用户名: 密码: 验证码:
化学键方法在功能无机晶体中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科学技术的不断发展,人们广泛研究晶体组成、结构与晶体生长和性能之间的关系,旨在探索、设计、合成出新型功能无机晶体材料。化学键方法作为一种行之有效的研究晶体结构与性能关系的理论工具,被广泛应用于功能无机晶体的结构评价和性能预测中。本论文以铌酸锂(LiNbO3, LN)和磷酸二氢钾(KH2PO4, KDP)这两种功能无机晶体为研究主体,以化学键方法为理论基础,从晶体的微观结构出发,致力于晶体材料的结构与性能和生长关系的研究。
     铌酸锂晶体因其自身具有的多种优异性能和巨大的应用前景而受到人们的广泛关注,但生长出满足不同要求的高质量晶体比较困难,所以迫切需要理论方法的提出来指导铌酸锂晶体的生长。论文基于铌酸锂晶体的结晶学特征,利用布拉维法则和鲍林第三规则研究晶体结构与其生长行为之间的关系,发现八面体堆积方式和化学键行为都对铌酸锂晶体生长起着至关重要的影响。同时,计算结果显示面网密度和键合能最大的铌酸锂晶面生长速度最慢并容易最终显露。这些研究表明,从组成化学键和多面体的微观角度出发,晶体的结构分析可以帮助人们深入理解铌酸锂晶体的生长过程,进而搭建起连接晶体结构与晶体生长的桥梁,为实现铌酸锂晶体的可控化生长提供重要的理论指导。
     铌酸锂的居里温度(Tc)与晶体组成密切相关,可用于确定晶体的组成,进而判定铌酸锂晶体的质量。论文基于铌酸锂晶体的结晶学数据,提出化学键能的方法用于预测铌酸锂晶体的居里温度和自发极化率(Ps)。结果表明,铌酸锂晶体的居里温度和自发极化率都强烈地依赖于晶体结构中的锂格位。因此,在铌酸锂结晶学结构中,锂位才是能够有效影响铌酸锂晶体铁电性质的敏感格位。此外,还利用化学键方法研究了铌酸锂晶体±Z面的微畴形貌、反转过程和蚀刻速度。铌酸锂晶体的微畴特征密切相关于组成原子各向异性的化学键行为,可以看作是铌酸锂晶体组成化学键行为的微观表现。综上所述,化学键方法不仅为人们更好地理解铌酸锂晶体的铁电行为提供帮助,而且对于探索铌酸锂这类晶体的铁电性质具有重要的指导意义。
     因为晶体的许多物理和化学性质都与其形貌密切相关,所以控制晶体生长并得到期望的形貌就具有十分重要的意义。论文基于磷酸二氢钾晶体表面结构的分析,提出晶体生长动力学模型,用于不同过饱和度下磷酸二氢钾晶体的生长研究。根据定量计算的相对生长速度能够预测磷酸二氢钾晶体的形貌演变规律。目前的方法结合具体实验对于未来晶体形貌调控的发展具有潜在的促进作用。
With the continuous development of science and technology, the complex relationship between the constituent, structure, crystal growth and property of crystals has been widely investigated in order to explore, design and synthesize new functional inorganic crystal materials. The chemical bond method provides an important theoretical tool for studying the relationship between the crystal structure and property, which is widely applied to the structural evaluation and property prediction of functional inorganic crystals. Starting from the microscopic structure of lithium niobate (LN) and potassium dihydrogen phosphate (KDP) crystals, study on the structure, growth and property of these functional inorganic crystals was carried out on the basis of the chemical bond method.
     LN crystals have attracted much attention due to their excellent physical properties and potential applications in the modern science and technology. However, it is very difficult to grow LN crystals with a high quality and large size, which can match different kinds of practical needs. The theoretical development is thus necessary for directing the growth of LN crystals. Therefore, on the basis of the crystallographic characteristics of LN crystals, Law of Bravais and Pauling's third rule were employed with the aim to find the relationship between the crystal structure and growth behaviors of LN crystals. It can be found that both octahedra linking and chemical bond behaviors of constituent elements within the crystallographic frame play dramatic roles in affecting the crystal growth. In addition, the calculated results indicated that the crystal plane with the highest reticular density and bonding energy in the LN crystal has the slowest growth rate, and is the most influential face for the LN crystal growth. The current work showed starting from the viewpoint of the microscopic behaviors of constituent chemical bonds and polyhedra in the crystallographic frame, we may comprehensively understand the crystallization process, and build up a link between the crystal structure and growth behaviors of LN crystals, which provides a theoretical tool for us to control the LN crystal growth.
     Curie temperature (Tc) of LN crystals is a composition-dependent property, which may be applied to determine the crystal composition and estimate the crystal quanlity. A general expression of Tc and spontaneous polarization (Ps) of LN crystals was energetically proposed by employing the viewpoint of the bond energy of constituent chemical bonds within the LN crystallographic frame. The present work showed Tc and Ps of LN crystals are strongly dependent on the Li site within the LN crystallographic structure. Therefore, the Li site is a sensitive lattice position to dominate the ferroelectricity of LN crystals. In addition, domain characteristics (such as the domain shape, domain switching, and etching rate) at±Z surfaces of LN single crystals were comprehensively studied from the chemical bond viewpoint. The present work indicated that domain characteristics are closely correlated to anisotropic bond behaviors of constituent atoms, which may be regarded as a microscopic reflection of the chemical bond behaviors in the LN crystallographic frame. Chemcial bond method provides us a good understanding of ferroelectric behaviors of LN crystals, which may be very helpful to the estimation of ferroelectric behaviors of LN-type solids.
     Controlling the crystal morphology has become increasingly important, since many of their physical and chemical properties are highly shape dependent. Here we proposed a kinetic model that was applied to the cases of KDP crystals grown from the solution with different surpersaturation on the basis of the structural analysis of the crystal surface. Then, we can predict the growth behaviors of KDP crystals according to the relative growth rate that is quantitatively calculated by using the kinetic model. Seeding experiments with the kinetic model may have significant potential towards the development of shape-controlled growth with defined conditions.
