commun.,2006,2245-2247.
    [60]Johansson E M J, Edvinsson T, Odelius M, et al. Electronic and Molecular Surface Structure of a Polyene-Diphenylaniline Dye Adsorbed from Solution onto Nanoporous TiO2 [J]. J. Phys. Chem. C,2007,111:8580-8586.
    [61]Hagberg D P, Yum J-H, Lee H, et al. Molecular Engineering of Organic Sensitizers for Dye-Sensitized Solar Cell Applications [J]. J. Am. Chem. Soc.,2008,130:6259-6266.
    [62]Tian H, Yang X, Chen R, et al. Effect of Different Dye Baths and Dye-Structures on the Performance of Dye-Sensitized Solar Cells Based on Triphenylamine Dyes [J]. J. Phys. Chem. C,2008,112:11023-11033.
    [63]Kim S, Lee J, Kang S, et al. Molecular engineering of organic sensitizers for solar cell applications [J]. J. Am. Chem. Soc.,2006,128(51):16701-16707.
    [64]Jung I, Lee J K, Song K H, et al. Synthesis and Photovoltaic Properties of Efficient Organic Dyes Containing the Benzo[b]furan Moiety for Solar Cells [J]. J. Org. Chem. 2007,72:3652-3658.
    [65]Kim D, Lee J K, Kang S 0, et al. Molecular engineering of organic dyes containing N-aryl carbazole moiety for solar cell [J]. Tetrahedron,2007,63:1913-1922.
    [66]Choi H, Lee J K, Song K, et al. Novel organic dyes containing bis-dimethylfluorenyl amino benzo[b]thiophene for highly efficient dye-sensitized solar cell [J]. Tetrahedron,2007,63:3115-3121.
    [67]Kim S, Choi H, Kim D, et al. Novel conjugated organic dyes containing bis-dimethylfluorenyl amino phenyl thiophene for efficient solar cell [J]. Tetrahedron,2007,63:9206-9212.
    [68]Kim S, Choi H, Baik C, et al. Synthesis of conjugated organic dyes containing alkyl substituted thiophene for solar cell [J]. Tetrahedron,2007,63:11436-11443.
    [69]Kim C, Choi H, Kim S, et al. Effect of Different Dye Baths and Dye-Structures on the Performance of Dye-Sensitized p-Phenylene Vinylene Unit for Dye-Sensitized Solar Cells [J]. J. Org. Chem.,2008,73:7072-7079.
    [70]Qin H, Wenger S, Xu M, et al. An Organic Sensitizer with a Fused Dithienothiophene Unit for Efficient and Stable Dye-Sensitized Solar Cells. J. Am. Chem. Soc.,2008, 130,9202-9203.
    [71]Li S-L, Jiang K-J, Shao K-F, et al. Novel organic dyes for efficient dye-sensitized solar cells [J]. Chem. Commun.,2006,2792-2794.
    [72]Li G, Jiang K-J, Li Y-F, et al. Efficient Structural Modification of Triphenylamine-Based Organic Dyes for Dye-Sensitized Solar Cells [J]. J. Phys. Chem. C,2008,112:11591-11599.
    [73]Chen R, Yang X, Tian H, Sun L. Tetrahydroquinoline dyes with different spacers for organic dye-sensitized solar cells [J]. J. Photochem. Photobiol. A:Chem.,2007,189: 295-300.
    [74]Qin P, Yang X, Chen R, Sun L. Influence of π-Conjugation Units in Organic Dyes for Dye-Sensitized Solar Cells [J]. J. Phys. Chem. C,2007,111:1853-1860.
    [75]Tian H, Yang X, Chen R, et al. Phenothiazine derivatives for efficient organic dye-sensitized solar cells [J]. Chem. Commun.,2007,3741-3743.
    [76]Chen R, Yang X, Tian H, et al. Effect of Tetrahydroquinoline Dyes Structure on the Performance of Organic Dye-Sensitized Solar Cells [J]. Chem. Mater.,2007,19: 4007-4015.
