用户名: 密码: 验证码:
纳米材料电化学传感器及环境监测应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米材料用于催化和分析已成为当前科技领域的一个研究热点。基于纳米材料具有的量子尺寸效应、表面与界面效应、小尺寸效应和宏观量子隧道等效应,使得纳米粒子相对于大块颗粒具有更为独特的物理、化学性质。纳米材料在电化学传感器研究领域得到广泛应用。
     目前,用于催化和分析的电化学传感器制备主要有以下两种趋势:一种是负载贵金属纳米颗粒的聚合物膜修饰电极;另一种是双金属或多金属复合修饰电极。双金属或多金属纳米颗粒的催化活性在许多催化反应中要明显优于其所对应的单金属颗粒,这是因为双金属或多金属之间特有的协同作用及电极表面结构变化导致其具有与单金属不一样的催化性能。另外,使用双金属或多金属复合修饰电极可以减少费用,双金属或多金属催化剂中常包含一些非贵金属。尽管双金属纳米颗粒在很多方面呈现出优越的催化活性和选择性,但是由于颗粒过小而产生的团聚使其难以广泛使用。将双金属纳米颗粒负载到催化剂载体,例如聚合物膜或金属氧化物上,与载体的接触界面明显增加,双金属颗粒与载体的作用更为充分,更有利于显著提高催化剂的催化性能。
     随着人们对环境质量要求的提高,由甲醛引起的环境污染问题越来越受到人们的关注。甲醛检测技术正朝着快速、灵敏、简便的方向发展。化学传感器法,尤其是纳米贵金属化学传感器,成为目前甲醛速测技术中的研究热点。
     本文以实际应用和未来商品化仪器开发为目标,主要研究了单贵金属、双金属纳米材料在聚合物膜或金属氧化物膜上的电化学行为,利用纳米金属和聚合物膜或金属氧化物之间相互作用以及双金属之间的协同作用构建电化学传感器,以提高电化学传感器的灵敏度、选择性、稳定性等,并对甲醛环境污染物进行了检测,也对地下水污染物开展了健康风险评价。本论文的主要研究内容及结果主要体现在以下六个方面:
     1.本文研制了基于钯纳米粒子-Nafion修饰玻碳电极(Pd/Nf/GCE)的新型电化学传感器。采用扫描电镜(SEM)对修饰电极表面进行了表征,并采用循环伏安法(CV)和微分脉冲伏安法(DPV)研究了甲醛在该修饰电极上的电催化氧化作用。对修饰电极制备条件和实验条件进行了优化,在此基础上建立了一种测定甲醛的伏安分析方法。
     2.通过电化学沉积的方法制备了DNA-纳米金修饰的玻碳电极,用扫描电镜和原子力显微镜(AFM)对该电极进行了形貌表征,实验结果表明,该修饰电极对甲醛具有较高的响应灵敏度。
     3.采用循环伏安法在玻碳电极表面依次电沉积纳米二氧化锆和铂纳米微粒,制备了一种新型电化学传感器(Pt/ZrO2/GCE)。用扫描电镜对该修饰电极表面进行了形貌表征。利用循环伏安法和线性扫描伏安法(LSV)研究了甲醛在该修饰电极上的电催化氧化作用,优化了实验参数,并对甲醛进行了定量分析。
     4.利用电化学方法将纳米铂和钯共沉积在滴涂有Nafion膜的玻碳电极上,制备了性能优良的甲醛电化学传感器(PtPd/Nf/GCE)。采用扫描电镜和能谱分析(EDS)对电极表面及组分比例进行了表征。用电化学方法对该修饰电极测定了其电化学行为,并用线性扫描伏安法研究了甲醛在该修饰电极上的催化氧化行为。由于Nafion膜对纳米颗粒在电极表面分布影响以及双金属之间的协同作用,修饰电极对甲醛具有很好的催化氧化作用。
     5.采用贾凡尼取代反应制备了纳米金钯核壳-Nafion修饰玻碳电极(AuPd/Nf/GCE)。采用扫描电镜和能谱分析对电极表面及组分比例进行了表征。研究了电极在碱性溶液中的电化学行为,并对甲醛进行了检测,发现修饰电极对甲醛具有较好的催化氧化作用。
     6.利用健康风险评价方法,按照GB/T 5750-2006《生活饮用水标准检验方法》,对华北某市附近一非规范垃圾填埋场附近五口有代表性的民用水井水样进行了监测,水质检测项目主要包括:甲醛、氨氮、硝酸盐氮、亚硝酸盐氮、挥发酚、锌、六价铬、汞、锰、pH值、氟化物、总硬度,并对其进行了健康风险分析评价。
The use of nanostructured materials for catalysis and analysis is an extremely promising prospect. Due to the quantum size effect, the surface and interface effect, the small size effect and the macroscopic quantum tunnel effect, nanoparticles have drawn much attention for their physical and chemical advantages over bulk materials. Nano-materials have been widely applicated in the reaserch field of electrochemical sensors.
     There are two main trends in the field of chemically modified electrodes for catalysis and analysis: one is chemically modified electrodes based on polymer films, the other is bimetallic or multimetallic composite modified electrodes. Bimetallic (or multimetallic) nanoparticles are of greater interest than corresponding monometallic ones for the improvement of the catalytic properties of metal particles. This is because bimetallization can improve catalytic properties of the original single-metal catalysts and create a new property, which can often be explained in terms of synergistic effect associated with changes on electrode surface. Bimetallic (or multimetallic) modified electrodes can also reduce costs by the addition of non-noble metal. Although bimetallic nanoparticles exhibit a high activity and selectivity, particle coalescence greatly limited their application. Hence, bimetallic nanoparticles coated on supporting materials, such as polymer films or metallic oxide, can improve the situation and enhance electron conductivity and catalytic activity of the catalysts.
     As the demand of the public for ambient quality advanced, environmental pollution problem caused by formaldehyde is increasingly concerned. The determination techniques of formaldehyde are developing towards fast, sensitive, simple and convenient ones. Nowadays, chemical sensor, espically nano-noble-metal chemical sensor is hotspot in fast determination study field.