引文
[1]NALEWAJSKI R F. Many-orbital probabilities and their entropy/information descriptors in orbital communication theory of the chemical bond [J]. Journal of Mathematical Chemistry, 2010,47 (2):692-708.
    [2]NALEWAJSKI R F. Additive and non-additive information channels in orbital communication theory of the chemical bond [J]. Journal of Mathematical Chemistry,2010,47 (2):709-738.
    [3]PHILLIPS J C. Ionicity of chemical bond in crystals [J]. Reviews of Modern Physics,1970,42 (3):317-354.
    [4]LEVINE B F. Bond susceptibilities and ionicities in complex crystal-structures [J]. Journal of Chemical Physics,1973,59 (3):1463-1486.
    [5]张思远.复杂晶体化学键的介电理论及其应用[M].北京:科学出版社,2005.
    [6]薛冬峰.晶体的化学键和非线性光学效应[D].长春:中国科学院长春应用化学研究所,1998.
    [7]XUE D, BETZLER K, HESSE H, et al. Search for new optical crystals by the chemical bond method [J]. 人工晶体学报,2004,33 (4):605-612.
    [8]PLACHINDA P A, DOLGIKH V A, STEFANOVICH S Y, et al. Nonlinear-optical susceptibility of hilgardite-like borates M2B5O9X (M= Pb, Ca, Sr, Ba; X= Cl, Br) [J]. Solid State Sciences,2005,7 (10):1194-1200.
    [9]罗谷风.晶体学导论[M].北京:地质出版社,1985.
    [10]BURDETT J K. Chemical bonding in solids. Chapter 6 [M]. New York:Oxford University Press,1995.
    [11]BROWN I D. Bond valences-a simple structural model for inorganic chemistry [J]. Chemical Society Reviews,1978,7 (3):359-376.
    [12]于大秋.晶体中的化学键和结构-性能关系研究[D].大连:大连理工大学,2008.
    [13]张焕.晶体的结构-化学键关系研究[D].大连:大连理工大学,2007.
    [14]何娅丽.掺杂铌酸锂晶体的缺陷和性质研究[D].大连:大连理工大学,2007.
    [15]NASKAR J P, HATI S, DATTA D. New bond-valence sum model [J]. Acta Crystallographica Section B:Structural Science,1997,53 (6):885-894.
    [16]DONNAY G, ALLMANN R. How to recognize O2-, OH-, and H2O in crystal structures determined by X-rays [J]. American Mineralogist,1970,55 (5-6):1003-1015.
    [17]BRESE N E, O'KEEFFE M. Bond-valence parameters for solids [J]. Acta Crystallographica Section B:Structural Science,1991,47 (2):192-197.
    [18]MOHRI F. A new relation between bond valence and bond distance [J]. Acta Crystallographica Section B:Structural Science,2000,56 (4):626-638.
    [19]邵美成.鲍林规则与键价理论[M].北京:高等教研出版社,1993.
    [20]ZHANG X, XUE D, KITAMURA K. Domain characteristics and chemical bonds of lithium niobate [J]. Materials Science and Engineering B-Solid State Materials for Advanced Technology,2005,120 (1-3):21-26.
    [21]JANSEN L, CHANDRAN L, BLOCK R. On the concept of "bond valence sums" and its applicability in solid state chemistry and physics [J]. Journal of Molecular Structure: Theochem,1992,260:81-98.
    [22]BORN M, MAYER J E. Zur gittertheorie der ionenkristalle [J]. Zeitschrift fur Physik D Atoms, Molecules and Clusters,1932,75 (1/2):1-18.
    [23]PREISER C, LOSEL J, BROWN I D, et al. Long-range Coulomb forces and localized bonds [J]. Acta Crystallographica Section B:Structural Science,1999,55 (6):698-711.
    [24]BURDETT J K, HAWTHORNE F C. An orbital approach to the theory of bond valence [J]. American Mineralogist,1993,78 (9-10):884-892.
    [25]URUSOV V S. Semi-empirical groundwork of the bond-valence model [J]. Acta Crystallographica Section B:Structural Science,1995,51 (5):641-649.
    [26]薛冬峰.功能无机材料的化学键、形貌及光电性能研究[J].功能材料信息,2007,4(5):47.
    [27]薛冬峰.晶体材料的设计与模拟[J].人工晶体学报,2007,36(4):743-749.
    [28]薛冬峰.化学键观点在寻找新型非线性光学晶体材料中的应用[J].化学研究,2001,12(1):5-7.
    [29]XUE D, IYIN, KITAMURA K. Predicting temperature dependence of the refractive index and nonlinear optical coefficients in lithium niobate [J]. Journal of Applied Physics,2002,92 (8): 4638-4643.
    [30]XUE D, BETZLER K, HESSE H. Second order nonlinear optical properties of In-doped lithium niobate [J]. Journal of Applied Physics,2001,89 (2):849-854.
    [31]XUE D, BETZLER K, HESSE H. Induced Li-site vacancies and non-linear optical behavior of doped lithium niobate crystals [J]. Optical Materials,2001,16 (3):381-387.
    [32]ZHANG X, XUE D, LIU X, et al. Ferroelectric nanodomain engineering at the-Z face of lithium niobate single crystals [J]. Physica B:Condensed Matter,2007,387 (1-2):147-150.
    [33]ZHANG X, XUE D. Bonding energy and growth habit of lithium niobate single crystals [J]. Journal of Rare Earths,2006,24:241-244.
    [34]HE X, XUE D. Doping mechanism of optical-damage-resistant ions in lithium niobate crystals [J]. Optics Communications,2006,265 (2):537-541.
    [35]ZHANG X, XUE D. Bond energy prediction of Curie temperature of lithium niobate crystals [J]. Journal of Physical Chemistry B,2007,111 (10):2587-2590.
    [36]许东利,薛冬峰.结晶成长的化学键合理论[J].人工晶体学报,2006,35(3):598-603.
    [37]XU D, XUE D. Chemical bond calculations of crystal growth of KDP and ADP [J]. Journal of Rare Earths,2006,24:144-148.
    [38]XU D, XUE D. Chemical bond analysis of the crystal growth of KDP and ADP [J]. Journal of Crystal Growth,2006,286 (1):108-113.