    [77]Koumura N, Wang Z-S, Mori S, et al. Alkyl-Functionalized Organic Dyes for Efficient Molecular Photovoltaics [J]. J. Am. Chem. Soc.,2006,128:14256-14257.
    [78]Wang Z-S, Koumura N, Cui Y, et al. Hexylthiophene-Functionalized Carbazole Dyes for Efficient Molecular Photovoltaics:Tuning of Solar-Cell Performance by Structural Modification [J]. Chem. Mater.,2008,20:3993-4003.
    [79]Choi H, Lee J K, Song K H, et al. Synthesis of new julolidine dyes having bithiophene derivatives for solar cell [J]. Tetrahedron,2007,63:1553-1559.
    [80]Choi H, Baik C, Kang S O, et al. Highly Efficient and Thermally Stable Organic Sensitizers for Solvent-Free Dye-Sensitized Solar Cells [J]. Angew. Chem. Int. Ed., 2008,47:327-330.
    [81]Kim S, Kim D, Choi H, et al. Enhanced photovoltaic performance and long-term stability of quasi-solid-state dye-sensitized solar cells via molecular engineeringw [J]. Chem. Commun.,2008,4951-4953.
    [82]Kim D, Kang M-S, Song K, et al. Molecular engineering of organic sensitizers containing indole moiety for dye-sensitized solar cells [J]. Tetrahedron,2008,64:10417-10424.
    [83]Liu W-H, Wu I-C, Lai C-H, et al. Simple organic molecules bearing a 3,4-ethylenedioxythiophene linker for efficient dye-sensitized solar cellsw [J]. Chem. Commun.,2008,5152-5154.
    [84]Thomas K R J, Hsu Y-C, Lin J T, et al.2,3-Disubstituted Thiophene-Based Organic Dyes for Solar Cells [J]. Chem. Mater.,2008,20:1830-1840.
    [85]Horiuchi T, Miura H, Uchida S. Highly-efficient metal-free organic dyes for dye-sensitized solar cells [J]. Chem. Commun.,2003,3036-3037.
    [86]Horiuchi T, Miura H, Uchida S. Highly efficient metal-free organic dyes for dye-sensitized solar cells [J]. J. Photochem. Photobiol. A:Chem.,2004,164:29-32.
    [87]Horiuchi T, Miura H, Sumioka K, et al. High Efficiency of Dye-Sensitized Solar Cells Based on Metal-Free Indoline Dyes [J]. J. Am. Chem. Soc.,2004,126:12218-12219.
    [88]Sehjrnidt-ende L, Bach U, Gratzel M, et al. Organic dye for highly efficient solid-state dye-sensitized solar cells [J]. Adv. Mater.,2005,17:813-815.
    [89]Ito S, Zakeeruddin S M, Humphry-Baker R, et al. High-Efficiency Organic-Dye-Sensitized Solar Cells Controlled by Nanocrystalline-TiO2 Electrode Thickness [J]. Adv. Mater. 2006,18:1202-1205.
    [90]Howie W H, Claeyssens F, Miura H, et al. Characterization of Solid-State Dye-Sensitized Solar Cells Utilizing High Absorption Coefficient Metal-Free Organic Dyes [J]. J. Am. Chem. Soc.,2008,130:1367-1375.
    [91]Kuang D, Uchida S, Humphry-Baker R, et al. Organic Dye-Sensitized Ionic Liquid Based Solar Cells:Remarkable Enhancement in Performance through Molecular Design of Indoline Sensitizers [J]. Angew. Chem. Int. Ed.,2008,47:1923-1927.
    [92]Ito S, Miura H, Uchida S, et al. High-conversion-efficiency organic dye-sensitized solar cells with a novel indoline dye [J]. Chem. Commun.,2008,5194-5196.
    [93]Wang Z-S, Li F-Y, Huang C-H, et al. Photoelectric Conversion Properties of Nanocrystalline TiO2 Electrodes Sensitized with Hemicyanine Derivatives [J]. J. Phys. Chem. B,2000,104:9676-9682.
    [94]Wang Z-S, Li F-Y, Huang C-H. Highly efficient sensitization of nanocrystalline TiO2 films with styryl benzothiazolium propylsulfonate [J]. Chem. Commun.,2000, 2063-2064.