     To develop a practicable system of electrochemical sensor for the determination of environmental contaminants such as formaldehyde, the voltammetric behavior of monometallic and bimetallic noble nanoparticles modified on polymer films or metallic oxide are investigated. Novel electrochemical sensors are proposed based on the interactions between noble nanoparticles and polymer films or metallic oxide, with aims to develop the sensitivity, selectivity and stability. Health risk assessment (HRA) for groundwater is simply introduced in the end of the paper. In detail, the main results are as follows:
     1. Palladium nanoparticles and Nafion film modified glassy carbon electrodes (Pd/Nf/GCE) were electrochemically deposited through cyclic voltammetry (CV). Scanning electron microscope (SEM) was employed to characterize the surface structure. Electrocatalytical behaviors of the modified electrode were investigated by cyclic voltammetry and differential pulse voltammetry (DPV). Experimental conditions were optimized and a voltammetric method for determining formaldehyde was developed.
     2. The modified electrode of DNA film and nano-gold was fabricated through electrochemical deposition method and the morphology of electrode surface was characterized by scanning electron microscopy and atomic force microscopy (AFM). Experimental results showed that the modified electrode exhibited a remarked electrocatalytic activity toward formaldehyde.
     3. An electrochemical sensor was introduced based on electrodepositing zirconia and Pt nanoparticles on glassy carbon electrode by cyclic voltammetry. Scanning electron microscopy was used to characterize the morphology of electrode surface. The electrocatalytical behaviors of the modified electrode towards formaldehyde were investigated by cyclic voltammetry and linear sweep voltammetry (LSV). Quantitative analysis of formaldehyde was also studied.
     4. Platinum-palladium (Pt-Pd) nanoparticles were electrochemically deposited on Nafion (Nf) film coated glassy carbon electrode. Bimetallic (Pt-Pd) nanoparticles were found to be uniformly dispersed on Nafion film, as confirmed by scanning electron microscopic analysis. Energy dispersed X-ray analysis (EDS) was used to characterize the composition of metal present on the nanoparticle-modified electrodes. The electrocatalytical behaviors of the electrode were investigated by cyclic voltammetry and linear sweep voltammetry. Experimental results showed that the electrode exhibited a remarked electrocatalytic activity for the oxidation of formaldehyde, attributed to synergistic effect of the alloy deposit associated with changes in the adsorption features of the Nafion surface.
     5. Pd-Au core-shell nanoparticles were deposited onto the Nafion film coated glassy carbon (denited as PdAu/Nf/GC) electrode via galvanic replacement reaction. Scanning electron microscopic analysis and energy dispersed X-ray analysis was used to characterize the composition of metal present on the nanoparticle-modified electrodes. Studies of cyclic voltammetry demonstrated that the modified electrode exhibited a high electrocatalytic activity toward formaldehyde.
     6. To assess the health risk of the groundwater pollution caused by a substandard landfill site nearly a city in northern China, the water samples were collected from five representative civil wells situated near the city. Formaldehyde, ammonia nitrogen, nitrite nitrogen, volatile phenol, zinc, sexavalent chrome, mercury, manganese, pH values, fluoride, total hardness of the samples were determined according to the standard determination methods of domestic drinking water GB/T 5750-2006. The assessment of health risk was carried out.
引文
1董绍俊,车广礼,谢远五,等.化学修饰电极.科学出版社, 1995: 5
    2王志贤,王赪胤,胡效亚.化学修饰电极的制备及其药物分析应用的研究进展.化学传感器, 2007, 27 (4): 8~15
    3 S. Zhao, K. Zhang, Y. Bai, et al. Glucose Oxidase/Colloidal Gold Nanoparticles Immobilized in Nafion Film on Glassy Carbon Electrode: Direct Electron Transfer and Electrocatalysis. Bioelectrochemistry, 2006, 69 (2): 158~163
    4 T. Selvaraju, R. Ramaraj. Electrochemically Deposited Nanostructured Platinum on Nafion Coated Electrode for Sensor Applications. Journal of Electroanalytical Chemistry, 2005, 585 (2): 290~300
    5 H. J. Chen, Y. L. Wang, Y. Liu, et al. Direct Electrochemistry and Electrocatalysis of Horseradish Peroxidase Immobilized in Nafion-RTIL Composite Film. Electrochemistry Communications, 2007, 9 (3): 469~474
    6 H. L. Lin, T. J. Chang. Preparation of Nafion/PTFE/Zr(HPO4)2 Composite Membranes by Direct Impregnation Method. Journal of Membrane Science, 2008, 325 (2): 880~886