    [39]XU D, XUE D. Morphology control of KDP crystallites [J]. Physica B:Condensed Matter, 2005,370 (1-4):84-89.
    [40]XU D, XUE D, RATAJCZAK H. Morphology and structure studies of KDP and ADP crystallites in water and ethanol solutions [J]. Journal of Molecular Structure,2005,740 (1-3): 37-45.
    [41]鲍泽耀,赵旭,薛冬峰.溶液中结晶生长的动力学模拟:化学键合方法[J].人工晶体学报,2009,38(2):396-401.
    [42]鲍泽耀.晶体生长的动力学模拟[D].大连:大连理工大学,2008.
    [43]ZHAO X, REN X, SUN C, et al. Morphology evolution at nano- to micro-scale [J]. Functional Materials Letters,2008,1 (3):167-172.
    [44]ZHANG X, XUE D. Chemical bond analysis of single crystal growth of magnesium oxide [J]. Journal of Rare Earths,2006,24:245-248.
    [45]XU D, XUE D. Computational study of crystal growth habit and cleavage [J]. Journal of Alloys and Compounds,2008,449 (1-2):353-356.
    [46]ZHANG X, XUE D, WANG J, et al. Improved growth technology of large MgO single crystals [J]. Journal of Crystal Growth,2006,292 (2):505-509.
    [47]ZHANG X, XUE D, XU D, et al. Growth of large MgO single crystals by an arc-fusion method [J]. Journal of Crystal Growth,2005,280 (1-2):234-238.
    [48]ZHANG X, XUE D, LIU M, et al. Microscopically structural studies of lithium niobate powders [J]. Journal of Molecular Structure,2005,754 (1-3):25-30.
    [49]袁光辉.硼酸盐的结构特征及分类研究[D].大连:大连理工大学,2007.
    [50]YU D, XUE D. Bond analyses of borates from the inorganic crystal structure database [J]. Acta Crystallographica Section B:Structural Science,2006,62 (5):702-709.
    [51]ZHANG F, XUE D. Chemical bonding behaviors of N-H…O hydrogen bonds of NH4+…O systems in inorganic crystals [J]. Modern Physics Letters B,2009,23 (31-32):3943-3950.
    [52]ZHANG F, XUE D. Structural implications of O-H…O hydrogen bonds in inorganic crystals [J]. Modern Physics Letters B,2009,23 (31-32):3951-3958.
    [53]ROSENFELD D E, KWAK K, GENGELICZKI Z, et al. Hydrogen bond migration between molecular sites observed with ultrafast 2D IR chemical exchange spectroscopy [J]. Journal of Physical Chemistry B,2010,114 (7):2383-2389.
    [54]YU D, XUE D, RATAJCZAK H. Bond-valence parameters for characterizing O-H…O hydrogen bonds in hydrated borates [J]. Journal of Molecular Structure,2006,792:280-285.
    [55]YU D, XUE D, RATAJCZAK H. Golden ratio and bond-valence parameters of hydrogen bonds of hydrated borates [J]. Journal of Molecular Structure,2006,783 (1-3):210-214.
    [56]HE X, XUE D, KITAMURA K. Defects and domain engineering of lithium niobate crystals [J]. Materials Science and Engineering B-Solid State Materials for Advanced Technology,2005, 120 (1-3):27-31.
    [57]HE Y, XUE D. Bond-energy study of photorefractive properties of doped lithium niobate crystals [J]. Journal of Physical Chemistry C,2007,111 (35):13238-13243.
    [58]XUE D, WU S, ZHU Y, et al. Nanoscale domain switching at crystal surfaces of lithium niobate [J]. Chemical Physics Letters,2003,377 (3-4):475-480.
    [59]ZHANG H, LI N, LI K, et al. Structural stability and formability of ABO3-type perovskite compounds [J]. Acta Crystallographica Section B:Structural Science,2007,63:812-818.
    [60]陈伟,王占国,林兰英.晶体化学中的键电荷模型及其应用前景[J].无机材料学报,1995,10(2):139-150.
    [61]LI K, WANG X, ZHANG F, et al. Electronegativity identification of novel superhard materials [J]. Physical Review Letters,2008,100 (23):235504.
    [62]YAMAMOTO K. Chemical bond analysis of amorphous carbon films [J]. Vacuum,2009,84 (5):638-641.
    [63]. YAN C, XUE D. Synthesis of designed templates for novel semiconductor materials with hollow structures [J]. Functional Materials Letters,2008,1 (1):37-42.
    [64]LIU F, XUE D. One-step solution-based strategy to 3D superstructures of Nb2O5-LiF [J]. Nanoscience and Nanotechnology Letters,2009,1(1):66-71.
    [65]YAN C, LIU J, LIU F, et al. Tube formation in nanoscale materials [J]. Nanoscale Research Letters,2008,3 (12):473-480.
    [66]ZACHARIASEN W H. Untersuchungen ueber die kristallstruktur von sesquioxyden und verbindungen ABO3 [J]. Skrifter utgitt av det Norske Videnskaps-Akademi i Oslo I: Matematisk-Naturvidenskapelig Klasse,1928,4.
    [67]MATTHIAS B T, REMAIKA J P. Ferroelectricity in the illmenite structure [J]. Physical Review,1949,76 (12):1886-1887.
    [68]BALLMAN A A. Growth of piezoelectric and ferroelectric materials by the Czochralski technique [J]. Journal of the American Ceramic Society,1965,48 (2):112-113.
    [69]NASSAU K, LEVINSTEIN H J, LOIACONO G M. Ferroelectric lithium niobate. 2. Preparation of single domain crystals [J]. Journal of Physics and Chemistry of Solids,1966,27 (6-7):989-996.
    [70]NASSAU K, LEVINSTEIN H J, LOIACONO G M. Ferroelectric lithium niobate.1. Growth, domain structure, dislocations and etching [J]. Journal of Physics and Chemistry of Solids, 1966,27 (6-7):983-988.
    [71]NASSAU K, LEVINSTEIN H J. Ferroelectric behavior of lithium niobate [J]. Applied Physics Letters,1965,7 (3):69-70.