    [95]Wang Z-S, Li F-Y, Huang C-H. Photocurrent Enhancement of Hemicyanine Dyes Containing RSO3- Group through Treating TiO2 Films with Hydrochloric Acid [J]. J. Phys. Chem. B, 2001,105:9210-9217.
    [96]Stathatos E, Lianos P, Laschewsky A, et al. Synthesis of a Hemicyanine Dye Bearing Two Carboxylic Groups and Its Use as a Photosensitizer in Dye-Sensitized Photoelectrochemical Cells [J]. Chem. Mater.,2001,13:3888-3892.
    [97]Meng F S, Yao Q H, Shen J G, et al. Novel Cyanine Dyes with Multi-carboxyl Groups and their Sensitization on Nanocrystalline TiO2 Electrode [J]. Synth. Met.,2003,137: 1543-1544.
    [98]Yao Q-H, Meng F-S, Li F-Y, et al. Photoelectric conversion properties of four novel carboxylated hemicyanine dyes on TiO2 electrode [J]. J. Mater. Chem.,2003,13: 1048-1053.
    [99]Yao Q-H, Shan L, Li F-Y, et al. An expanded conjugation photosensitizer with two different adsorbing groups for solar cells [J]. New J. Chem.,2003,27:1277-1283.
    [100]Chen Y-S, Li C, Zeng Z-H, et al. Efficient electron injection due to a special adsorbing group's combination of carboxyl and hydroxyl:dye-sensitized solar cells based on new hemicyanine dyes [J]. J. Mater. Chem.,2005,15:1654-1661.
    [101]Chen Z, Li F, Huang C-H. Organic D-π-A Dyes for Dye-Sensitized Solar Cell [J]. Curr. Org. Chem.,2007,11:1241-1258.
    [102]Hohenberg P, Kohn W. Inhomogeneous Electron Gas [J]. Phys. Rev.,1964,136:B864-B870.
    [103]Kohn W, Sham L. Self-Consistent Equations Including Exchange and Correlation Effects [J]. J.Phys. Rev.,1965,140:A1133-A1138.
    [104]刘靖疆.基础量子化学与应用[M].北京:高等教育出版社,2004.
    [105]陈光巨,黄元河.量子化学[M].上海:华东理工大学出版社,2008.
    [106]李振宇.新材料物性的第一性原理研究[D].合肥:中国科学技术大学,2004.
    [107]Becke A D. A new mixing of Hartree-Fock and local density-functional theories [J]. J. Chem. Phys.,1993,98:1372-1377.
    [108]Becke A D. Density-functional thermochemistry. Ⅲ. The role of exact exchange [J]. J. Chem. Phys.,1993,98:5648-5652.
    [109]Hertwig R H, Koch W. On the parameterization of the local correlation functional. What is Becke-3-LYP? [J]. Chemical Physics Letters,1997,268:345-351.
    [110]Yanai T, Tew D P, Handy N C. A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP) [J]. Chemical Physics Letters,2004,393: 51-57.
    [111]Runge E, Gross E K U. Density-Functional Theory for Time-Dependent Systems [J]. Phys. Rev. Lett.,1984,52:997-1000.
    [112]Bauernschmitt R, Ahlrichs R. Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory [J]. Chemical Physics Letters,1996,256:454-464.
    [113]Bauernschmitt R, Haiser M, Treutler 0, Ahlrichs R. Calculation of excitation energies within time-dependent density functional theory using auxiliary basis set expansions [J]. Chemical Physics Letters,1997,264:573-578.
    [114]Wiberg K B, Stratmann R E, Frisch M J. A time-dependent density functional theory study of the electronically excited states of formaldehyde, acetaldehyde and acetone [J]. Chemical Physics Letters,1998,297:60-64.
    [115]Gisbergen S J A, Sni jders J G, Baerends E J. Implementation of time-dependent density functional response equations [J]. Computer Physics Communications,1999,118:119-138.