    7 S. N. Ding, J. J. Xu, W. J. Zhang, et al. Tris(2,2′-bipyridyl)ruthenium(II)– Zirconia–Nafion Composite Modified Electrode Applied as Solid-State Electrochemiluminescence Detector on Electrophoretic Microchip for Detection of Pharmaceuticals of Tramadol, Lidocaine and Ofloxacin. Talanta, 2006, 70 (3): 572~577
    8 A. Salimi, A. Noorbakhsh, M Ghadermarzi. Amperometric Detection of Nitrite, Iodate and Periodate at Glassy Carbon Electrode Modified with Catalase and Multi-wall Carbon Nanotubes. Sensors and Actuators B: Chemical, 2007, 123 (1): 530~537
    9 Y. Li, X. W. Shi, J. C. Hao. Electrochemical Behavior of Glassy Carbon Electrodes Modified by Multi-walled Carbon Nanotube/Surfactant Films in a Buffer Solution and an Ionic Liquid. Carbon, 2006, 44 (13): 2664~2670
    10 Y. Z. Zhang, Y. J. Cai, S. Su. Determination of Dopamine in the Presence of Ascorbic Acid by Poly (Styrene Sulfonic Acid) Sodium Salt/Single-wall Carbon Nanotube Film Modified Glassy Carbon Electrode. Analytical Biochemistry, 2006, 350 (2): 285~291
    11 X. H. Kang, Z. B. Mai, X. Y. Zou, et al. A Sensitive Nonenzymatic Glucose Sensor in Alkaline Media with a Copper Nanocluster/Multiwall Carbon Nanotube-Modified Glassy Carbon Electrode. Analytical Biochemistry, 2007, 363 (1): 143~150
    12 Y. H. Zhu, Z. L. Zhang, D. W. Pang. Electrochemical Oxidation of Theophylline at Multi-wall Carbon Nanotube Modified Glassy Carbon Electrodes. Journal of Electroanalytical Chemistry, 2005, 581 (2): 303~309
    13 K. Shigehara, N. Oyama, F. C. Anson. Electrochemical Responses of Electrodes Coated with Redox Polymers. Evidence for Control of Charge-transfer Rates across Polymeric Layers by Electron Exchange between Incorporated Redox Sites. Journal of American Chemistry Society, 1981, 103 (10): 2552~2558
    14 D. Quan, Y. S. Kim, W. S. Shin. Characterization of an Amperometric Laccase Electrode Covalently Immobilized on Platinum Surface. Journal of Electroanalytical Chemistry, 2004, 561: 181~189
    15 M. R. Li, C. Y. Deng, Q. J. Xie, et al. Electrochemical Quartz Crystal Impedance Study on Immobilization of Glucose Oxidase in a Polymer Grown from Dopamine Oxidation at an Au Electrode for Glucose Sensing. Electrochimica Acta, 2006, 51 (25): 5478~5486
    16 F. Maroun, J. N. Chazalviel, F. Ozanam, et al. Reversibility of the GeH/GeOH Transformation at a Ge Electrode: An EQCM Study. Journal of Electroanalytical Chemistry, 2003, 549: 161~163
    17 L. Popova, R. Djulgerova, G. Beshkov, et al. SnO2 Thin Films for Gas Sensors Modified by Hexamethyldisilazane after Rapid Thermal Annealing. Sensors and Actuators B: Chemical, 2004, 100 (3): 352~358
    18 M. Nikaido, S. Furuya, T. Kakui, et al. Photocatalytic Behavior of TiO2 Nanoparticles Supported on Porous Aluminosilicate Surface Modified by Cationic Surfactant. Advanced Powder Technology, 2009, 20 (6): 598~604
    19 S. P. Tong, T. M. Zhang, C. A. Ma. Oxygen Evolution Behavior of PTFE-F-PbO2 Electrode in H2SO4 Solution. Chinese Journal of Chemical Engineering, 2008, 16 (6): 885~889
    20 M. Ligaj, J. Jasnowska, W. G. Musial, et al. Covalent Attachment of Single-stranded DNA to Carbon Paste Electrode Modified by Activated Carboxyl Groups. Electrochimica Acta, 2006, 51 (24): 5193~5198
    21 X. Q. Lin, Y. X. Li. Monolayer Covalent Modification of 5-hydroxytryptophan on Glassy Carbon Electrodes for Simultaneous Determination of Uric Acid and Ascorbic Acid. Electrochimica Acta, 2006, 51 (26): 5794~5801
    22 F. Geneste, C. Moinet. Electrocatalytic Oxidation of Alcohols by a [Ru(tpy)(phen)(OH2)]2+-Modified Electrode. Journal of Electroanalytical Chemistry, 2006, 594 (2): 105~110
    23张英,袁诺,柴雅芹,等.纳米金修饰玻碳电极对儿茶酚的催化氧化.分析试验室, 2005, 24 (10): 1~4
    24 A. A. Kayakin, E. A. Puganova, I. A. budashov, et al. Prussian Blue Based Nanoelectrode Arrays for H2O2 Detection. Analytical Chemistry, 2004, 76 (2): 474~478
    25 H. H. Zhou, Q. Yu, Q. L. Peng, et al. Catalytic Graphitization of Carbon Fibers with Electrodeposited Ni–B Alloy Coating. Materials Chemistry and Physics, 2008, 110 (2-3): 434~439
    26刘有芹,金松子,刘六战,等.铁氰化锰修饰玻碳电极的制备及其电化学行为.分析化学, 2004, 32 (7): 847~851
    27刘有芹,沈含熙.钴氢氧化物修饰玻碳电极的镀膜/循环伏安法制备及其化学行为.化学学报, 2004, 62 (20): 2067~2072
    28刘有芹,刘六战,沈含熙.氢氧化钴修饰玻碳电极的制备及其电化学行为.分析测试学报, 2004, 23 (6): 9~13
    29 G. Y. Jin, Y. Z. Zhang, W. X. Cheng. Poly (p-aminobenzene sulfonic acid)-Modified Glassy Carbon Electrode for Simultaneous Detection of Dopamine and Ascorbic Acid. Sensors and Actuators B: Chemical, 2005, 107 (2): 528~534
    30 M. H. Pournaghi-Azar, B. Habibi. Electropolymerization of Aniline in Acid Media on the Bare and Chemically Pre-treated Aluminum Electrodes: A Comparative Characterization of the Polyaniline Deposited Electrodes. Electrochimica Acta, 2007, 52 (12): 4222~4230