    [72]NASSAU K, LEVINSTEIN H J, LOIACONO G M. The domain structure and etching of ferroelectric lithium niobate [J]. Applied Physics Letters,1965,6 (11):228-229.
    [73]BALLMAN A A, LEVINSTEIN H J, CAPIO C D, et al. Curie temperature and birefringence variation in ferroelectric lithium metatantalate as a function of melt stoichiometry [J]. Journal of the American Ceramic Society,1967,50 (12):657-659.
    [74]LERNER P, LEGRAS C, DUMAS J P. Stoechiometrie des monocristaux de metaniobate de lithium [J]. Journal of Crystal Growth,1968,3-4:231-235.
    [75]BERGMAN J G, ASKIN A, BALLMAN A A, et al. Curie temperature, birefringence, and phase-matching temperature variations in LiNbO3 as a function of melt stoichiometry [J]. Applied Physics Letters,1968,12 (3):92-94.
    [76]BYER R L, YOUNG J F, FEIGELSON R S. Growth of high-quality LiNbO3 crystals from the congruent melt [J]. Journal of Applied Physics,1970,41 (6):2320-2325.
    [77]CARRUTHERS J R, PETERSON G E, GRASSO M, et al. Nonstoichiometry and crystal growth of lithium niobate [J]. Journal of Applied Physics,1971,42 (5):1846-1851.
    [78]XUE D, HE X. Dopant occupancy and structural stability of doped lithium niobate crystals [J]. Physical Review B:Condensed Matter and Materials Physics,2006,73 (6):064133.
    [79]LIU M, XUE D. Amine-assisted route to fabricate LiNbO3 particles with a tunable shape [J]. Journal of Physical Chemistry C,2008,112 (16):6346-6351.
    [80]XU J Y. Flux Bridgman growth of functional oxide single crystals [J]. Functional Materials Letters,2008,1(3):247-251.
    [81]张克从,王希敏.非线性光学晶体材料科学[M].北京:科学出版社,2005.
    [82]XUE D, KITAMURA K. An estimation of nonlinear optical properties of lithium niobate family ferroelectrics by the chemical bond model [J]. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers,2003,42 (9B):6230-6233.
    [83]ABRAHAMS S C, REDDY J M, BERNSTEIN J L. Ferroelectric lithium niobate.5. Single crystal X-ray diffraction study at 24℃ [J]. Journal of Physics and Chemistry of Solids,1966, 27 (6-7):1019-1026.
    [84]ABRAHAMS S C, REDDY J M, BERNSTEIN J L. Ferroelectric lithium niobate.4. Single crystal X-ray diffraction study at 24℃ [J]. Journal of Physics and Chemistry of Solids,1966, 27 (6-7):1013-1018.
    [85]ABRAHAMS S C, REDDY J M, BERNSTEIN J L. Ferroelectric lithium niobate.3. Single crystal X-ray diffraction study at 24℃ [J]. Journal of Physics and Chemistry of Solids,1966, 27 (6-7):997-1012.
    [86]MEGAW H D. A note on the structure of lithium niobate [J]. Acta Crystallographica Section A: Structural Crystallography and Crystal Chemistry,1968,24 (7):583-588.
    [87]XUE D, KITAMURA K. Crystallographic structure and ferroelectric lithium niobate [J]. Transactions of the Materials Research Society of Japan,2003,28 (4):1191-1194.
    [88]XUE D, KITAMURA K, WANG J Y. Atomic packing and octahedral linking model of lithium niobate single crystals [J]. Optical Materials,2003,23 (1-2):399-402.
    [89]MA W H. Flexoelectric effect in ferroelectrics [J]. Functional Materials Letters,2008,1 (3): 235-238.
    [90]ROSENMAN G, SKLIAR A. Ferroelectric domain engineering for nonlinear optical devices [J]. Crystalligraphy Reports,1999,44 (1):112-115.
    [91]LAURELL F. Periodically poled materials for miniature light sources [J]. Optical Materials, 1999,11 (2-3):235-244.
    [92]BYER R L. Quasi-phasematched nonlinear interactions and devices [J]. Journal of Nonlinear Optical Physics & Materials,1997,6 (4):549-592.
    [93]钟维烈.铁电体物理学[M].北京:科学出版社,1996.
    [94]ZHANG X, XUE D, KITAMURA K. Domain switching and surface fabrication of lithium niobate single crystals [J]. Journal of Alloys and Compounds,2008,449 (1-2):219-223.
    [95]ZHANG X, XUE D, LIU X, et al. Fabrication of microdomains at the +Z surface of near-stoichiometric lithium tantalate crystals [J]. Journal of Physics D:Applied Physics,2006, 39 (14):3103-3106.
    [96]MILLER G D. Poster presentation at the center for nonlinear optical materials annual review [J].1994, August.
    [97]张旭,薛冬峰,Kitamura K铌酸锂晶体的生长研究[J].人工晶体学报,2005,34(4):720-724.
    [98]贺祥珂,薛冬峰,Kitamura K铌酸锂晶体的缺陷及其控制[J].人工晶体学报,2005,34(5):884-888.
    [99]XUE D, BETZLER K, HESSE H. Temperature dependence of the dielectric response of lithium niobate [J]. Journal of Physics and Chemistry of Solids,2001,62 (5):973-976.
    [100]LORENZO A, JAFFREZIC H, ROUX B, et al. Lattice location of rare-earth ions in LiNbO3 [J]. Applied Physics Letters,1995,67 (25):3735-3737.
    [101]NOVOSELOV A, RUSO A, FERRIOL M, et al. Micro-pulling-down growth of Fe-doped LiNbO3 crystal fibers for optical waveguide engraving [J]. Optical Materials,2010,32 (3): 456-460.
    [102]ZHANG Z, XUE D. Local lattice structure and dopant occupancy of doped lithium niobate crystals [J]. Modern Physics Letters B,2009,23 (31-32):3687-3694.
    [103]MADE D P N, SAHAR M R, SUDIN R. Interrelation of intrinsic defects and optical absorption properties of lithium niobate (LiNbO3) crystals [J]. Journal of Nonlinear Optical Physics & Materials,2005,14 (2):237-243.