    [116]Hirata S, Head-Gordon M. Time-dependent density functional theory for radicals An improved description of excited states with substantial double excitation character [J]. Chemical Physics Letters,1999,302:375-382.
    [117]Cossia M, Barone V. Time-dependent density functional theory for molecules in liquid solutions [J]. J. Chem. Phys.,2001,115:4708-4717.
    [118]Chu T S, Zhang Y, Han K L. The time-dependent quantum wave packet approach to the electronically nonadiabatic processes in chemical reactions [J]. Int. Rev. Phys. Chem.,2006,25:201
    [119]Chu T S, Varandas A J C, Han K L. Nonadiabatic effects in D+H2 and H-+D2 [J]. Chemical Physics Letters,2009,471:222-228.
    [120]Chu T S, Han K L, Hanke M, et al. Nonadiabatic effects in the H+H2 exchange reaction: Accurate quantum dynamics calculations at a state-to-state level [J]. THE JOURNAL OF CHEMICAL PHYSICS,2009,130:144301
    [121]Zhang X, Zhang J-J, Xia Y-Y. Molecular design of coumarin dyes with high efficiency in dye-sensitized solar cells [J]. Journal of Photochemistry and Photobiology A: Chemistry,2008,194:167-172.
    [122]Zhao G J, Han K L. Early Time Hydrogen-Bonding Dynamics of Photoexcited Coumarin 102 in Hydrogen-Donating Solvents:Theoretical Study [J]. J. Phys. Chem. A,2007,111: 2469-2474.
    [123]Zhao G J, Han K L. Effects of Hydrogen Bonding on Tuning Photochemistry:Concerted Hydrogen-Bond Strengthening and Weakening [J]. ChemPhysChem,2008,9:1842-1846.
    [124]Zhao G J, Han K L. Role of Intramolecular and Intermolecular Hydrogen Bonding in Both Singlet and Triplet Excited States of Aminofluorenones on Internal Conversion, Intersystem Crossing, and Twisted Intramolecular Charge Transfer [J]. J. Phys. Chem. A,2009,113:14329-14335.
    [125]Reed A E, Weinstock R B, Weinhold F. Natural population analysis [J]. J. Chem. Phys. 1985.83:735-746.
    [126]Reed A E, Curtiss L A, Weinhold F. Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint [J]. Chem. Rev.,1988,88:899-926.
    [127]Cossi M, Barone V, Cammi R, Tomasi J. Ab initio study of solvated molecules:a new implementation of the polarizable continuum model [J]. Chem. Phys. Lett.,1996,255: 327-335.
    [128]Foresman J B, et al. Solvent Effects.5. Influence of Cavity Shape, Truncation of Electrostatics, and Electron Correlation on ab Initio Reaction Field Calculations [J]. J. Phys. Chem.,1996,100:16098-16104.
    [129]Mennucci B, et al. Ab initio study of ionic solutions by a polarizable continuum dielectric model [J]. Chem Phys Lett,1998,286:253-260.
    [130]Barone V, Cossi M. Quantum Calculation of Molecular Energies and Energy Gradients in Solution by a Conductor Solvent Model [J]. J. Phys. Chem.:A,1998,102:1995-2001.
    [131]Klamt A, et al. Refinement and Parametrization of COSMO-RS [J]. J. Phys. Chem.:A, 1998,102:5074-5085.
    [132]Cossi M, Rega N, Scalmani G, Barone V. Energies, Structures, and Electronic Properties of Molecules in Solution with the C-PCM Solvation Model [J]. J. Comput. Chem.,2003, 24:669-681.
    [133]Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian Inc., Pittsburgh PA,2003.
    [134]Y Z Li, S S Liu, X H Zhao, et al. Intramolecular charge transfer in the dye molecules containing bis-dimethylfluoreneaniline [J] J. Mol. Struct.-Theochem,2008,867: 10-16.
    [135]Asbury J B, Hao E, Wang Y Q, et al. Ultrafast Electron Transfer Dynamics from Molecular Adsorbates to Semiconductor Nanocrystalline Thin Films [J]. J. Phys. Chem.:B,2001, 105:4545-4557.
