用户名: 密码: 验证码:
石墨烯及其掺杂体系电子结构性质的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石墨烯是一种新型二维平面碳纳米材料,其特殊的单原子层结构决定了它具有丰富而新奇的性质。过去几年中,石墨烯已经成为了备受瞩目的国际前沿和热点,在众多领域有着潜在的巨大应用价值。本文利用基于第一性原理的密度泛函理论,对石墨烯及其掺杂体系电子结构性质进行理论模拟和计算,为其在纳米电子器件,储能,新型传感器等领域的应用提供理论指导。
     对一定尺寸的石墨烯研究发现,随着尺寸的增大,能隙逐渐减小,材料由半导体性质逐渐向金属性质过渡,电荷密度主要集中在边缘部分,特别是集中于zigzag边缘。设计了一系列石墨烯量子点并对其进行了理论模拟计算。研究发现,当石墨烯量子点包含六个苯环且呈正三角形结构排列时,其同时具有磁性和光致发光现象。用含时密度泛函理论对其进行激发态的计算,得到了该量子点的电子吸收光谱,找到了和实验观测到的波长相一致的吸收光谱,提出石墨烯量子点的光致发光源于zigzag边缘效应。对其磁性分析发现,由于三重态比单重态更稳定,就可以提供具有未成对电子的顺磁中心而使其具有磁性,因而要想使石墨烯具有磁性,就需要有一定的孤对电子。
     研究H2在石墨烯表面的吸附发现,H2在本征的单层石墨烯表面是很弱的物理吸附作用,H2和石墨烯表面的距离较远,吸附能也很小。当有Al或Li+掺杂后,吸附能大大增加,体系的几何构型和电子结构等都有了显著的改变,H2与掺杂的石墨烯之间具有较强的物理吸附,从而大大增强了石墨烯基探测器对H2的灵敏度。
     对石墨烯储锂机理研究发现,锂离子吸附在石墨烯碳环心位时最稳定,其吸附能相比碳纳米管大大增加,通过对Li+-石墨烯体系的电子态密度分析发现,有一部分电子从石墨烯转移到锂离子上,增强了体系的导电性质。锂离子要想穿越单层石墨烯势垒,需要1.726eV的能量,而穿越有空穴的石墨烯势垒则需要更大的能量。研究发现,石墨烯作为锂离子电池的新型负极材料,有着很大的优越性和应用性。
     并五苯分子也可以看作是zigzag边缘的石墨烯量子点,因为其高的电荷迁移率而成为一种倍受重视的有机半导体材料,为了增加其在有机溶剂中的溶解性同时又保持高的电荷迁移率,我们在并五苯分子中引入极性取代基F,Cl,Br。采用密度泛函理论研究了它们的分子构型,偶极矩,前线分子轨道,电离势和亲和能以及重组能。研究发现,这些卤代并五苯和并五苯一样具有很低的重组能(<0.2eV),因而具有很高的电荷迁移率。更为重要的是,当取代基位于2位置或者2,9位置时卤代并五苯是极性分子,因而易溶于有机溶剂而便于器件的加工和性能的稳定(并五苯不溶于有机溶剂),这表明它们是一种优于并五苯的新型有机半导体材料。
Graphene, a single layer of carbons, is found to exist as a free-standing form and exhibits many unusual and intriguing physical, chemical and mechanical properties. In the past few years, graphene which has caused researchers' extensive attention is becoming the leading edge and hotspot in various relative fields. In this paper, electronic structures of intrinsic and doped graphene have been simulated and computed based on the first principles of density functional theory(DFT), which could provide theoretical guidance for their applications in nano-electronic devices, energy storage and novel gas sensors.
     It indicated that finite size graphene had a band gap which decreased on increasing the dimension of the sheet to near metallic situation through compairing with three dimension graphene sheets by DFT. In our investigation we also observed high electron density along edges especially at the zigzag edges. Furthermore, we deviced a serials of graphene dots. By using DFT we found that it had both luminescent and ferromagnetic properties when graphene quantum dot was consists of six equilateral triangle structures of the benzene rings. We also obtained the electronic absorption spectra of the quantum dot by time-dependent density functional theory(TD-DFT) and our results were well agreement with experimental observations. We proposed that strong Luminescence of graphene quantum dot from the zigzag edge effect. In addition, the energy of the triplet state was lower than the singlet one which could be explained as the spin containing units with unpaired electrons for synthesis and design of the molecular magnetic materials.
     The adsorptions of H2 molecules on the intrinsic and doped graphenes were also investigated. It is found that H2 molecules are only weakly adsorbed onto the intrinsic graphene with small binding energy value and large distance between the H2 molecules and graphene. The electronic structure and electrical conductivity of the intrinsic graphene have a limited change caused by the adsorption of H2 molecules. However, the H2 molecule has strong interaction with the Al or Li+ doped graphene, forming strong physisoption that introduces a large amount of shallow acceptor states into the system. In this case, the remarkable variation of the electrical conductivity is induced by the H2 adsorption, possessing an excellent characteristic of high sensitivity for H2 gas detection.