    [104]FURUKAWA Y, KITAMURA K, TAKEKAWA S, et al. Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations [J]. Applied Physics Letters,2000,77 (16): 2494-2496.
    [105]XUE D, ZHANG S. The effect of stoichiometry on nonlinear optical properties of LiNbO3 [J]. Journal of Physics:Condensed Matter,1997,9 (36):7515-7522.
    [106]KAR S, BHATT R, SHUKLA V, et al. Optical behavior of VTE treated near stoichiometric LiNbO3 crystals [J]. Solid State Communications,2006,137 (6):283-287.
    [107]FEDOROVA E P, ALESHINA L A, SIDOROV N V, et al. Stoichiometry and doping effects on cation ordering in LiNbO3 crystals [J]. Inorganic Materials,2010,46 (2):206-211.
    [108]JUODKAZIS S, SUDZIUS M, MIZEIKIS V, et al. Three-dimensional recording by tightly focused femtosecond pulses in LiNbO3 [J]. Applied Physics Letters,2007,89 (6):062903.
    [109]IMLAU M. Defects and photorefraction:A relation with mutual benefit [J]. Physica Status Solidi A-Applications and Materials Science,2007,204 (3):642-652.
    [110]XIN F F, ZHANG G Q, BO F, et al. Ultraviolet photorefraction at 325 nm in doped lithium niobate crystals [J]. Journal of Applied Physics,2010,107 (3):033113.
    [111]LIU F C, KONG Y F, LI W, et al. High resistance against ultraviolet photorefraction in zirconium-doped lithium niobate crystals [J]. Optics Letters,2010,35 (1):10-12.
    [112]IRZHAK D, ROSHCHUPKIN D, KOKHANCHIK L. X-Ray diffraction on a LiNbO3 crystal with a short period regular domain structure [J]. Ferroelectrics,2009,391:122-127.
    [113]XUE D, KITAMURA K. Crystallographic modifications of physical properties of lithium niobate crystals by the cation location [J]. Journal of Crystal Growth,2003,249 (3-4): 507-513.
    [114]XUE D, BETZLER K. Influence of optical-damage-resistant dopants on the nonlinear optical properties of lithium niobate [J]. Applied Physics B-Lasers and Optics,2001,72 (6):641-645.
    [115]ZHANG D L, ZHANG L Z, XU C, et al. Influence of MgO codoping on Er concentration in congruent LiNbO3 crystal:Mg threshold concentration effect [J]. Journal of Materials Research,2010,25 (2):235-239.
    [116]XU Z P, BI W H, JIAO B L, et al. Optical damage resistance of Mg:Ce:Fe:LiNbO3 crystals [J]. Crystal Research and Technology,2010,45 (1):85-88.
    [117]TSONEV L. Luminescent activation of planar optical waveguides in LiNbO3 with rare earth ions Ln3+-a review [J]. Optical Materials,2008,30 (6):892-899.
    [118]FUJII Y, OTSUKA Y, IKEDA A. Lithium niobate as an optical waveguide and its application to integrated optics [J]. IEICE Transactions on Electronics,2007, E90C (5):1081-1089.
    [119]PALATNIKOV M, SHCHEEBINA O, EFREMOV V, et al. Fractal structures in single crystals of ferroelectric lithium niobate grown under strongly unstable conditions [J]. Integrated Ferroelectrics,2009,109:27-35.
    [120]TAKIZAWA K, YONEKURA K, JIN L H. Temperature characteristics of a Y-cut Z-propagation LiNbO3 light modulator for application to polarimeters [J]. Optical Review, 2010,17(1):30-40.
    [121]ABRAHAMS S C, KURTZ S K, JAMIESON P B. Atomic displacement relationship to Curie temperature and spontaneous polarization in displacive ferroelectrics [J]. Physical Review, 1968,172 (2):551-553.
    [122]O'BRYAN H M, GALLAGHER P K, BRANDLE C D. Congruent composition and Li-rich phase-boundary of LiNbO3 [J]. Journal of the American Ceramic Society,1985,68 (9): 493-496.
    [123]GALLAGHER P K, O'BRYAN H M. Effects of TiO2 addition to LiNbO3 on the cation vacancy content, Curie-temperature, and lattice-constants [J]. Journal of the American Ceramic Society,1988,71 (1):C56-C59.
    [124]BIRNIE D P. Model for the ferroelectric transition in nonstoichiometric lithium niobate and lithium tantalate [J]. Journal of the American Ceramic Society,1991,74 (5):988-993.
    [125]SAFARYAN F P, FEIGELSON R S, PETROSYAN A M. An approach to the defect structure analysis of lithium niobate single crystals [J]. Journal of Applied Physics,1999,85 (12): 8079-8082.
    [126]PALATNIKOV M N, SIDOROV N V, SKIBA V I, et al. Effects of nonstoichiometry and doping on the Curie temperature and defect structure of lithium niobate [J]. Inorganic Materials,2000,36 (5):489-493.
    [127]AGRONIN A, ROSENWAKS Y, ROSENMAN G. Ferroelectric domain reversal in LiNbO3 crystals using high-voltage atomic force microscopy [J]. Applied Physics Letters,2004,85 (3): 452-454.
    [128]LIM E J, FEJER M M, BYER R L, et al. Blue-light generation by frequency doubling in periodically poled lithium-niobate channel wave-guide [J]. Electronics Letters,1989,25 (11): 731-732.
    [129]ISHIGAME Y, SUHARA T, NISHIHARA H. LiNbO3 wave-guide 2nd-harmonic-generation device phase matched with fan-out domain-inverted grating [J]. Optics Letters,1991,16 (6): 375-377.
    [130]WEBJORN J, LAWRELL F, ARVIDSSON G. Blue-light generated by frequency doubling of laser diode light in a lithium-niobate channel wave-guide [J]. IEEE Photonics Technology Letters,1989,1(10):316-318.
    [131]RESTOIN C, DARRAUD-TAUPIAC C, DECOSSAS J L, et al. Ferroelectric-domain-inverted gratings by electron beam on LiNbO3 [J]. Materials Science in Semiconductor Processing, 2000,3 (5-6):405-407.