    [136]Katoh R, Furube A, Hara K, et al. Efficiencies of Electron Injection from Excited Sensitizer Dyes to Nanocrystalline ZnO Films as Studied by Near-IR Optical Absorption of Injected Electrons [J]. J. Phys. Chem.:B,2002,106:12957-12964.
    [137]Anderson N A, Lian T. Ultrafast electron injection from metal polypyridyl complexes to metal-oxide nanocrystalline thin films [J]. Coordination Chemistry Reviews,2004, 248:1231-1246.
    [138]Zhang X-H, Li C, Wang W-B, et al. Photophysical, electrochemical, and photoelectrochemical properties of new azulene-based dye molecules [J]. J. Mater. Chem.,2007,17:642-649.
    [139]Marinado T, Hagberg D P, Hedlund M, et al. Rhodanine dyes for dye-sensitized solar cells:spectroscopy, energy levels and photovoltaic performancew [J]. Phys. Chem. Chem. Phys.,2009,11:133-141.
    [140]Wang L X, Liu Y, Tuo X L, et al. Effect of H- and NH4- on the N-NO2 Bond Dissociation Energy of HMX [J]. Acta Phys.-Chim. Sin.,2007,23:1560-1564.
    [141]Sayama K, Tsukagoshi S, Mori T, et al. Efficient sensitization of nanocrystalline TiO2 films with cyanine and merocyanine organic dyes [J]. Sol. Energy Mater. Sol. Cells, 2003,80:47-71.
    [142]Tsai M-S, Hsu Y-C, Lin J T, et al. Organic Dyes Containing 1H-Phenanthro [9,10-d] imidazole Conjugation for Solar Cells [J]. J. Phys. Chem. C,2007,111:18785-18793.
    [143]Burke A, Ito S, Snaith H, et al. The Function of a TiO2 Compact Layer in Dye-Sensitized Solar Cells Incorporating "Planar" Organic Dyes [J]. Nano Lett.,2008,8:977-981.
    [144]Zhang C R, Liu Z J, Chen Y H, et al. DFT and TDDFT study on organic dye sensitizers D5, DST and DSS for solar cells [J]. J. Molecular Structure:THEOCHEM,2009,899:86-93.
    [145]Lin J T, Chen P-C, Yen Y-S, et al. Organic Dyes Containing Furan Moiety for High-Performance Dye-Sensitized Solar Cells [J]. Organic Letters.,2009,11(1): 97-100.
    [146]Boschloo G, Marinado T,. Nonomura K, et al. A comparative study of a polyene-diphenylaniline dye and Ru(dcbpy)2(NCS)2 in electrolyte-based and solid-state dye-sensitized solar cells [J]. Thin Solid Films,2008,516:7214-7217.
    [147]Balanay M P, Kim D H. DFT/TD-DFT molecular design of porphyrin analogues for use in dye-sensitized solar cells [J]. Phys. Chem. Chem. Phys.,2008,10:5121-5127.
    [148]Chou C S, Yang R Y, Weng M H, Yeh C H. Preparation of TiO2/dye composite particles and their applications in dye-sensitizedsolar cell[J]. Powder Technology,2008,187: 181-189.
    [149]Agrios A G, Hagfeldt A. Low-temperature TiO2 Films for Dye-sensitized Solar Cells: Factors Affecting Energy Conversion Efficiency [J]. J. Phys. Chem. C,2008,112: 10021-10026.
    [150]Fredin K, Johansson E M J, Blom T, et al. Using a molten organic conducting material to infiltrate a nanoporous semiconductor film and its use in solid-state dye-sensitized solar cells [J]. Synth. Met.,2009,159:166-170.
    [151]Jacquemin D, Perpete E A, Scuseria G E, et al. TD-DFT Performance for the Visible Absorption Spectra of Organic Dyes:Conventional versus Long-Range Hybrids [J]. J. Chem. Theory Comput.,2008,4:123-135.
    [152]Wonga B M, Cordaro J G. Coumarin dyes for dye-sensitized solar cells:A long-range-corrected density functional study [J]. J. Chem. Phys.2008,129:214703.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700