     The structures and electronic states of sodium ion (Li+) trapped on graphene have been investigated by means of density functional theory (DFT) calculation to elucidate the nature of interaction between Li+ and graphenes. The VASP calculation showed that the Li+ ion is stabilized in hexagonal site and the height of Li+ ion at the energy minimum is 1.8A., Li+ ion is preferentially bound to a hexagonal site of the graphene, In addition, the DOS indicated that there were some charges transferred from graphene surface to Li ion, and we also found that there was a high potential barrier about 1.726eV for Li ion cross the carbon ring, and the potential barrie increased sharply as the increase of grapheme layers. All results showed that graphene as a new type of lithium-ion battery anode material, had great advantages and applicability.
     Pentacene(C22H12) can also be known as a graphene dot.We introduce polar substituents to pentacene such as F, Cl, Br, to enhance their dissolubility in common organic solvents while keeping the high charge-carrier mobilities of pentacene. Geometric structures, dipole moments, frontier molecule orbits, ionization potentials and electron affinities, as well as reorganization energies of those molecules, and of pentacene as a comparision, have been successively calculated by the density functional theory. The results indicate that halopentacenes have rather small reorganization energies (<0.2eV), and when the substituents in the 2 position or 2,9 positions they are polarity molecules, so we conjecture they can easily dissolve in common organic solvents, and are promising candidates for organic semiconductors.
引文
[1]Jie L., Andrew G. R., Hongjie D., et al. Fullerene Pipes[J]. Science,1998,280:1253-1256
    [2]Bruce J. H., Nitin C., Terry R., et al. Aligned Multiwalled Carbon Nanotube Membranes[J]. Science,2004,303:62-65
    [3]Ming Z., Anand J., Michael S. S., et al. Structure-Based Carbon Nanotube Sorting by
    Sequence-Dependent DNA Assembly[J]. Science,2003,302:1545-1548
    [4]Novoselov K. S., Geim A. K., Mozorov S. V., et al. Electric Field Effect in Atomically Thin Carbon Films[J]. Science,2004,306:666-669
    [5]For review see Setton R., Bernier P., Lefrant S. (Eds.), Carbon Molecules and Materials, Taylor and Francis, New York,2002:125-128
    [6]Popov V. N. Carbon nanotubes:properties and application[J]. Sci. Eng. R.,2004, 43:61-102
    [7]Jordan S.P., Crespi V.H. Theory of Carbon Nanocones:Mechanical Chiral Inversion of a Micron-Scale Three-Dimensional Object[J]. Phys. Rev. Lett.,2004,93:255504-255508.
    [8]Changgu L., James H. Measurement of the elastic properties and instrinsic strength of monolayer grapheme[J]. Science,2008,5887(321):358-388
    [9]Geim A. K., Novoselov K. S. The Rise of Graphene[J]. Nature Mater.,2007,6:183-191
    [10]Zhang, Y.; Tan, Y.W.; Stormer, H. L.; Kim, P. Experimental observation of the quantum Hall effect and Berry's phase in grapheme[J]. Nature,2005,438 (7065):201-204
    [11]Novoselov K. S., Geim A. K., Morozov S. V., et al. Two-dimensional gas of massless Dirac fermions in grapheme[J]. Nature,2005,438(7065):197-200
    [12]Novoselov K. S., Jiang, Z., Geim A. K., et al. Room-Temperature Quantum Hall Effect in Graphene[J]. Science,2007,315(5817):1379-1379
    [13]Yuanbo Z., Tan Y. W., Horst L. S., Philip K. Experimental observation of the quantum Hall effect and Berry's phase in graphene[J]. Nature,2005,438:201-204
    [14]Inagaki M., Radovic,L. R. Nanocarbons[J]. Carbon,2002,40:2279-2282
    [15]Sevincli H., Topsakal M., Durgun E. Electronic and magnetic properties of 3d transition-metal atom adsorbed and graphene nanoribbons[J].Phys. Rev. B,2008, 77:1954341-1954347
    [16]Chunnian H., Naiqin Z., Chunsheng S., et al. Magnetic properties and transmission electron microscopy studies of Ni nanoparticles encapsulated in carbon nanocages and carbon nanotubes[J].Materials Research Bulletin,2008,43:2260-2265
    [17]Isao T., Hiroyuki S.,.Hiroshi I. Terahertz-wave generation from quasi-phase-matched GaP for 1.55μm pumping[J]. Appl. Phys. Lett.,2006,88:071118-071121.