    [132]HOUE M, TOWNSEND P D. Thermal polarization reversal of lithium niobate [J]. Applied Physics Letters,1995,66 (20):2667-2669.
    [133]LIU X, OHUCHI F, KITAMURA K. Patterning of surface electronic properties and selective silver deposition on LiNbO3 template [J]. Functional Materials Letters,2008,1 (3):177-182.
    [134]LU Y L, LU Y Q, CHENG X F, et al. Formation mechanism for ferroelectric domain structures in a LiNbO3 optical superlattice [J]. Applied Physics Letters,1996,68 (19): 2642-2644.
    [135]张光寅,姚江宏,颜博霞,等.铌酸锂晶体畴工程的研究及进展[J].量子电子学报,2004,21(2):173-180.
    [136]CAMLIBEL I. Spontaneous polarization measurements in several ferroelectric oxides using a pulsed-field method [J]. Journal of Applied Physics,1969,40 (4):1690-1693.
    [137]PROKHOROV A M, KUZMINOV YU S. Physics and chemistry of crystalline lithium niobate [M]. New York:Adam Hilger,1990.
    [138]YAMADA M, NADA N, SAITOH M, et al. First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation [J]. Applied Physics Letters,1993,62 (5):435-436.
    [139]MYERS L E, ECKARDT R C, FEJER M M, et al. Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3 [J]. Journal of the Optical Society of America B-Optical Physics,1995,12 (11):2102-2116.
    [140]KAN Y, LU X M, WU X M, et al. Domain reversal and relaxation in LiNbO3 single crystals studied by piezoresponse force microscope [J]. Applied Physics Letters,2006,89 (26): 262907.
    [141]KAN Y, LU X M, BO H F, et al. Critical radii of ferroelectric domains for different decay processes in LiNbO3 crystals [J]. Applied Physics Letters,2007,91 (13):132902.
    [142]LUCCHI F, JANNER D, BELMONTE M, et al. Very low voltage single drive domain inverted LiNbO3 integrated electro-optic modulator [J]. Optics Express,2007,15 (17): 10739-10743.
    [143]SHUR V Y, RUMYANTSEV E L, SHUR A G, et al. Nanoscale domain effects in ferroelectrics. Formation and evolution of self-assembled structures in LiNbO3 and LiTaO3 [J]. Ferroelectrics,2007,354:145-157.
    [144]SHUR V Y, LOBOV A I, SHUR A G, et al. Shape evolution of isolated micro-domains in lithium niobate [J]. Ferroelectrics,2007,360:233-241.
    [145]NIIZEKI N, YOMADA T, TOYODA H. Growth ridges, etched hillocks, and crystal structure of lithium niobate [J]. Japanese Journal of Applied Physics,1967,6 (3):318-327.
    [146]OHNISHI N, IIZUKA T. Etching study of microdomains in LiNbO3 single crystals [J]. Journal of Applied Physics,1975,46 (3):1063-1067.
    [147]刘伟良.功能材料(D) KDP晶体、BTO薄膜和纳米晶的制备及特性研究[D].济南:山东大学,2005.
    [148]侯印春,潘守夔.非线性光学晶体及其应用[J].人工晶体学报,1990,19(4):356-362.
    [149]王淦昌,袁之尚.惯性约束核聚变[M].北京:原子能出版社,2005.
    [150]ZAITSEVA N, CARMAN L, SMOLSKY I, et al. The effect of impurities and supersaturation on the rapid growth of KDP crystals [J]. Journal of Crystal Growth,1999,204 (4):512-524.
    [151]颜明山,吴德祥,曾金波,等.大截面KDP类型晶体的生长[J].人工晶体学报,1986,15(1):1-4.
    [152]SASAKI T, YOKOTANI A. Growth of large KDP crystals for laser fusion experiments [J]. Journal of Crystal Growth,1990,99 (1-4):820-826.
    [153]王波,房昌水,王圣来,等KDP/DKDP晶体生长的研究进展[J].人工晶体学报,2007,36(2):247-252.
    [154]ROBERT R, RAJ C J, KRISHNAN S, et al. Growth, theoretical and optical studies on potassium dihydrogen phosphate (KDP) single crystals by modified Sankaranarayanan-Ramasamy (mSR) method [J]. Physica B:Condensed Matter,2010,405 (1): 20-24.
    [155]BESPALOV V I, BREDIKHIN V I, ERSHOV V P, et al. Optical properties of KDP and DKDP crystals grown at high rates [J]. Soviet of Journal of Quantum Electronics,1982,12 (11):1527-1528.
    [156]ZAITSEVA N, DEYOREO J J, DEHAVEN M R, et al. Rapid growth of large-scale (40-55 cm) KH2PO4 crystals [J]. Journal of Crystal Growth,1997,180 (2):255-262.
    [157]ZAITSEVA N, CARMAN L. Rapid growth of KDP-type crystals [J]. Progress in Crystal Growth and Characterization of Materials,2001,43 (3):1-118.
    [158]DE VRIES S A, GOEDTKINDT P, BENNETT S L, et al. Surface atomic structure of KDP crystals in aqueous solution:An explanation of the growth shape [J]. Physical Review Letters, 1998,80 (10):2229-2232.
    [159]REEDIJK M F, ARSIC J, HOLLANDER F F A, et al. Liquid order at the interface of KDP crystals with water:Evidence for icelike layers [J]. Physical Review Letters,2003,90 (6): 066103.
    [160]LU G W, SUN X. Raman study of lattice vibration modes and growth mechanism of KDP single crystals [J]. Crystal Research and Technology,2002,37 (1):93-99.
    [161]CHERNOV A A, RASHKOVICH L N. Spiral crystal growth with nonlinear dependence of step growth rate on supersaturation; the{110} faces of KH2PO4 crystals in aqueous solution [J]. Journal of Crystal Growth,1987,84 (3):389-393.
    [162]RASHKOVICH L N, KRONSKY N V. Influence of Fe3+ and Al3+ ions on the kinetics of steps on the {100} faces of KDP [J]. Journal of Crystal Growth,1997,182 (3-4):434-441.
    [163]LAND T A, MARTIN T L, POTAPENKO S, et al. Recovery of surfaces from impurity poisoning during crystal growth [J]. Nature,1999,399 (6735):442-445.