    31 T. Doi, K. Takeda, T. Fukutsuka, et al. Surface Modification of Graphitized Carbonaceous Materials by Electropolymerization of Thiophene and Their Effects on Electrochemical Properties. Carbon, 2005, 43 (11): 2352~2357
    32 A. F. Diaz, K. K. Kanazawa. Electrochemical Polymerization of Pyrrole. Journal of the Chemical Society, Chemical Communications, 1979 (4): 635~640
    33 A. A. Karyakin, A. K. Strakhova, A. K. Yatsimirshy. Self-doped Polyanilines Electrochemically Active in Neutral and Basic Aqueous Solutions: Electropolymerization of Substituted Anilines. Journal of Electroanalytical Chemistry, 1994, 371 (1-2): 259~265
    34 M. Skompska, A. Kudelski. Electrochemical Activity of Poly (N-vinylcarbazole) Films in Acetonitrile Solution and in Acetonitrile + Water Mixtures Correlation between Spectroelectrochemical and EPR Results. Journal of Electroanalytical Chemistry, 1996, 403 (1-2): 125~132
    35 X. F. Li, Y. Wan, C. Q. Sun. Covalent Modification of a Glassy Carbon Surface by Electrochemical Oxidation of R-aminobenzene Sulfonic Acid in Aqueous Solution. Journal of Electroanalytical Chemistry, 2004, 569 (1): 79~87
    36 Q. Gao, W. D. Wang, Y. Ma, et al. Electrooxidative Polymerization of Phenothiazine Derivatives on Screen-printed Carbon Electrode and its Application to Determine NADH in Flow Injection Analysis System. Talanta, 2004, 62 (3): 477~482
    37 C. R. Raj, T. Ohsaka. Facilitated Electrochemical Oxidation of NADH and Its Model Compound at Gold Electrode Modified with Terminally Substituted Electroinactive Self-assembled Monolayers. Bioelectrochemistry, 2001, 53 (2): 251~256
    38 E. Palecek, M. Fojta. Differential Pulsed Voltammetric Determination of RNA at the Picomole Level in the Presence of DNA and Nucleic Acid Components.Analytical Chemistry, 1994, 66 (9): 1566~1571
    39 G. Haehner, C. Woell, M. Buck, et al. Investigation of Intermediate Steps in the Self-assembly of N-alkanethiols on Gold Surfaces by Soft X-ray Spectroscopy. Langmuir, 1993, 9 (8): 1955 ~1958
    40陆琪,庞代文,胡深. DNA修饰电极的研究:共价键合吸附DNA-SAM Au修饰电极的制备和表征.中国科学B辑, 1999, 29 (4): 341~347
    41 K. M. Millan, A. Saraullo, S. R. Mikkelsen. Voltammetric DNA Biosensor for Cystic Fibrosis Based on a Modified Carbon Paste Electrode. Analytical Chemistry, 1994, 66 (18): 2943~2948
    42刘梦琴,蒋健晖,冯泳兰等.基于镀铂碳糊电极电聚酪胺和过氧化聚吡咯的葡萄糖传感器研究.应用化学, 2007, 35 (10): 1435~1438
    43 E. V. Suprun, H. C. Budnikov, G. A. Evtugyn, et al. Bi-enzyme Sensor Based on Thick-film Carbon Electrode Modified with Electropolymerized Tyramine. Bioelectrochemistry, 2004, 63 (1-2): 281~284
    44 Y. H. Lin, F. Lu, Y. Tu, et al. Glucose Biosensors Based on Carbon Nanotube Nanoelectrode Ensembles. Nano Letters, 2004, 4 (2): 191~195
    45 J. Li, X.Q. Lin. Electrocatalytic Reduction of Nitrite at Polypyrrole Nanowire–Platinum Nanocluster Modified Glassy Carbon Electrode. Microchemica Journal, 2007, 22(8): 1749~1755
    46 M. C. Tsai, P. Y. Chen. Voltammetric Study and Electrochemical Detection of Hexavalent Chromium at Gold Nanoparticle-electrodeposited Indium Tinoxide (ITO) Electrodes in Acidic Media. Talanta, 2008, 76(3): 533~539
    47 H. N. Choi, M. A. Kim, W. Y. Lee. Amperometric Glucose Biosensor Based on Sol-gel-derived Metal Oxide/Nafion Composite Films. Analytica Chimica Acta, 2005, 537 (1-2): 179~187
    48 H. S. Wang, T. H. Li, W. L. Jia, et al. Highly Selective and Sensitive Determination of Dopamine Using a Nafion/Carbon Nanotubes Coated Poly (3-methylthiophene) Modified Electrode. Biosensors and Bioelectronics, 2006, 22 (5): 664~669
    49 C. Y. Deng, M. R. Li, Q. J. Xie, et al. Construction as well as EQCM and SECM Characterizations of a Novel Nafion/Glucose Oxidase-glutaraldehyde/poly (thionine)/Au Enzyme Electrode for Glucose Sensing. Sensors and Actuators B: Chemical, 2007, 122 (1): 148~157
    50 Y. H. Yang, M. H. Yang, H. Wang, et al. Inhibition Biosensor for Determination of Nicotine. Analytica Chimica Acta, 2004, 509 (2): 151~ 157
    51 S. Kumaran, C. Tran-Minh. Insecticide Determination with Enzyme Electrodes Using Different Enzyme Immobilization Techniques. Electroanalysis, 1992, 4 (10): 949~954
    52金利通,鲜跃仲,张芬芬.纳米电化学与生物传感器的研究进展.华东师范大学学报. 2005, 12(5-6):13~24
    53 J. Manso, M.L. Mena, P. Yá?ez-Sede?o, J. Pingarrón. Electrochemical Biosensors Based on Colloidal Gold–Carbon Nanotubes Composite Electrodes. Journal of Electroanalytical Chemistry, 2007,603 (1): 1~7
    54 S. S. Fan, F. Xiao, L. Q. Liu, et al. Sensitive Voltammetric Response of Methylparathion on Single-walled Carbon Nanotube Paste Coated Electrodes Using Ionic Liquid as Binder. Sensors and Actuators B: Chemical, 2008, 132 (1): 34~39
    55 L. Xiao, G. G. Wildgoose, R. G. Compton. Sensitive Electrochemical Detection of Arsenic (III) Using Gold Nanoparticle Modified Carbon Nanotubes via Anodic Stripping Voltammetry. Analytica Chimica Acta, 2008, 620 (1-2): 44~49