    [18]Cao L., Wang X., Meziani M. J., et al. Carbon dots for multiphoton bioimaging[J]. J. Am. Chem. Soc.,2007,129:11318-11319
    [19]Yu S. J., Kang M. W., Chang H. C., et al. Bright Fluorescent Nanodiamonds:No Photobleaching and Low Cytotoxicity[J]. J. Am. Chem. Soc.,2005,127:17604-17605
    [20]Berger C., Song Z., Li X., Wu X., et al. Electronic Confinement and Coherence in Patterned Epitaxial Graphene[J]. Science,2006,312 (5777):1191-1196
    [21]Ohta T., Bostwick A., Seyller T., Horn K., Rotenberg E. Controlling the Electronic Structure of Bilayer Graphene[J]. Science,2006,313(5789):951-954
    [22]Hummers W. Ofleman.Preparation of oxide[J]. J Am. Chem. Soc.1958,801339-1339
    [23]Sasha S., Dmitriy A. D., Richard D. P. Synthesis of grapheme-based nanosheets via chemical reduction of exfloliated graphite oxide[J]. Carbon,2007,45:1558-1565
    [24]Gilje S., Han S., Wang M., et al. A Chemical Route to Graphene for Device Applications[J]. Nano lett.,2007,7(11):3394-3398
    [25]Schniepp H. C., Li J. L., McAllister M. J., et al. Functionalized Single Graphene Sheets Derived from Splitting Graphite Oxide[J]. J. Phys. Chem. B,2006,110:8535-8539
    [26]Montoya A., Truong T.N., Sarofim A.F. A Hybrid Multigrid Method for the Steady-State Incompressible Navier-Stokes. Equations[J]. J. Phys. Chem. A.,2000,104:6108-6110
    [27]Hubert B. H., Pablo J. H, Jeroen B. et al. Bipolar supercurrent in graphene[J] 2007, Nature,446:56-59
    [28]Lisa M.V., Julia J. M., Oren M. M.,et al. Intercalation and exfoliation routes to graphite nanoplatelets[J]. Nature nanotechnology,2006,12:45-48
    [29]Dutta P., Horn P. M. Low-frequency fluctuations in solids:1/f noise[J]Rev. Mod. Phys., 1981,53497-516
    [30]Frauenheim, S. Suhai, G. Seifert, Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties [J]. Phys. Rev. B 1998,58:7260-7268
    [31]Nakada K., Fujita M., Dresselhaus G., Dresselhaus M.S., Edge state in graphene ribbons: Nanometer size effect and edge shape dependence [J]. Phys. Rev. B,1996,54,17954-17961
    [32]Zhang Y, Tan J W, Stormer H L, Kim P Experimental observation of the quantum Hall effect and Berry's phase in graphene[J].2005, Nature,438:201-204
    [33]Dresselhaus M S., Dresselhaus G. Evolution of networks[J].2002, Adv. Phys., 51:1079-1187
    [34]Kong J., Chapline M. G., Dai H. Functionalized carbon nanotubes for molecular hydrogen sensors [J]. ADVANCED MATERIALS.2001,13(18):1384-1386
    [35]Wei B. Y., Hsu M. C., Su P. G., et al. A novel SnO2 gas sensor doped with carbon nanotubes operating at room temperature[J], Sens. Actuators B,2004,101:81-89
    [36]Peng S., Cho K. Ab Initio Study of Doped Carbon Nanotube Sensors[J]. Nano Lett,2003, 3(4):513-517
    [37]Zhao Q., Nardelli M. B., Lu W., Bernholc J. Carbon Nanotube-Metal Cluster Composites:A New Road to Chemical Sensors?[J].Nano Lett.,2005,5:847-851
    [38]Wang R., Zhang D., Sun W., et al. A novel aluminum-doped carbon nanotubes sensor for carbon monoxide[J]. J. Mol. Struct:THEOCHEM,2007,806:93-97
    [39]Zhang Y. M., Zhang D. J., Liu C. B. Novel Chemical Sensor for Cyanides:Boron-Doped Carbon Nanotubes[J]. J. Phys. Chem. B,2006,110:4671-4674
    [40]郭华军,李向群,王志兴,锂掺杂对石墨电化学性能的影响[J].中国有色金属学报,2003,5:1112-1115
    [41]Zhou Z., Zhao J.J., Gao X.P., Schleyer P. V., Morinaga M., et al. Do composite single-walled nanotubes have enhanced capability for lithium storage[J]. Chem. Mater.,2005, 17:992-1000
    [42]Eom J.Y., Kwon H.S., Liu J., Zhou O. Lithium insertion into purified and etched multi-walled carbonnanotubes synthesized on supported catalysts by thermal CVD[J]. Carbon, 2004,42:2589-2596
    [43]张万红,方亮,岳敏,于作龙,碳纳米管用于锂离子电池负极材料[J];电池,2006,01:53-58
    [44]Frackowiak E., Beguin F., Electrochemical storage of energy in carbon nanotubes and nanostructured carbons[J]. Carbon,2002,40:1775-1787
