用户名: 密码: 验证码:
软煤层大采高综采采场围岩控制理论及技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国煤炭储量丰富,厚煤层储量在我国煤炭总储量中约占44%。因此,厚煤层开采技术在很大程度上决定着我国整个煤炭行业技术研究水平的提高和经济效益的发挥。近十几年来,大采高液压支架、采煤机和刮板输送机等配套设备的研制取得了重大突破,促进了大采高综采技术的进步。由于大采高综采具有资源回收率高、采出煤炭含矸率低、工作面生产时煤尘少、瓦斯涌出量小等方面的优点,使其成为在厚煤层开采技术方面迅速发展的新工艺。但是,许多专家和学者通过多年的现场观测和大量的理论研究发现,在类似地质条件下,大采高综采工艺随着工作面煤壁和支架高度的加大,支架-围岩系统的稳定性降低、事故率增加。如果再受到断层、裂隙、节理、褶曲、陷落柱等复杂地质条件及煤质松软且煤层本身为节理、裂隙发育的软弱煤层等因素的影响时,极有可能会使得大采高综采工作面支架-围岩系统的稳定性更差、事故率更高,给煤矿的安全生产带来严重的隐患。
     深入、系统地研究软煤层大采高综采采场围岩控制理论及技术,不仅能为类似煤层煤矿的设计、开采、安全生产的管理和决策提供科学依据,同时还能够丰富和发展矿山压力及岩层控制理论,所以,此课题的研究具有重要的理论意义和工程实际意义。
     作为软煤层大采高综采采场围岩控制理论及技术研究的初始阶段,论文以晋城煤业集团赵庄煤矿二叠系下统山西组3号煤层及其顶底板为主要研究对象,采用现场实测、理论分析、数值模拟计算和工业性试验等方法,对软煤层大采高综采工作面矿山压力显现规律、顶板岩层结构及运动破坏规律、煤壁片帮机理及防治技术、底板损伤破坏、支架-围岩关系以及开采技术保障体系等六个方面做了探索性研究。主要研究成果如下:
     (1)通过现场实测的方法,揭示了软煤层大采高综采工作面矿山压力显现的基本特征和规律。
     (2)以“砌体梁”理论为基础,较系统地研究了软煤层大采高综采采场上覆岩层的结构形态、运动破坏规律等方面的内容。构建了软煤层大采高综采采场基本顶岩层的平衡结构模型,分析了基本顶岩层受力和变形的影响因素;提出了在软煤层大采高条件下,基本顶“砌体梁”结构也具有回转变形失稳和滑落失稳两种失稳的可能性,并给出了这两种失稳产生的条件;利用弹性力学变分问题方法对直接顶力学模型进行了求解,得出了直接顶岩层下沉量与基本顶回转角、弹性模量以及液压支架工作阻力的关系。
     (3)通过对赵庄煤矿3305软煤层大采高综采工作面前方煤体塑性区宽度的数值模拟和理论计算,得出了软煤层大采高综采工作面煤壁的塑性区宽度;分析了软煤层大采高综采工作面煤壁片帮的主要影响因素,提出了防治煤壁片帮的措施。
     (4)运用弹塑性理论计算出了赵庄煤矿3305软煤层大采高综采工作面前方底板岩层和采空区范围内底板岩层的支承压力;建立了软煤层大采高综采采场底板岩层应力的计算模型,应用Westergard应力函数,对该模型进行了分析计算,得出了在三个边界条件下的采场围岩应力计算公式;根据Coulomb-Mohr准则,通过对平面应力状态下软煤层大采高综采采场边缘破坏区的分析,得出了平面应力状态下和平面应变状态下软煤层大采高综采采场边缘底板岩层最大破坏深度的计算公式;利用修正后的采场底板岩体极限载荷计算公式和滑移线场理论,建立了软煤层大采高综采采场支承压力所形成的底板屈服破坏深度的计算模型,通过对该模型的分析计算,得出了煤层底板岩层的最大破坏深度、最大破坏深度距离工作面端部的水平距离、采空区内底板岩层沿水平面方向最大破坏长度的计算公式。
     (5)通过对软煤层大采高综采工作面液压支架工作阻力与顶板下沉量关系的研究,得出了在基本顶给定变形的条件下,软煤层大采高液压支架所承担给定变形的比例小于普通采高液压支架,并给出了液压支架初撑力、工作阻力的确定原则。构建了端面顶板漏、冒的“块体”结构模型,揭示了软煤层大采高综采工作面端面顶板冒、漏的机理,并提出了防治措施。从液压支架的顶梁长度与直接顶的自承极限垮距长度之间的关系出发,对液压支架的顶梁长度、支柱位置与顶板的适应性进行了分析。构建了支架掩护梁的受力模型,利用散体介质力学理论,得出了液压支架掩护梁所受的水平推力和垂直压力的计算公式。
     (6)针对软煤层大采高综采工作面在复杂地质条件下,顶板破碎较为严重,容易产生漏、冒顶、漏风严重、上隅角瓦斯易超限等不安全隐患,结合赵庄煤矿3305软煤层大采高综采工作面的实际情况,采用现场实践的方法确定了开切眼和撤架通道顶板、两帮的支护加固技术、软煤层大采高综采工作面超前注射玛丽散N型材料加固煤壁技术、预防工作面煤壁片帮、冒顶的安全措施、工作面综合管理的安全措施、上隅角防治瓦斯超限措施。形成了一套较为完善的软煤层大采高综采辅助技术,为软煤层大采高综采工作面安全高产高效的实现提供了可靠的技术保障。
     总之,本文通过对软煤层大采高综采采场围岩控制理论及技术深入、系统的研究,解决了软煤层大采高综采中存在的实际问题,为今后类似煤层煤矿的设计、开采、安全生产的管理和决策提供了科学依据。
China is rich in coal reserves, Thick coal seam reserves account for about 44% of the total reserves in China, Therefore, the thick seam mining technology to a great extent determines the level elevation of technology research and the exertion of economic efficiency of the entire coal industry of China. Over the last decade, The research and production of Large mining height hydraulic support, shearer and the scraper conveyor