    56 B. K. Jena, C. R. Raj. Highly Sensitive and Selective Electrochemical Detection of Sub-Ppb Level Chromium (VI) Using Nano-Sized Gold Particle. Talanta, 2008, 76 (1): 161~165
    57 C. L. Xiang, Y. J. Zou, L. X. Sun, et al. Direct Electrochemistry and Electrocatalysis of Cytochrome c Immobilized on Gold Nanoparticles- Chitosan- Carbon Nanotubes- Modified Electrode. Talanta, 2007, 74 (2): 206~211
    58 X. Mao, J. H. Jiang, Y. Luo, et al. Copper- Enhanced Gold Nanoparticle Tags for Electrochemical Stripping Detection of Human IgG. Talanta, 2007, 73 (3): 420~424
    59 R. F. Service, P. Szuromi, J. Uppenbrink. Strength in Numbers. Science. 2002, 295 (5564): 2395~2395
    60 M. S. Chen, D. W. Goodman. Structure-Activity Relationships in Supported Au Catalysts. Catalysis Today, 2006, 111 (1-2): 22~23
    61 N. V. Vegten, P. Haider, M. Maciejewski, et al. Chemisorption of Methyl Mercaptane on Titania-supported Au Nanoparticles: Viability of Au Surface Area Determination. Journal of Colloid and Interface Science, 2009, 339 (2): 310~316
    62 G. Yuan, C. Louis, L. Delannoy, et al. Silica- and Titania-supported Ni–Au: Application in Catalytic Hydrodechlorination. Journal of Catalysis, 2007, 247 (2): 256~268
    63 F. Kadigan, A. M. Kannan, T. Atilan, et al. Carbon Supported Nano-sized Pt-Pd and Pt-Co Electrocatalysts for Proton Exchange Membrane Fuel Cells. International Journal of Hydrogen Energy, 2009, 34 (23): 9450~9460
    64 L. X. Zhang, P. Liu, Z. X. Su. Preparation of PANI–TiO2 Nanocomposites and Their Solid-Phase Photocatalytic Degradation. Polymer Degradation and Stability, 2006, 91 (9): 2213~2219
    65 C. M. Ghimbeu, R. C. van Landschoor, J. Schoonman, et al. Preparation and Characterization of SnO2 and Cu-doped SnO2 Thin Films Using Electrostatic Spray Deposition (ESD). Journal of the European Ceramic Society, 2007, 27 (1): 207~213
    66 L. L. Pang, J. S. Li, J. H. Jiang, et al. DNA Point Mutation Detection Based on DNA Ligase Reaction and Nano-Au Amplification: A Piezoelectric Approach. Analytical Biochemistry, 2006, 358 (1): 99~103
    67黄令.纳米晶镍-钼合金电沉积层的结构与性能.应用化学, 1999, 16 (2): 38~41
    68 N. Alexeyeva, K. Tammeveski. Electroreduction of Oxygen on Gold Nanoparticle/PDDA- MWCNT Nanocomposites in Acid Solution. Analytica Chimica Acta, 2008, 618 (2): 140~146
    69 A. L. Crumbliss, S. C. Perine, J. Stonehuerner, et al. Colloidal Gold as a Biocompatible Immobilization Matrix suitable for the Fabrication of Enzyme Electrodes by Electrodeposition. Biotechnol Bioeng, 1992, 40 (4): 483~490
    70董相廷,曲晓刚,洪广言,等. CeO2纳米晶的制备及其在电化学中的应用.科学通报, 1996, 41 (9): 847~850
    71 F. Q. Tang, D. Chen, X. W. Meng, et al. Glucose Biosensor Enhanced by Nanoparticles. Science in China (Chemistry), 2000, 43 (3): 268~274
    72 I. Willner, B. Willnrt. Functional Nanoparticle Architectures for Sensoric, Optoelectronic, and Bioelectronic Applications. Pure and Applied Chemistry, 2002, 74 (9): 1773~1783
    73刘江疆,林金明.纳米粒子在分析化学领域的应用进展.生命科学仪器, 2005, 3 (4): 3~11
    74杨海朋,陈仕国,李春辉.纳米电化学生物传感器.化学进展, 2009, 21 (1): 210~215
    75 S. Iijima. Helical Microtubules of Graphitic Carbon. Nature, 1991, 354 (6348): 56~58
    76 C. T. White, D. H. Robertson, J. W. Mintmire. Helical and Rotational Symmetries of Nanoscale Graphitic Tubules. Physic Review B, 1993, 47 (9): 5485~5488
    77 S. Hrapovic, E. Majid, Y. L. Liu, et al. Metallic Nanoparticle-Carbon Nanotube Composites for Electrochemical Determination Explosive Nitroaromatic Compounds. Analytical Chemistry, 2006, 78 (15): 5504~5512
    78 M. H. Yang, J. H. Jiang, Y. H. Yang, et al. Carbon Nanotube/Cobalt Hexacyanoferrate Nanoparticle-Biopolymer System for the Fabrication of Biosensors. Biosensors and Bioelectronics, 2006, 21 (10): 1791~1797
    79张立德.纳米材料.北京:化学工业出版社, 2000: 20~38
    80常竹,祝宁宁,赵琨,等.苯胺纳米线修饰的DNA电化学传感器的研究.化学学报, 2007, 65 (2): 135~139
    81 F. L. Qu, M. H. Yang, G. L. Shen, et al. Electrochemical Biosensing Utilizing Synergic Action of Carbon Nanotubes and Platinum Nanowires Prepared by Template Synthesis. Biosensors and Bioelectronics, 2007, 22 (8): 1749~1755
    82 Y. Herschkovitz, I. Eshkenazi, C. E. Campbell, et al. An ElectrochemicalBiosensor for Formaldehyde. Journal of Electroanalytical Chemistry, 2000, 491 (1-2): 182~187
    83 H. Kim, Y. D. Kim, S. H. Cho. Formaldehyde Exposure Levels and Serum Antibodies to Formaldehyde- Human Serum Albumin of Korean Medical Students. Archives of Environmental Health, 1999, 54 (2): 115~118
    84陈焕文,郑键,李明,等.甲醛监测方法及仪器.分析化学. 2004, 32 (7): 969~972
    85周德庆,马敬军,曾名勇.乙酰丙酮法测定水产品中甲醛含量不确定度研究.海洋水产研究, 2003, 24 (3): 55~59
    86陈炎,孙东红.乙酰丙酮分光光度法测定环境空气中微量甲醛.中国环境监测, 2000, 16 (4): 30~32
    87张进,董四清,金辄.酚试剂盒乙酰丙酮法测定空气中甲醛的研究.环境科学与技术, 2004, 27 (4): 33~35