    [45]Schedin F., Geim A. K., Morozov S. V., et al. Detection of individual gas molecules adsorbed on grapheme[J]. Nat. Mater.2007,6,652-655
    [46]Morozov S. V., Novoselov K. S., Katsnelson M. I., et al. Strong Suppression of Weak Localization in Graphene[J]. Phys. Rev. Lett.,2006,97:016801-016805
    [47]Titov M, Beenakker C W. Josephson effect in ballistic graphene[J]. Phys. Rev. B, 2006,74,041401-041105
    [48]Heersche H. B., Jarillo H. P., Oostinga J. B.,et al. Bipolar supercurrent in graphene[J]. Nature,2007,446,56-59
    [49]Alex S. Transforming Graphene[J]. Science,2009,323:589-590
    [50]Wang X. R., Li X. L., Zhang, L., et al. N-Doping of Graphene Through Electrothermal Reactions with Ammonia[J]. Science,2009,324:768-771
    [51]Lin Y. M., Dimitrakopoulos C., Jenkins K. A., et al.100-GHz Transistors from Wafer-Scale Epitaxial Graphene[J]. Science,2010,327:662
    [52]Wu Z. S, Ren W. C., Cheng H.M., et al. Synthesis of Graphene Sheets with High Electrical Conductivity and Good Thermal Stability by Hydrogen Arc Discharge Exfoliation[J]. Nano. Lett.2009,3:411-417
    [53]Wang D. W., Li F., Cheng H.M., et al. Fabrication of Graphene/Polyaniline Composite Paper via In Situ Anodic Electropolymerization for High-Performance Flexible Electrode[J]. Nano. Lett.2009,3:1745-1752
    [54]Li Q., Li Z. J., Chen M., Fang Y. Real-Time Study of Graphene's Phase Transition in Polymer Matrices [J]. Nano Lett.,2009,9:2129-2132
    [55]Katsnelson M. I., Novoselov K. S., Geim A. K. Chiral tunnelling and the Klein paradox in graphene[J]Nat. Phys.,2006,2:620-625
    [56]Sasaki K., Murakami S., Saito R. Stabilization mechanism of edge states in graphene[J]. Appl. Phys. Lett.,2006,88:113110-113113
    [57]Zheng H. X., Wang Z. F., Luo T., et al. Analytical study of electronic structure in armchair graphene nanoribbons[J].Phys.Rev. B,2007,75:165414-165420
    [58]Wang Z. F., Shi Q. W., Li Q. X., et al. Z-shaped graphene nanoribbon quantum dot device[J]. Appl. Phys. Lett.,2007,91:053109-053122
    [59]Dimitrakakis, G. K., Tylianakis, E., and Froudakis, G. E. Pillared Graphene:A New 3-D Network Nanostructure for Enhanced Hydrogen Storage[J]. Nano Lett.,2008,8:3166-3170
    [60]Hiroto T. and Akira S. Diffusion Dynamics of the Li Atom on Amorphous Carbon:A Direct MolecularOrbital Molecular Dynamics Study[J] J. Phys. Chem. B,2006,110:20445-20450
    [61]Hiroto T. A Direct Molecular Orbital Molecular Dynamics Study on the Diffusion of the Li Ion on a Fluorinated Graphene Surface[J], J. Phys. Chem. C,2008,112:10193-10199
    [62]Khantha M., Cordero N. A., Molina L. M. Interaction of lithium with graphene:An ab initio study[J]. Phys. Rev. B,70,2004,1254221-1254228
    [63]Schedin F., Geim, A. K., Morozov S. V., Hill E. W., Blake P., Katasnelson M. I., Novoselov K. S..Detection of individual gas molecules adsorbed on graphene[J].2007, Nat. Mater.,6:652-655
    [64]Leenaerts O., Partoens B., Peeters F. M. Adsorption of H2O, NH3, CO, NO2,and NO on graphene:A first-principles study[J] Phys. Rev. B,2008,77:125416-125428
    [65]Wehling T. O., Novoselov K. S., Morozov S. V., Vdovin E. E., Katsnelson M. I., Geim A. K., Lichtenstein A. I. Atomic Hole Doping of Graphene[J]. Nano. Lett.,2008,8:168-173
    [66]Ao Z. M., Yang J., Li S. et al. Enhancement of CO detection in Al doped graphene[J].Chem. Phys. Lett.,2008,461:276-279
    [67]Leenaerts O., Partoens B., Peeters F. M., Adsorption of small molecules on graphene[J]. Microelectronics Journal,2009,408:60-862
    [68]Yoshioka H. Spin Excitation in Nano-Graphite Ribbons with Zigzag Edges[J]. J. Phys. Soc. Jpn.,2003,72:2145-2148
    [69]Tyutyulkov N., Ivanov N., Mullen K., et al. Energy Spectra of One-Dimensional Stacks of Polycyclic Aromatic Hydrocarbons without Defects[J]. J. Phys. Chem. B,2004, 108:4275-4282
    [70]Sevincli H., Topsakal M., Durgun E., et al. Electronic and magnetic properties of 3d transition-metal atom adsorbed grapheme and graphene nanoribbons[J]. Phys. Rev. B,2008, 77:1954341-1954347