and other ancillary equipment have made a major breakthrough, contributed to great advances in technology of great mining height fully mechanized mining. As the great mining height fully mechanized mining has the advantage of high recovery rate, the low rate of coal gangue-containing, less coal dust production, small amount of gas emission, etc. , it rapidly developed into a new technology in the thick seam mining technology. However, through years of field observations and a lot of theoretical study many experts and scholars discover that, in similar geological conditions, With the wall of working face and the height of hydraulic support increase, the stability of hydraulic support - rock system will reduce and the accident rate will increase. If subject to impact of faults, fissures, joints, fold, collapse columns of complicated geological conditions and soft seam and the seam itself joints fractured, most likely that the stability of hydraulic support - rock system of the great mining height fully mechanized working face will be worse, the accident rate even higher, bringing serious risks to safety in production of the coal mine. In-depth and systematic study on the surrounding rock control theory and technology of soft seam great mining height fully mechanized stope, Not only provides a scientific basis for designing, mining, production safety management and decision-making of similar coal mine, at the same time is able to enrich and develop the mine pressure and strata control theory, Therefore, the study of this subject has important theoretical significance and practical significance.
     As the initial stage of study on the surrounding rock control theory and technology of soft seam great mining height fully mechanized stope, In this paper, the coal seam and the roof and floor of lowerpermian Shanxi formation seam 3 of Zhao zhuang coal mine in Jin cheng coal industry group were studied, Using methods such as on-site measurement, theoretical analysis, numerical simulation, and industrial test, etc., Exploratory study was done on six aspects, i. e., the regularity of mine pressure of soft seam great mining height fully mechanized stope, the structure and movement breakage regularity of roof rock, the rib fall mechanism and control techniques, the floor damage, the relationship of hydraulic support-surrounding rock and mining technology security system. The key results are as follows:
     (1)By on-site measurement method, the basic features and laws of the regularity of mine pressure of soft seam great mining height fully mechanized stope are revealed.