    [164]HARTMAN P, PERDOK W G. On the relations between structure and morphology of crystals. I [J]. Acta Crystallographica 1955,8:49-52.
    [165]HARTMAN P, PERDOK W G. On the relations between structure and morphology of crystals. Ⅱ [J]. Acta Crystallographica,1955,8:521-524.
    [166]HARTMAN P, PERDOK W G. On the relations between structure and morphology of crystals. Ⅲ [J]. Acta Crystallographica,1955,8:525-529.
    [167]HARTMAN P. The morphology of zircon and potassium dihydrogen phosphate in relation to the crystal structure [J]. Acta Crystallographica,1956,9:721-727.
    [168]WEIS R S, GAYLORD T K. Lithium niobate:Summary of physical properties and crystal structure [J]. Applied Physics A-Materials Science & Processing,1985,37 (4):191-203.
    [169]RAUBER A. Current topics in materials sciences [M]. Amsterdam:North-Holland,1978.
    [170]AN C H, TANG K B, WANG C R, et al. Characterization of LiNbO3 nanocrystals prepared via a convenient hydrothermal route [J]. Materials Research Bulletin,2002,37 (11): 1791-1796.
    [171]DEY D, KAKIHANA M. Peroxide route towards low temperature synthesis of LiNbO3:An environmentally benign approach [J]. Journal of the Ceramic Society of Japan,2004,112 (1307):368-372.
    [172]CAMARGO E R, KAKIHANA M. Chemical synthesis of lithium niobate powders (LiNbO3) prepared from water-soluble (DL)-malic acid complexes [J]. Chemistry of Materials,2001,13 (5):1905-1909.
    [173]NIEDERBERGER M, PINNA N, POLLEUX J, et al. A general soft-chemistry route to perovskites and related materials:Synthesis of BaTiO3, BaZrO3, and LiNbO3 nanoparticles [J]. Angewandte Chemie International Edition,2004,43 (17):2270-2273.
    [174]CHENG Z X, OZAWA K, MIYAZAKI A, et al. Formation of niobates from aqueous peroxide solution [J]. Chemistry Letters,2004,33 (12):1620-1621.
    [175]LIU M, XUE D, ZHANG S, et al. Chemical synthesis of stoichiometric lithium niobate powders [J]. Materials Letters,2005,59 (8-9):1095-1097.
    [176]XUE D, KITAMURA K. Compositional dependence of cationic displacements in lithium niobate and lithium tantalate crystals [J]. Journal of Physics and Chemistry of Solids,2005,66 (2-4):585-588.
    [177]ANDONOV P, FISCHER H E, PALLEAU P, et al. Structural study of liquid lithium niobate by neutron diffraction role of the Li atom in the clustering near solidification [J]. Zeitschrift Fur Naturforschung Section A-A Journal of Physical Sciences,2001,56 (5):395-406.
    [178]MULLIN J W. Crystallization [M]. London:Butterworth-Heinemann,1992.
    [179]MANN S. The chemistry of form [J]. Angewandte Chemie International Edition,2000,39 (19): 3393-3406.
    [180]LIU M, XUE D. A solvothermal route to crystalline lithium niobate [J]. Materials Letters, 2005,59 (23):2908-2910.
    [181]SEN P, SISODIA N, BARTWAL K S. Influence of MgO doping on spontaneous polarization and second-order susceptibility in LiNbO3 crystals [J]. Optical Materials,2006,29 (2-3): 206-210.
    [182]SILEVITCH D M, BITKO D, BROOKE J, et al. A ferromagnet in a continuously tunable random field [J]. Nature,2007,448 (7153):567-570.
    [183]PARK Y D, HANBICKI A T, ERWIN S C, et al. A group-Ⅳ ferromagnetic semiconductor: MnxGe1-x[J]. Science,2002,295 (5555):651-654.
    [184]SRINATH S, PODDAR P, SRIKANTH H, et al. Observation of a new magnetic anomaly below the ferromagnetic Curie temperature in Yb14MnSb11 [J]. Physical Review Letters,2005, 95 (22):227205.
    [185]ROESSLI B, BONI P, FISCHER W E, et al. Chiral fluctuations in MnSi above the Curie temperature [J]. Physical Review Letters,2000,88 (23):237204.
    [186]ISHIZUKI H, SUHARA T, FUJIMURA M, et al. Wavelength-conversion type picosecond optical switching using a waveguide QPM-SHG/DFG device [J]. Optical and Quantum Electronics,2001,33 (7-10):953-961.
    [187]BROWN I D. Chemical and steric constraints in inorganic solids [J]. Acta Crystallographica Section B:Structural Science,1992,48:553-572.
    [188]GRUNDEMANN S, LIMBACH H H, BUNTKOWSKY G, et al. Distance and scalar HH-Coupling correlations in transition metal dihydrides and dihydrogen complexes [J]. Journal of Physical Chemistry A,1999,103 (24):4752-4754.
    [189]ETXEBARRIA I, PEREZ-MATO J M, GARCIA A, et al. Comparison of empirical bond-valence and first-principles energy calculations for a complex structural instability [J]. Physical Review B:Condensed Matter and Materials Physics,2005,72 (17):174108.
    [190]ZIOLKOWSKI J, DZIEMEAJ L. Empirical relationship between individual cation oxygen bond length and bond-energy in crystals and in molecules [J]. Journal of Solid State Chemistry, 1985,57 (3):291-299.
    [191]XUE D, BETZLER K, HESSE H. Dielectric properties of Ⅰ-Ⅲ-Ⅵ2-type chalcopyrite semiconductors [J]. Physical Review B:Condensed Matter and Materials Physics,2000,62 (20):13546-13551.
    [192]XUE D, ZHANG S. The origin of nonlinearity in KTiOPO4 [J]. Applied Physics Letters,1997, 70 (8):943-945.
    [193]DELLANO M, RAMIREZ S, VUCETICH H. Dulong-Petit law in a vanderwaals theory of the crystalline state [J]. American Journal of Physics,1981,49 (5):489-490.