    [71]Zhou J., Wang Q., Sun Q., et al. Ferromagnetism in Semihydrogenated Graphene Sheet[J].Nano Lett.,2009,9:3867-387
    [72]Hohenberg P., Kohn W. Inhomogeneous electron gas [J]. Phys. Rev.,1964, 136:B864-B871
    [73]Kohn W., Sham L. Self-consistent equations including exchange and correlation effects [J]. Phys. Rev.,1965,140:A1133-A1138
    [74]Dirac P. A. M. On the annihilation of electrons phenomena in the. Thomas atom[J] Proc. Cambridge Philos. Soc.,1930,26:376-385
    [75]Weizsacker C. F. V. Zur Theorie der Kernmassen[J]. Z. Phys.,1935,96:431-485
    [76]Gross E. K. U. and Kohn W., Local density-functional theory of frequency-dependent linear response [J].Phys. Rev. Lett.,1985,55:2850-2852
    [77]Levy M., Proc. Natl. Acad. Sci. USA,1979,76:6062-6065
    [78]Gilbert T. L. Hohenberg-Kohn theorem for nonlocal external potentials[J].Phys. Rev., 1975, B12:2111-2120
    [79]Miller K. J., Calculation of the molecular polarizability tensor[J]. J. Am. Chem. Soc., 1990,112:8543-8551
    [80]Slater J. C. Quasiparticle approximations and electron propagator theory[J]. Adv. Quant. Chem.,1972,6:1-461
    [81]Slater J. C. The Self-Consistent Field for Molecules and Solids Quantum[J]. Theory of Molecules and Solids,1974,4:402-408
    [82]Oliver G. L. and Perdew J. P. Spin-density gradient expansion for the kinetic energy [J]. Phys. Rev.,1979, A20:397-403
    [83]Parr R. G. and Yang W., Density Functional Theory of Atoms and Molecules[M], Oxford University, Oxford,1989,12-56
    [84]Ziegler T., Approximate density functional theory as a practical tool in molecular energetics and dynamics[J]. Chem.Rev.,1991,91:651-667
    [85]Thomas L. H. The calculation of atomic fields[J]. Proc. Cambridge Philos. Soc.,1927, 23:542-548
    [86]Fermi E. A statistical method for the determination of some properties of atom. Ⅱ Application to the periodic system of elements[J]. Z.Phys.,1928,48:73-79
    [87]Slater J. C. Evidence for the formation of positronium in gases[J]. Phys.Rev.,1951, 81:385-390.
    [88]Hohenberg P. and Kohn W. Inhomogeneous Electon Gas[J]. Phys. Rev.,1964, B136:864-871
    [89]Kohn W, Sham L. J. Self-consistent equations including exchange and correlation effects[J]. Phys. Rev.,1965, A140:1133-1138
    [90]Vosko S. H., Wilk L. and Nusair M. Accurate Spin-Dependent Electron Liquid Correlation Energies for Local Spin Density Calculations:a Critical Analysis[J]. Can. J. Phys. 1980,58:1200-1211
    [91]Perdew J. P, Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy[J]. Phys. Rev.,1992, B45:13244-13249
    [92]Becke A. D. Density-functional exchange-energy approximation with correct asymptotic behavior[J]. Phys. Rev.,1988, A38:3098-3100
    [93]Perdew J. P. Density-functional approximation for the correlation energy of the inhomogeneous electron gas[J]. Phys. Rev.,1986, B33:8822-8824
    [94]Lee C., Yang W., Parr R. G. Development of the colle-salvetti correlation-energy formula into a functional of the electron density[J]. Phys. Rev.,1988, B37:785-799
    [95]Bartolotti L. J., Flurchick K. In Reviews in Computational Chemistry[M]. Vol.7Eds: Lipkowitz K. B.; Boyd, D. B. Wiley:New York,1995:20-30
    [96]Phillips J. C. Energy-band interpolation scheme based on a pseudopotential[J]. Phys. Rev., 1958,112:685-695
    [97]J. C. Phillips, L. Kleinman. New method for calculating wave functions in crystals and molecules[J]. Phys. Rev.,1959,116:287-294
    [98]Cohen M. L., Heine V. The fitting of pseudopotentials to experimental data and their subsequent application[J].Solid State Physics,1970,24:37-45
    [99]Herring and Conyers. A New Method for Calculating Wave Functions in Crystals[J]. Phys. Rev.,1940,57(12):1169-1177
    [100]Herring C. and Hill A. G. The Theoretical Constitution of Metallic Beryllium[J]. Phys. Rev.,1940,58(2):132-162