    88陈素玲,张红英,张香镇,等.酚试剂比色法测定水发产品甲醛的研究.中国卫生监督与健康, 2004, 3 (1): 68
    89钟福新,陶慧林. MBTH法测定织物中微量甲醛.分析测试技术与仪器, 2003, 9 (2): 101~103
    90何小青,罗美中,蓝勇波,等.直接蒸馏滴定—AHMT法联合剂测定食品中的吊白块.冶金丛刊, 2004, 151 (3): 16~18
    91徐溢,张文品,田鹏,等.药物合成中间体中残余甲醛的微型光谱快速检测.光谱学与光谱分析, 2009, 29 (2): 471~475
    92 Q. Li, M. Oshima, S. Motomizu. Flow-Injection Spectrofluorometric Determination of Trace Amounts of Formaldehyde in Water after Derivatization with Acetoacetanilide. Talanta,2007, 72 (5): 1675~1680
    93 W. A. McClenny, K. D. Oliver, H. J. Jacumin, et al. Ambient Level Volatile Organic Compound (VOC) Monitoring Using Solid Adsorbents-recent USEPA Studies. Journal of Environmental Monitoring, 2002, 4 (5): 695~705
    94隋雪燕,李雪梅,张宗燕,等.纺织品中游离甲醛的气相色谱分析.分析化学, 2002, 30 (11): 1333~1336
    95黄晓兰,黄芳,林晓珊,等.气相色谱—质谱法测定食品中的甲醛.分析化学研究报告, 2004, 32 (12): 1617~1620
    96 M. Possanzini, V. D. Palo. Simultaneous Determination of HCHO, CH3CHO and O(x) in Ambient Air by Hydrazine Reagent and HPLC. Annali di Chimica, 2003, 93 (1-2) :149~156
    97陈笑梅,施旭霞,朱卫建,等.高效液相色谱直接测定甲醛衍生物反应条件的研究.分析化学, 2004, 32 (11): 1498~1491
    98陈文,向仕学,王正猛,等.单扫描极谱法测定果、蔬中有机磷农药残留量.分析测定技术与仪器, 2001, 7 (4):242~245
    99 L. F. Guido, N. A. Fortunato, J. A. Rodrigues, et al. Voltammetric Assay for the Aging Beer. Journal of Agricultural and Food Chemistry, 2003, 51 (14): 3911~3915
    100 Z. Q. Zhang, G. F. He. Preconcentration with Membrance Cell and Adsorptive Polarographic Determination of Formaldehyde in Air. Talana, 2002, 57 (2): 317~322
    101 W. H. Chan, T. Y. Xie. Adsorption Voltammetric Determination ofμg L-1 Levels Formaldehyde via in Situ Derivatization with Girard’s Reagent T. Analytica Chimica Acta, 1997, 339 (1-2): 173~179
    102 S. Ngamchana, W. Surareungchai. Sub-Millimolar Determination of Formalin by Pulsed Amperometric Detection. Analytica Chimica Acta, 2004, 510 (2): 195~210
    103辛勤.固体催化剂的研究方法.北京:科学出版社, 2004: 680
    104 R. Knake, P. Jacquinot, P. C. Hauser. Amperometric Detection of Gaseous Formaldehyde in the Ppb Range. Electroanalysis, 2001, 13 (8-9): 631~634
    105 A. Ciszewski, G. Milczarek. Kinetics of Electrocatalytic Oxidation of Formaldehyde on a Nickel Porphyrin-Based Glassy Carbon Electrode. Journal of Electroanalytical Chemistry, 1999, 469 (1): 18~26
    106 J. H. Ye, P. S. Fedkiw. Electrodeposition of High-Surface Area Platinum in a Well Adherent Nafion Film on Glassy Carbon. Electrochimica Acta, 1996, 41 (2): 221~231
    107 G. Y. Gao, D. J. Guo, H. L. Li. Electrocatalytic Oxidation of Formaldehyde on Palladium Nanoparticles Supported on Multi-walled Carbon Nanotubes. Journal of Power Sources, 2006, 162 (2):1094~1098
    108 J. Wang, G. Cepria, P. V. A. Pamidi. Electrocatalysis and Amperpmetric Detection of Aliphatic Aldehydes at Platinum-Palladium Alloy Coated Glassy Carbon Electrode. Analytic Chimica Acta, 1996, 330 (2-3): 151~158
    109 M. Hammerle, E. A. H. Hall. Electrochemical Enzyme Sensor for Formaldehyde Operating in the Gas Phase. Biosensors and Bioelectronics. 1996, 11 (3): 239~246
    110 M. J. Dennison, J. M. Hall, A. P. F. Turner. Direct Monitoring of Formaldehyde Vapour and Detection of Ethanol Vapour Using Dehydrogenase-based Biosensors. Analyst, 1996, 121 (12): 1769~1773
    111 Y. Hershkovitz, I. Eshkenazi, C. E. Campbell, et al. An Eelctrochemical Biosensor for Formaldehde. Journal of Electroanalytical Chemistry. 2000, 491 (1-2): 182~187
    112 F. Xu, H. Li, S. J. Cross, et al. Electrocatalytic Oxidation of NADH at Poly (metallophthalocyanine)-Modified Electrodes. Journal of Electroanalytical Chemistry, 1994, 368 (1-2): 221~225
    113于慧芳,李心意,张小鸣,等.便携式甲醛测定仪比对实验研究.中华预防医学杂志, 2003, 37 (3): 195~196
    114王凤兰,刘艳. Nafion膜修饰电极在分析化学中的应用.中国卫生检验杂志, 1998, 8 (1): 52~54
    115 M. N. Szentirmay, C. R. Martin. Ion-Exchange Selectivity of Nafion Flims on Electrode Surfaces. Analytical Chemistry, 1984, 56 (11): 1898~1902
    116 F. B. Kaufman, A. H. Schroeder, E. M. Engler, et al. Ion and Electron Transport in Stable, Electroactive Tetrathiafulvalene Polymer Coated Electrodes. Journal of American Chemical Society, 1980, 102 (2): 483~488
    117 H. S. White, J. Leddy, A. J. Bard. Polymer Films on Electrodes: Investigation of Charge-Transport Mechanisms in Nafion Polymer Modified Electrodes. Journal of American Chemical Society, 1982, 104 (18): 4811~4817
    118刘珍.化验员读本(上册):化学分析(第三版).北京:化学工业出版社, 1998: 302~303
    119崔九思.室内空气污染监测方法.北京:化学工业出版社, 2002: 307~308
    120郝玉翠,康天放,张雁,等.基于铂微粒和Nafion膜修饰玻碳电极的甲醛传感器.分析科学学报, 2008, 24 (1):21~24
    121 M. S. Mcgovern, E. C. Garnett, C. Rice, et al. Effect of Nafion as a Binding Agent for Unsupported Nanoparticle Catalysts. Journal of Power Sources, 2003, 115 (1): 35~39
    122杨宏洲,邓友全. Au/PAni/GC电极的制备及对甲醛的电催化氧化研究.化学学报,2002, 60 (4): 569~573