     (2)On the basis of the "lining beam" theory, aspects of morphology, movement breakage regularity of overlying strata of soft seam great mining height fully mechanized stope were systematically studied. A balanced structure model of main roof rock of soft seam great mining height fully mechanized stope was constructed; Two kinds of deformation instability and slip instability with the possibility of main roof "lining beam" structure,under soft seam great mining height conditions,were proposed. And these two conditions for instability occurs were also given; using the elasticity problem variational method, the mechanical model of immediate roof was solved, the relationship between the amount of immediate roof strata subsidence and therotation angle of main roof, elastic modulus and hydraulic support resistance was obtained.
     (3)By the numerical simulation and theoretical calculation of width of the plastic zone of coal front of the 3305 soft seam great mining height fully mechanized working face of Zhao zhuang coal mine, The mechanism of the rib fall of soft seam great mining height fully mechanized working face was obtained; the main factors of the rib fall of soft seam great mining height fully mechanized working face were analyzed, Control measures for the rib fall was proposed.
     (4)The set of degrees of support pressure rock bottom in front of working face and within goaf were calculated using elastic-plastic theory; rock stress calculation model for soft seam great mining height fully mechanized stope was established, Using Westergard stress function, by analyzing the model, the stope surrounding rock stress formula in the three boundary conditions was obtained; According to the Coulomb-Mohr criterion, Through the analysis of the edge of the destroyed areas of soft seam great mining height fully mechanized stope in the plane stress state and plane strain condition, the formula for calculating the depth of the greatest damage of soft seam great mining height fully mechanized stope was obtained; Using revised stope floor rock limit load calculation formula and slip-line field theory, the depth of yield damage calculation model of abutment pressure of soft seam great mining height fully mechanized stope was established, By calculation of the model, the formula of greatest damage depth of seam floor strata, the horizontal distance from the depth of the greatest damage to the face end and the length of the greatest damage of floor strata within goaf on horizontal direction were obtained.
     (5)Through the study of the relationship of hydraulic support working resistance and roof subsidence of soft seam great mining height fully mechanized working face, under the conditions of main roof given deformation, Hydraulic support of soft seam great mining height undertaken by a given percentage of given deformation was less than normal hydraulic support, principles were given to determine the setting load and working resistance of hydraulic support. The leakage "block" structure model of the end roof was constructed, Revealed the mechanism of the end roof leakage of soft seam great mining height fully mechanized working face, and proposed control measures. Proceeding from the relationship between the top beam length of hydraulic support and limit collapse gauge the length of immediate roof, carried out an analysis of the top beam length, pillar location of hydraulic support and roof applicability. The force model of shield-beam of hydraulic support was constructed, by granular media mechanics theory, the calculation formulas of the level of thrust and vertical pressure of shield-beam of hydraulic support were obtained.
     (6)In complex geological conditions, for the existence of roof strata broken severely, easy to form roof fall, severe leakage, upper corner gas easily overrun and the other hidden dangers of soft seam great mining height fully mechanized working face, With the actual situation of the 3305 soft seam great mining height fully mechanized working face of Zhao zhuang coal mine, On-site practical method was adopted to determine the support and reinforcement techniques of the roof and two side coal-walls of open-off cut and gateway, injection Malisan N material reinforcement technology advance soft seam great mining height fully mechanized working face, security measures to prevent the rib and roof fall, integrated management of working face safety measures, upper corner gas easily overrun measures. A set of perfect aid technology for soft seam great mining height fully mechanized was achieved, providing a reliable and efficient technical support for safe extraction in soft seam great mining height fully mechanized working face.