    [101]Hamann D. R., M. Schluer and C. Chiang. Norm-Conserving Pseudopotentials[J]. Phys. Rev. Lett.,1979,43(20):1494-1497
    [102]Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism[J]. Phys. Rev. B,1990,41(11):7892-7985
    [103]Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Montgomery J A Jr, Vreven T, Kudin K N, Burant J C, Millam J M, Iyengar S S, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson G A, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox J E, Hratchian H P, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Ayala P Y, Morokuma K, Voth G A, Salvador P, Dannenberg J J, Zakrzewski V G, Dapprich S, Daniels A D, Strain M C, Farkas O, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Ortiz J V, Cui Q, Baboul A G, Clifford S, Cioslowski J, Stefanov B B, Liu G, Liashenko A, Piskorz P Komaromi I, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Gonzalez C and Pople J A Gaussian03 Gaussian, Inc.:Wallingford, CT 2004
    [104]Delley B. An All-Electron Numerical Method for Solving the Local Density Functional for Polyatomic Molecules[J]. J. Chem. Phys.,1990,92:508-517
    [105]Delley B. From molecules to solids with the DMol3 approach [J]. J. Chem. Phys.,2000, 113:7756-7764
    [106]Kresse G., J. Hafner. Ab initio molecular dynamics for liquid metals[J]. Phys. Rev. B, 1993,47(1):558-561
    [107]Kresse G., J. Furthmuler. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Phys. Rev. B,1996,54(16):11169-11186
    [108]Kresse G., F. J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Comput.Mater.Sci.,1996,6:15-30
    [109]Setton R., Bernier P., Lefrant S. (Eds.), Carbon Molecules and Materials[M], Taylor and Francis, New York,2002:125-128
    [110]Popov V. N. M. Carbon nanotubes:properties and application[J]. Sci. Eng. R.,2004, 43:61-102
    [111]Novoselov K.S., et al. Unconventional quantum Hall effect and Berry's phase of 2π in bilayer graphene[J]. Nature Phys.,2006,2,197-200
    [112]Isao T., Hiroyuki S.,.Hiroshi I. Terahertz-wave generation from quasi-phase-matched GaP for 1.55μm pumping[J] Appl. Phys. Lett.,2006,88:071118-071121
    [113]Esquinazi P., Setzer A., Hohne R., Semmelhack C., Kopelevich Y., Spemann D., Butz T., Kohlstrunk B., Losche M. Ferromagnetism in oriented graphite samples[J]. Phys. Rev. B, 2002,66:024429-024439 Esquinazi P., Spemann D., Hohne R., Setzer A., Han K. H., Butz T. Induced Magnetic Ordering by Proton Irradiation in Graphite[J]. Phys. Rev. Lett.2003,91:227201-227205
    [114]Lee H., Park N., Son Y. W., Han S., Yu J. Ferromagnetism at the edges of the stacked graphitic fragments:An ab initio study[J]. Chem. Phys. Lett.,2004,398:207-211.
    [115]Lee H., Son Y.W., Park N., Han S., Yu J., Magnetic ordering at the edges of graphitic fragments:Magnetic tail interactions between the edge-localized states[J]. Phys. Rev. B., 2005,72:174431-174439
    [116]Montoya A., Truong T. N., Sarofim A. F. A Hybrid Multigrid Method for the Steady-State Incompressible Navier-Stokes. Equations[J]. J. Phys.,Chem. A.,2000, 104:6108-6110
    [117]Mahesh S., Gopalan R., Prabha J., Venkatachalam T., Ponnambalam V. An ab initio and DFT study on the hydrolysis of carbonyl dichloride[J]. J. Mol. Struct.:Theochem,2005, 730:155-160
    [118]Nakada K., Fujita M., Dresselhaus G., Dresselhaus M. S., Edge state in graphene ribbons: Nanometer size effect and edge shape dependence [J]. Phys. Rev. B,1996,54,17954-17961
    [119]Cramer C. J., Essentials of Computational Chemistry[M]. John Wiley& Sons Ltd, West Sussesx, UK,2002:250-256
    [120]Obradovic B., Kotlyar R., Heinz F., Matagne P., Rakshit T., Giles M.D., Stettler M.A., Nikonov D.E. Analysis of graphene nanoribbons as a channel material for field-effect transistors[J]. Appl. Phys. Lett.,2006,88:1421021-1421023
    [121]Yang L., Park C. H., Son Y.W., Cohen M. L., Louic S.G. Quasiparticle Energies and Band Gaps of Graphene Nanoribbons [J]. Cond-mat.,2007,1589:0706-0711