    123 C. M. Jiang, H. Chen, C. Yu, et al. Preparation of the Pt Nanoparticles Decorated Poly (N-acetylaniline)/MWNTs Nanoparticles and its Electrocatalytic Oxidation toward Formaldehyde. Electrochimica Acta, 2009, 54 (3):1134~1140
    124郝玉翠,康天放,刘桐珅,等.甲醛的铂微粒修饰玻碳电极伏安法测定.分析测试学报,2008, 27 (1): 160~162
    125李启隆,电化学分析(综述).分析试验室, 1997, 16 (5): 77~97
    126 M. Plavsic, D. Krznaric, B. Cosovic. The Electrochemical Processes of Copper in the Presence of Triton X-100. Electroanalysis, 1994, 6 (5-6): 469~474
    127上官灵芝,乔洁,郭玉晶,等.电沉积纳米钯修饰玻碳电极对甲醛的电催化氧化.武汉大学学报, 2008, 54 (6): 661~664
    128 K. Nishimura, K. Machida, M. Enyo. Electrooxidation of Formate and Formaldehyde on Electrodes of Alloys between Pd and Group IB Metals in Alkaline Media: Part I. Electrocatalytic Properties of Component Metals. Journal of Electroanalytical Chemistry, 1988, 251 (1): 103~116
    129 C. R. Martin, K. A. Dollard. Effect of Hydrophobic Interactions on the Rates of Ionic Diffusion in Nafion Films at Electrode Surfaces. Journal of Electroanalytical Chemistry, 1983, 159 (1): 127~135
    130 A. J. Bard, L. R. Faulkner. Electrochemical Methods-Fundamentals and Applications. Wiley, New York, 2000: 231
    131刘盛辉,孙长林,何品刚,等.单链脱氧核糖核酸在石墨电极表面固定化的研究.分析化学研究报告, 1999, 27 (2): 130~134
    132谭婷婷,王光寅,潘祖亭,等.纳米材料在生物检测中的应用.化学与生物工程, 2009, 26 (3): 58~61
    133 S. Q. Wang, L. P. Lu, X. Q. Lin. A Selective Voltammetric Method for Uric Acid Detection at a Glassy Carbon Electrode Modified with Electrodeposited Film Containing DNA and Pt-Fe(III) Nanocomposites. Electroanalysis, 2004, 16 (20): 1734~1738
    134 Y. H. Yang, Z. J. Wang, M. H. Yang, et al. Electrical Detection of Deoxyribonucleic Acid Hybrization Based on Carbon-nanotubes/nano Zirconium Dioxide/Chitosan-Modified Electrodes. Analytica Chimica Acta, 2007, 584 (2): 268~274
    135 K. H. Ghanbari, S. Z. Bathaie, M. F. Mousavi. Electrochemically Fabricated Polypyrrole Nanofiber-Modified Electrode as a New Electrochemical DNA Biosensor. Biosensors and Bioelectronics, 2008,23 (12): 1825~1831
    136 W. Zhang, T. Yang, D. M. Huang, et al. Electrochemical Sensing of DNA Immobilization and Hybridization Based on Carbon Nanotubes/Nano Zinc Oxide/Chitosan Composite Film. Chinese Chemical Letters, 2008, 19 (5): 589~591
    137 D. J. Maxwell, J. R. Taylor, S. M. Nie. Self-assembled Nanoparticle Probes for Recognition and Detection of Biomolecules. Journal of American Chemical Society, 2002, 124 (32): 9606~9612
    138 L. Olofsson, T. Rindzevicius, I. Pfeiffer, et al. Surface-Based Gold-Nanoparticle Sensor for Specific and Quantitative DNA Hybridization Detection. Langmuir, 2003, 29 (24): 10414~10419
    139 X. Q. Lin, X. H. Jiang, L. P. Lu. DNA Deposition on Carbon Electrodes under Controlled Dc Potentials. Biosensors Bioelectronics, 2005, 20 (9): 1709~1717
    140 V. Selvaraj, M. Alagar, K. K. Sathish. Synthesis and Characterization of Metal Nanoparticles-Decorated PPY-CNT Composite and Their Electrocatalytic Oxidation of Formic Acid and Formaldehyde for Fuel Cell Applications. Applied Catalysis B: Environmental, 2007, 75 (1-2): 129~138
    141 Z. L. Zhou, T. F. Kang, Y. Zhang, et al. Electrochemical Sensor for Formaldehyde Based on Pt-Pd Nanoparticles and a Nafion Modified Glassy Carbon Electrode. Microchimica Acta, 2009, 164 (1-2): 133~138
    142 R. B. Lima, M. P. Massafera, E. A. Batista, et al. Catalysis of Formaldehyde Oxidation by Electrodeposits of PtRu. Journal of Electroanalytical Chemistry, 2007, 603 (1): 142~148
    143 C. B. Zhang, H. He, K. Tanaka. Catalytic Performance and Mechanism of a Pt/TiO2 Catalyst for the Oxidation of Formaldehyde at Room Temperature. Applied Catalysis B: Environmental, 2006, 65 (1-2): 37~43
    144 H. M. Villullas, F. I. Mattis-Costa, P. A. P. Nascente, et al. Anodic Oxidation of Formaldehyde on Pt-modified SnO2 Thin Film Electrodes Prepared by a Sol-gel Method. Electrochimica Acta, 2004, 49 (22-23): 3909~3916
    145 G. D. Liu, Y. H. Liu, Y. H. Lin. Electrochemical Sensor for Organophosphate Pesticides and Nerve Agents using Zirconia Nanoparticles as Selective Sorbents. Analytical Chemistry, 2005, 77 (18): 5894~5901
    146 D. J. Guo, X. P. Qiu, W. T. Zhu, et al. Synthesis of Sulfated ZrO2/MWCNT Composites as New Supports of Pt Catalysts for Direct Methanol Fuel Cell Application. Applied Catalysis B: Environmental, 2009, 89 (3-4): 597~601
    147 Y. X. Bai, J. J. Wu, J. Y. Xi, et al. Electrochemical Oxidation of Ethanol on Pt-ZrO2/C Catalyst. Electrochemistry Communications, 2005, 7 (11): 1087~ 1090
    148 H. Z. Yu, A. W. Rowe, D. M. Waugh. Templated Electrochemical Deposition of Zirconia Thin Films on“Recordable CDs”. Analytical Chemistry, 2002, 74 (22): 5742~5747