     In short, the thesis researches deeply and systematically into the theory and technology of surrounding rock control in soft seam great mining height fully mechanized stope, solves the practical problems existing in soft seam great mining height fully mechanized and has reference value to the future similar coal mine design, mining, product safety.
引文
[1]王剑光.采煤法现状及发展趋势[J].煤矿安全,2004,35(6):28-30
    [2]申宝宏.我国煤炭开采技术发展现状及展望,中国煤炭工业可持续发展的新型工业化之路—高效、安全、洁净、结构化[R].中国煤炭学会岩石力学与支护专业委员会,北京:煤炭工业出版社,2004,9,55-58
    [3]韩可琦,王玉浚.中国能源消费的发展趋势与前景展望[J].中国矿业大学学报,2004,33(1),1-5
    [4]宁宇.我国煤矿安全科技需求与对策[R].北京:国家安全生产监督管理总局,2009
    [5]何富连,钱鸣高,刘长友.高产高效工作面支架—围岩保障系统[M].徐州:中国矿业大学出版社
    [6]王学军,钱学森,马立强.厚煤层大采高全厚开采工艺研究与应用[J].采矿与安全工程学报,2009,26 (2),212-216
    [7]王家臣,仲淑姮.我国厚煤层开采技术现状及需要解决的关键问题[J].中国科技论文在线,2008,3 (11),829-834
    [8]弓培林.大采高采场围岩控制理论及应用研究[D].太原:太原理工大学,1998
    [9]王家臣.我国综放开采技术及深层次发展问题探讨[J].煤炭科学技术,2005,33(1):14-17.
    [10] RUTHERFORD A. Moderately thick seam mining in Australia[C]//WU J,WANG J C. Proceedings of’99 International Workshop on Underground Thick-Seam Mining. Beijing: China Coal Industry Publishing House, 1999: 122-135.
    [11]武建国.大采高综采工作面与巷道围岩控制技术研究[D].太原:太原理工大学,2004
    [12]史红,姜福兴.采场上覆岩层结构理论及其新进展[J].山东科技大学学报(自然科学版),2005,24(1),21-25
    [13]翟英达.采场上覆岩层中的面接触块体结构及其稳定性力学机理[M].北京:煤炭工业出版社,2006
    [14]陈炎光,钱鸣高.中国煤矿采场围岩控制[M].徐州:中国矿业大学出版社,1994
    [15]张百胜.极近距离煤层开采围岩控制理论及技术研究[D].太原:太原理工大学,2008
    [16]钱鸣高,石平五.矿山压力与岩层控制[M].徐州:中国矿业大学出版社,2003:80
    [17] Qian Minggao. A study of the behaviour of overlying strata in longwall mining and its application to strata control[M].Strata Mechanics, Elsevier Scientific Publishing Company, 1982: 13-17
    [18] Qian M G, He F L, Miao X X. The system of strata control around longwall face in China[J]. In: Guo Yuguang, Tad S Golosinski, eds. Mining Science and Technology. Rotterdam: A A Balkema, 1996:15-18
    [19]宋振骥.实用矿山压力控制[M].徐州:中国矿业大学出版社,1988
    [20]郝海金.长壁大采高上覆岩层结构及采场支护参数的研究[D].北京:中国矿业大学,2004
    [21]钱鸣高. 20年来采场围岩控制理论与实践的回顾[J].中国矿业大学学报,2000,29(1):1-4