    [122]Niimi Y., Matsui T., Kambara H., Tagami K., Tsukada M., Fukuyama H. Scanning tunneling microscopy and spectroscopy of the electronic local density of states of graphite surfaces near monoatomic step edges[J]. Phys. Rev. B,2006,73:085421-085429
    [123]Mulliken R. J., Electronic Population Analysis on LCAO-MO Molecular Wave Functions[J]. J. Chem. Phys.,1955,23:1833-1840
    [124]Lehtinen P. O., Foster A. S., Yuchen M., Krasheninnikov A.V., Nieminen R.M. Irradiation-Induced Magnetism in Graphite:A Density Functional Study[J] Phys. Rev. Lett., 2004,93:187202-187206
    [125]Yuchen M., Lehtinen P.O., Foster A. S., Nieminen R. M. Magnetic properties of vacancies in graphene and single-walled carbon nanotubes[J]. New J. Phys.2004,6:68-76 [126]Kusakabe K., Maruyama M. Magnetic nanographite[J].Phys. Rev. B,2003, 67:092406-092410
    [127]Inagaki M., Radovic L. R. Nanocarbons[J]. Carbon,2002,40:2279-2282
    [128]Wakabayashi K., Fujita M., Ajiki H., et al. Magnetic properties of nanographites at low temperature[J]. Physica B,2000,280:388-389
    [129]Shibayama Y., Sato H., Enoki T., et al. Novel Electronic Properties of a Nano-Graphite Disordered Network and Their Iodine Doping Effects[J]. J. Phys. Soc. Jpn.,2000,69:754-767
    [130]Harigaya K., Enoki T. Mechanism of magnetism in stacked nanographite with open shell electrons[J]. Chem. Phys. Lett.,2002,351,128-134
    [131]Tyutyulkov N., Ivanov N., Mullen K., et al. Energy Spectra of One-Dimensional Stacks of Polycyclic Aromatic Hydrocarbons without Defects[J]. J. Phys. Chem. B,2004, 108:4275-4282
    [132]Makarova T. L. Magnetic properties of carbon structures[J].Semiconductors,2004, 38:615-638
    [133]Radovic L. R., Bockrath B. What exactly is on the edges of grapheme layers? [J]. Proc. Int. Conf. Nanocarbons; Nagano, Japan,2001,30:14-16
    [134]Radovic L. R., Bockrath B. What (exactly) is on the edges of grapheme layers in carbon: The unfolding story[J]. Prepr. Pap.-Am. Chem. Soc. DiV. Fuel Chem.2002,47:148-155
    [135]Radovic L. R., Bockrath B. On some key questions in the application of computational chemistry to carbon reactivity[M]. Proc. Conf. Carbon, Lexington K.Y.,2001:120-123
    [136]Sheats J. R., Antoniadis H., Hueschen M., et al. Organic electroluminescent devices[J]. Science,1996,273:884-888
    [137]Fernandez-Rossier J., Palacios J. J. Magnetism in graphene nanoislands[J]. Phys. Rev. Lett.2007,99:177204
    [138]STEPHEN R. LANBOFF Theoretical Infrared Spectra for Poiycyclic Aromatic Hydrocarbon Neutrals, Cations, and Anions[J]. J.physics.chem.,1996,100 (15):2819-2841.
    [139]王耀,吴沛,徐春祥,等.并五苯薄膜微结构及光谱分析[J].电子器件,2005,28(2):269-271
    [140]周公度,段连运.结构化学基础[M].第二版,北京:北京大学出版社,1995:155-157
    [141]柯以侃,董慧茹.分析化学手册(三)[M].第3版.北京:化学工业出版社,1998:324-326
    [142]郑宏,王绍青,成会明.微孔对单壁纳米碳管储氢性能的影响[J].物理学报,2005,54:4852-4856
    [143]易双萍,张海燕,欧阳玉,王银海,庞晋山.真空热处理碳纳米管的储氢性能研究[J].物理学报,2006,55:2644-2650
    [144]张秀兰、黄整,陈波,麻焕锋,高国强.LaNi5储氢过程的热力学分析[J].物理学报,2007,56:4039-4043
    [145]Moseley P. T. Solid state gas sensors[J]. Meas. Sci. Technoll,1997,8:223-237
    [146]Kong J., Franklin N. R., Zhou C., Chapline M. G., Peng S., Cho K., Dai H. Nanotube molecular wires as chemical sensors[J].Science,2000,287:622-625
    [147]Collins P. G., Bradley K., Ishigami M., Zettl A. Extreme oxygen sensitivity of electronic properties of carbon nanotubes[J]. Science,2000,287(5459):1801-1804
    [148]Hammer B., Hansen L. B., Norskov J. K. Improved adsorption energetics within density functional theory using revised PBE functionals[J]. Phys. Rev. B,1999,59:7413-7421
    [149]Delley B. Hardness conserving semilocal pseudopotentials[J]. J. Chem. Phys.,2002, 66:155125-155133
    [150]麦松威,周公度,李伟基.高等无机结构化学[M].北京:北京大学出版社,2001:342-343
    [151]Monkhorst K. J., Pack J. D. Special points for Brillouin-zone integration, Phys. Rev. B, 1971,13:5188-5192.