    149 S. Q. Wang, Y. M. Yin, X. Q. Lin. Cooperative Effect of Pt Nanoparticles and Fe (III) in the Electrocatalytic Oxidation of Nitrite. Electrochemistry Communications, 2004, 6 (3): 259~262
    150 K. Nishimura, R. Ohnishi, K. Kunimatsu, et al. Surface Species Produced on Pt Electrodes during HCHO Oxidation in Sulfuric Acid Solution as Studied by Infrared Reflection-absorption Spectroscopy (IRRAS) and Differential Electrochemical Mass Spectroscopy (DEMS). Journal of Electroanalytical Chemistry, 1989, 258 (1): 219~225
    151 H. Q. Song, X. P. Qiu, F. S. Li. Promotion of Carbon Nanotube-Supported Pt Catalyst for Methanol and Ethanol Electro-oxidation by ZrO2 in Acidic Media. Applied Catalysis A: General, 2009, 364 (1-2): 1~7
    152 C. W. Welch, R. G. Compton. The Use of Nanoparticles in Electroanalysis: a Review. Analytical and Bioanalytical Chemistry, 2006, 384 (3): 601~ 619
    153张雁,康天放,郝玉翠,等.基于铂/碳纳米管修饰电极的甲醛传感器研究.北京工业大学学报, 2008, 34 (11):1191~1195
    154 S. Kameoka, A. P. Tsai. Oxidation Behavior and Catalytic Property of Intermetallic Compound AuCu. Catalysis Today, 2008, 132 (1-4): 88~92
    155 M. Abe, S. Mori, T. Nakajima, et al. Electronic Structures of PtCu, PtAg, and PtAu Molecules: a Dirac Four-Component Relativistic Study. Chemical Physics, 2005, 311 (1-2): 129~137
    156 T. Komatsu, A. Tamura. Pt3Co and PtCu Intermetallic Compounds: Promising Catalysts for Preferential Oxidation of CO in Excess Hydrogen. Journal of Catalysis, 2008, 258 (2): 306~314
    157 H. J. Kim, S. M. Choi, S. H. Nam, et al. Carbon-Supported PtNi Catalysts for Electrooxidation of Cyclohexane to Benzene over Polymer Electrolyte Fuel Cells. Catalysis Today, 2009, 146 (1-2): 9~14
    158 M. J. Llorca, J. M. Feliu, A. Aldaz, et al. Electrchemical Structue-Senstive Behavior of Irreversibly Adsorbed Palladium on Pt (100), Pt (111) and Pt (110) in an Acidic Medium. Journal of Electroanalytical Chemistry, 1993, 351 (1-2): 299~319
    159 M. J. Ball, C. A. Lucas, N. M. Markovic, et al. Surface X-ray Scattering Studies of the Growth of Pd Thin Films on the Pt (001) Electrode Surface and the Effects of the Adsorption of CO. Surface Science, 2003, 540 (2-3): 295~302
    160 V. Selvaraj, M. Alagar, I. Hamerton. Nanocatalysts Impregnated Polythiophene Electrodes for the Electrooxidation of Formic Acid. Applied Catalysis B: Environmental, 2007, 73 (1-2): 172~179
    161孙彦红,张敏,杨建军.双金属核壳结构负载型AuAg/TiO2催化剂的制备及表征.无机化学学报, 2009, 25 (11): 1965~1970
    162麻春艳,李新华,金明善,等.负载型Au-Pd双金属催化剂的制备及其对CO氧化的催化活性.催化学报, 2007, 28 (6): 535~540
    163李志会,杨修春,杜天伦.核壳结构纳米颗粒的研究进展.材料导报, 2007, 21 (F05): 189~192
    164纪小会,王连英,袁航,等. Au/Ag核—壳结构复合纳米粒子形成机制的研究.化学学报, 2003, 61 (10): 1556~1560
    165 X. M. Lu, J. Y. Chen, S. E. Skrabalak, et al. Galvanic Replacement Reaction: a Simple and Powerful Route to Hollow and Porous Metal Nanostructures. Journal of Nanoengineering and Nanosystems, 2008, 221 (1): 1~16
    166 V. Nansal, H. Jani, J. Du Plessis, et al. Galvanic Replacement Reation on Metal Films: A One-step Approach to Creat Nanoporous Surfaces for Catalysis. Advanced Materials, 2008, 20 (4): 717~723
    167 M. Shao, K. Sasaki, N. S. Marinkovic, et al. Synthesis and Characterization of Platinum Monolayer Oxygen-Reduction Electrocatalysts with Co-Pd Core-Shell Nanoparticle Supports. Electrochemistry Communications, 2007, 9 (12): 2848~2853
    168 T. S. Liu, T. F. Kang, L. P. Lu, et al. Au-Fe (Ⅲ) Nanoparticles Modified Glassy Carbon Electrode for Electrochemical Nitrite Sensor. Journal of Electroanalytical Chemistry. 2009, 632 (1-2): 197~200
    169 R. Pattabiraman. Electrochemical Investigations on Carbon Supported Palladium Catalysts. Applied Catalysis A: General, 1997, 153 (1-2): 9~20
    170 S. Ngamchana, W. Surareungchai. Sub-millimolar Determination of Formalin by Pulsed Amperometric Detection. Analytica Chimica Acta, 2004, 510 (2): 195~201
    171 X, B. Ge, R. Y. Wang, S. Z. Cui, et al. Structure Dependent Electrooxidation of Small Organic Molecules on Pt-decorated Nanoporous Gold Membrane Catalysts. Electrochemistry Communications, 2008, 10 (10): 1494~1497
    172 G. O. Mallory, J. B. Hajdu. Electroless Plating- Fundamentals and Applications.William Andrew Publishing/Noyes, 1990: 267
    173付在毅,许学工.区域生态风险评价.地球科学进展, 2001, 16 (2): 267~271
    174毛小苓,倪晋仁.生态风险评价研究综述.北京大学学报, 2005, 41 (4): 646~654
    175陆雍森.环境评价(第二版).上海:同济大学出版社, 1999, 4 (6): 17~21
    176高仁君,陈隆智,郑明奇,等.农药对人体健康影响的风险评价.农药学学报, 2004, 6 (3): 8~14
    177高继军,张力平,黄圣彪,等.北京市饮用水中金属污染物健康风险的初步评价.环境科学, 2004, 25 (2): 47~50
    178 U. S. EPA. Risk Assessment Guidance for Superfund, Volume: Human Health Evaluation Manual (Part A.). Interim Final. EPA/540/1-89/002, 1989
    179胡二邦.环境风险评价实用技术和方法.中国环境科学出版社, 2000
    180 U. S. EPA. Superfund Public Health Evaluation Manual. EPA/540/186060.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700