    [22]贾喜荣.矿山岩层力学[M].北京:煤炭工业出版社,1997
    [23]冯国瑞.残采区上行开采基础理论及应用研究[D].太原:太原理工大学,2009
    [24] Chien(Qian) Minggao. A study of the behavior of overlying strata in longwall mining and its application to strata control, Proceedings of the Symposium on Strata Mechanics, Elsevier Scientific Publishing Company, 1982, 13-17
    [25]钱鸣高,缪协兴.采场上覆岩层结构的形态与受力分析[J].岩石力学与工程学报, 1995,14(2),97-106
    [26]缪协兴,钱鸣高.采场围岩整体结构与砌体梁力学模型[J].矿山压力与顶板管理,1995,3-4,3-12
    [27]宋振骐.实用矿山压力控制[M].徐州:中国矿业大学出版社,1992
    [28]宋振骐.采场上覆岩层运动的基本规律[J].山东矿业学院学报,1979,1,22-41
    [29]贾喜荣.坚硬顶板垮落机理及其工作面几何参数的确定[C].第三届采场矿压理论与实践讨论会论文集,1986
    [30]钱鸣高,赵国景.老顶断裂前后的矿山压力变化[J].中国矿业学院学报,1986, 15(4):11-19
    [31]朱德仁.长壁工作面老顶的断裂规律及应用[D].徐州:中国矿业大学,1987
    [32] Qian Minggao, He Fulian. The behavior of the main roof in longwall mining, Weighting Span, Fracture and Disturbance[J]. Jou of Mine, Metals & Fuels, June-July, l989, 240-246
    [33]姜福兴.薄板力学解在坚硬顶板采场的适用范围[J].西安矿业学院学报,1991,11(2):40-50
    [34]钱鸣高,张顶立,黎良杰,康立勋,许家林.砌体梁的“S-R”稳定及其应用[J].矿山压力与顶板管理,1994,3:6-10
    [35]钱鸣高,何富连,王作棠等.再论采场矿山压力理论[J].中国矿业大学学报,1994,23(3):1-12
    [36]钱鸣高,缪协兴.采场上覆岩层结构的形态与受力分析[J].岩石力学与工程学报,1995,14(2):97-106
    [37]缪协兴,钱鸣高.采矿工程存在的力学问题[J].力学与实践,1995,5,70-71
    [38] Qian M G, He F L, M iao X X. The system of strata control around longwall face in China[ J]. In: Guo Yuguang, Tad S Golosinski, eds. Minging Science and Technology. Rotterdam: A A Balkem a, 1996. 15-18
    [39]缪协兴.采场老顶初次来压时的稳定性分析[J].中国矿业大学学报,1989,18(3):88-92
    [40]侯忠杰.老顶断裂岩块回转端角接触面尺寸[J].矿山压力与顶板管理,1999,3-4:29-31
    [41]侯忠杰,谢胜华.采场老顶断裂岩块失稳类型判断曲线讨论[J].矿山压力与顶板管理,2002,2:1-3
    [42]黄庆享,钱鸣高,石平五.浅埋煤层采场老顶周期来压的结构分析[J].煤炭学报,1999,24(6):581-585
    [43]黄庆享.浅埋煤层长壁开采顶板控制研究[D].徐州:中国矿业大学,1998
    [44]黄庆享,石平五,钱鸣高.老顶岩块端角摩擦系数和挤压系数实验研究[J].岩土力学,2000,1:60-63
    [45]钟新谷.长壁工作面顶板变形失稳的突变模式[J].湘潭矿业学院学报,1994,2:1-6
    [46]钟新谷.顶板岩梁结构的稳定性与支护系统刚度[J].煤炭学报,1995 ,20(6):601-606
    [47]钟新谷.采场坚硬顶板的弹性稳定性分析[J].煤,1996,4:15-17
    [48]闫少宏,贾光胜,刘贤龙.放顶煤开采上覆岩层结构向高位转移机理分析[J].矿山压力与顶板管理,1996,3:3-5