    [152]Kganyago K. R., Ngoepe P. E. Structural and electronic properties of lithium intercalated graphite LiC6[J]. Phys. Rev. B,68:205111-205127
    [153]White J. D., Cui J., Strauss M., et al. Anomalous Inelastic He-Atom Scattering Intensities for the Vibrational Modes of Alkali Metals on Graphite[J]. Surf. Sci.1994, 1134:307-309
    [154]Breitholtz M., Kihlgren T., ALindgren S., and Walde'n L., Subsurface condensation of potassium for K/graphite[J]. Phys. Rev. B,2002,66:153401-153405
    [155]KATO Y., IBA S., TERAMOTO R., et al. High mobility of pentacene field-effict transistors with polyimide gatedielectric layers[J]. Appl. physs. Lett.,2004,84:3789-3791
    [156]EDER F., KLAUK H., HALIK M., et al. Organic electronics on paper[J]. Appl. Phys. Lett.,2004,84:2673-2675
    [157]Anthony J. E. Functionalized Acenes and Heteroacenes for Organic Electronics[J]. Chem. Rev.,2006,106:5028-5048
    [158]Schon J. H., Kloc C. Organic metal-semiconductor field-effect phototransistors[J]. Appl. Phys. Lett.,2001,78:3533-3536
    [159]Dong G.. F., Liu Q. D., et al. Variation of Different Characteristic Parameters of Pentacene/Poly(Methyl Methacrylate) Transistors under Electric Stress[J]. Chinese Physics Letters,2008,25:3375-3377
    [160]Wang W., Shi J.W., Liang C., et al. Ambipolar Thin-Film Field-Effect Transistor Based on Pentacene[J]. Chinese Physics Letters,2005,22:496-498
    [161]Liang Y., Dong G. F., et al. Fabrication of Pentacene Thin-Film Transistors with Patterned Polyimide Photoresist as Gate Dielectrics and Research of Their Degradation[J].Chinese Physics Letters,2004,21:2278-2280
    [162]Zhang S. M., Shi J. W., et al. Pentacene Organic-Thin-Film Field-Effect Transistors [J]. Chinese Physics Letters,2004,21:164-165
    [163]Meng, H., Bendikov M., Mitchell G., et al. Tetramethylpentacene:Remarkable Absence of Steric Effect on Field Effect Mobility[J]. Adv. Mater.,2003,15:1090-1093
    [164]PARK S. P., KIM S. S., KIM J. H., et al. Optical and Luminescence characterstics of thermally evaporated pentacenefilmson Si[J]. Appl. Phys. Lett.,2002,80:2872-2874
    [165]Gundlach D. J., Jackson T. N. Effects of glass-transition temperature on properties of photorefractive polymer composite[J]. Appl. Phys. Lett.,1999,72:3302-3034
    [166]Langhoff S. R. Theoretical infrared spectra for polycyclic aromatic hydrocarbon neutrals, cations, and anions[J]. J. Phys. Chem.,1996,100:2819-2841
    [167]Winkler M. and Houk K. N. Nitrogen-Rich Oligoacenes:Candidates for n-Channel Organic Semiconductors[J]. J. Am. Chem. Soc.,2007,129:1085-1096
    [168]James B. F. and Eleen F. Exploring Chemistry with Electronic Structure Methods[M], Second Edition, Gaussian, Inc, USA,1996:15-20
    [169]Scotheim T. A., Elsenbaumer R. L. and Reynolds J. Handbook of conducting polymers[M],2nd ed, New York, Marcel Dekker,1998:25-28
    [170]Heinecke E., Hartmann D., Muller R. and Hese A. Laser spectroscopy of free pentacene molecules (Ⅰ):The rotational structure of the vibrationless S1    [171]Halasinski T. M., Hudgins D. M., et al. Electronic Absorption Spectra of Neutral Pentacene (C22H14) and its Positive and Negative Ions in Ne, Ar, and Kr matrices[J]. J. Phys. Chem. A,2000,104:7484-7491
    [172]Deleuze M. S., Claes L., Kryachko E. S., Francois J. P. A. Variational Study of Nuclear Dynamics and Structural Flexibility of the CH2OH Radical[J]. J. Chem. Phys.,2003, 119:3098-3106
    [173]Rienstra-Kiracofe J. C., Tschumper G., et al. New recoverable organoselenium catalyst for hydroperoxide oxidation of organic substrates [J]. Chem. Rev.,2002,102:231-282
    [174]Marcus R. A. On the Theory of Oxidation-Reduction Reactions Involving Electron Transfer[J]. J. Chem. Phys.,1956,24:966-978
    [175]Marcus R A. On the Theory of Oxidation-Reduction Reactions Involving Electron Transfe[J]. J. Chem. Phys.,1956,43:679-701
    [176]Barbara P. F., Meyer T. J., Ratner M. A. Contemporary issues in electron transfer research[J]. J. Phys. Chem.,1996,100:13148-13168
    [177]Nelsen S. F., Trieber D. A., Ismagilov R. F., Teki Y. Solvent Effects on Charge Transfer Bands of Nitrogen-Centered Intervalence Compounds[J]. J. Am. Chem. Soc.,2001, 123:5684-5694
    [178]Nelsen S. F., Blomgren F. Selenium-catalyzed oxidations with aqueous hydrogen peroxide.2. Baeyer-Villiger reactions in homogeneous solution[J]. J. Org. Chem.,2001, 66:2429-2433
    [179]Deng W. Q., Goddard W. A. Predictions of hole mobilities in oligoacene organic semiconductors from quantum mechanical calculations[J]. J. Phys. Chem. B.,2004, 108:8614-8621
    [180]Podzorov V., Pudalov V. M. and Gershensohn M. E. Observation of stimulated Raman amplification in silicon waveguides[J]. Appl. Phys. Lett.,2003,82:1731-173

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700