    [194]IYI N, KITAMURA K, IZUMI F, et al. Comparative-study of defect structures in lithium-niobate with different compositions [J]. Journal of Solid State Chemistry,1992,101 (2):340-352.
    [195]OHKUBO Y, MURAKAMI Y, SAITO T, et al. Mechanism of the ferroelectric phase transitions in LiNbO3 and LiTaO3 [J]. Physical Review B:Condensed Matter and Materials Physics,2002,65 (5):052107.
    [196]KIM K H, SHIM K B, AUH K H. The effect of ZnO additions on the characteristics of LiNbO3 single crystals [J]. Materials Letters,2002,55 (1-2):116-120.
    [197]GRABMAIER B C, OTTO F. Growth and investigation of MgO-doped LiNbO3 [J]. Journal of Crystal Growth,1986,79 (1-3):682-688.
    [198]KUSHIBIKI J, TAKANAGA I, KOMATSUZAKI S, et al. Chemical composition dependences of the acoustical physical constants of LiNbO3 and LiTaO3 single crystals [J]. Journal of Applied Physics,2002,91 (10):6341-6349.
    [199]SHUR V Y, RUMYANTSEV E L, NIKOLAEVA E V, et al. Regular ferroelectric domain array in lithium niobate crystals for nonlinear optic application [J]. Ferroelectrics,2001,236: 129-144.
    [200]XUE D, KITAMURA K. Origin of differential etching rates of the +Z and-Z faces of lithium niobate crystal [J]. Ferroelectrics Letters,2002,29 (5-6):89-93.
    [201]SONES C L, MAILIS S, BROCKLESBY W S, et al. Differential etch rates in z-cut LiNbO3 for variable HF/HNO3 concentrations [J]. Journal of Materials Chemistry,2002,12 (2): 295-298.
    [202]PIANA S, REVHANI M, GALE J D. Simulating micrometer-scale crystal growth from solution [J]. Nature,2005,438 (7064):70-73.
    [203]PINA C M, BECKER U, RISTHAUS P, et al. Molecular-scale mechanisms of crystal growth in barite [J]. Nature,1998,395 (6701):483-486.
    [204]BURTON W K, CABRERA N, FRANK F C. The growth of crystals and the equilibrium structure of their surfaces [J]. Philosophical Transactions of the Royal Society A,1951,243: 299-358.
    [205]HARTMAN P. Morphology.of crystals [M]. Tokyo:Terra Scientific,1987.
    [206]NIELSEN A E. Kinetics of precipitation [M]. Oxford:Pergamon,1964.
    [207]LI A P, WENDELKEN J F. Buffer layer-assisted growth of Ge nanoclusters on Si [J]. Nanoscale Research Letters,2006,1 (1):11-19.
    [208]WANG H, ZHANG Z P, WANG X N, et al. Selective growth of vertical-aligned ZnO nanorod arrays on Si substrate by catalyst-free thermal evaporation [J]. Nanoscale Research Letters, 2008,3 (9):309-314.
    [209]UMAR A. Growth of comb-like ZnO nanostructures for dye-sensitized solar cells applications [J]. Nanoscale Research Letters,2009,4 (9):1004-1008.
    [210]HU P F, JIA D Z, CAO Y L, et al. CdSe ring- and tribulus-shaped nanocrystals:Controlled synthesis, growth mechanism, and photoluminescence properties [J]. Nanoscale Research Letters,2009,4 (5):437-443.
    [211]AVRAMOVL I. Kinetics of growth of nanowhiskers (nanowires and nanotubes) [J]. Nanoscale Research Letters,2007,2 (5):235-239.
    [212]WU C C, WUU D S, LIN P R, et al. Effects of growth conditions on structural properties of ZnO nanostructures on sapphire substrate by metal-organic chemical vapor deposition [J]. Nanoscale Research Letters,2009,4 (4):377-384.
    [213]TADAV R M, DOBAL P S, SHRIPATHI T, et al. Effect of growth temperature on bamboo-shaped carbon-nitrogen (C-N) nanotubes synthesized using ferrocene acetonitrile precursor [J]. Nanoscale Research Letters,2009,4 (3):197-203.
    [214]MEHTA S K, KUMAR S, CHAUDHARY S, et al. Effect of cationic surfactant head groups on synthesis, growth and agglomeration behavior of ZnS nanoparticles [J]. Nanoscale Research Letters,2009,4 (10):1197-1208.
    [215]VEGA V, PRIDA V M, HERNANDEZ-VELEZ M, et al. Influence of anodic conditions on self-ordered growth of highly aligned titanium oxide nanopores [J]. Nanoscale Research Letters,2007,2 (7):355-363.
    [216]REN X, XU D, XUE D. Crystal growth of KDP, ADP, and KADP [J]. Journal of Crystal Growth,2008,310 (7-9):2005-2009.
    [217]XU D, XUE D. Fast growth of KDP [J]. Journal of Crystal Growth,2008,310 (7-9): 2157-2161.
    [218]LIU X Y, BOEK E S, BRIELS W J, et al. Prediction of crystal-growth morphology based on structural-analysis of the solid-fluid interface [J]. Nature,1995,374 (6520):342-345.
    [219]ZHAO X, BAO Z, SUN C, et al. Polymorphology formation of Cu2O:A microscopic understanding of single crystal growth from both thermodynamic and kinetic models [J]. Journal of Crystal Growth,2009,311 (3):711-715.
    [220]BENNEMA P, VAN DER EERDEN, J P. Crystal growth from solution:Development in computer simulation [J]. Journal of Crystal Growth,1977,42 (DEC):201-213.
    [221]FOWLER S R, GUGGENHEIN E A. Statistical thermodynamics [M]. London:Cambridge, 1960.
    [222]SHARMA S K, VERMA S, SHRIVASTAVA B B, et al. In situ measurement of pH and supersaturation-dependent growth kinetics of the prismatic and pyramidal facets of KDP crystals [J]. Journal of Crystal Growth,2002,24 (3-4):342-348.
    [223]ZHENG G Z, LIANG J K, LI Z D, et al. The combined effects of supersaturation and Ba2+ on the batch cooling crystallization of potassium dihydrogen phosphate [J]. Crystal Research and Technology,2008,43 (6):583-587.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700