    [49] JiangFuxing, JiangGuoan. Theory and technology for hard roof control of longwall face in chinese collieries[J]. Journal of Coal Science & Engineering, 1998, 4(2):1-6
    [50]姜福兴,宋振骐,宋扬.老顶的基本结构形式[J].岩石力学与工程学报,1993,3:366-379
    [51]姜福兴.岩层质量指数及其应用[J].岩石力学与工程学报,1994,3:270-278
    [52]钱鸣高,缪协兴,许家林.岩层控制中关键层的理论研究[J].煤炭学报,1996,3:225-230
    [53] Qian M.G., He F.L., Miu X.X. The system of strata control around longwall face in Chine, Proceedings[C]. '96 International Symposium on Mining Science and Technology, 15-18
    [54]钱鸣高,缪协兴.采场矿山压力理论研究的新进展[J].矿山压力与顶板管理,1996,2:17-20
    [55]许家林.岩层移动控制的关键层理论及其应用[D].徐州:中国矿业大学,1999
    [56]钱鸣高,何富连,缪协兴.采场围岩控制的回顾与发展[J].煤炭科学技术,1996,1:1-3
    [57]茅献彪,缪协兴,钱鸣高.采动覆岩中关键层的破断规律研究[J].中国矿业大学学报,1998,1:39-42
    [58]钱鸣高,茅献彪,缪协兴.采场覆岩中关键层上载荷的变化规律[J].煤炭学报,1998,2:135-230
    [59]许家林,钱鸣高.覆岩关键层位置的判断方法[J].中国矿业大学学报,2000,5:463-467
    [60]许家林,钱鸣高.覆岩采动裂隙分布特征的研究[J].矿山压力与顶板管理,1997,3-4:210-212
    [61]钱鸣高,许家林.覆岩采动裂隙分布的“O”型圈特征特征的研究[J].煤炭学报,1998,5:466-469
    [62]许家林,钱鸣高,高红新.采动裂隙实验结果的量化方法[J].辽宁工程技术大学学报,1998,6:586-589
    [63]许家林,孟广石.应用上覆岩层采动裂隙“O”型圈特征抽放采空区瓦斯[J].煤矿安全,1995,7:2-4
    [64]许家林,钱鸣高.覆岩注浆减沉钻孔布置研究[J].中国矿业大学学报,1998,3:276-279
    [65]许家林,钱鸣高.关键层运动对覆岩及地表移动影响的研究[J].煤炭学报,2000,2:122-126
    [66]黎良杰.采场底板突水机理的研究[D].徐州:中国矿业大学,1994
    [67]钱鸣高,缪协兴,许家林等.岩层控制中关键层的理论[M].徐州:中国矿业大学出版社,2000
    [68]姜福兴,Xun Luo,杨淑华.采场覆岩空间破裂与采动应力场的微震研究[J].岩土工程学报,2003,1:23-25
    [69]姜福兴,Xun Luo.微震监测技术在矿井岩层破裂监测中的应用[J].岩土工程学报,2002,2:147-149
    [70]于学馥.信息时代岩土力学与采矿计算初步[M].北京:科学出版社,1991
    [71]康立勋.大同综采工作面端面漏冒及其控制[D].徐州:中国矿业大学,1994
    [72] S.S.Peng.煤矿地层控制[M].北京:煤炭工业出版社,1984
    [73]靳钟铭,徐林生.煤矿坚硬顶板控制[M].北京:煤炭工业出版社,1994
    [74]刘天泉.矿山岩体采动影响与控制工程学及其应用[J].煤炭学报,1995,20(1):1-5
    [75] S.S.Peng. Coal mine ground control, John Wiley & Sons, Inc, New York, 1978
    [76] Arutyunyan N, Metlov V V. Some problems in the theory of creep in bodies with variable boundaries[J]. Mechanics of Solids, 1982, 17(5): 92-103
    [77]徐曾和,徐小荷,唐春安.坚硬顶板下煤柱岩爆的尖点突变理论分析[J].煤炭学报,1995,20(5):485-491
    [78]谭云亮,王泳嘉,朱浮生.矿山岩层运动非线性动力学反演预测方法[J].岩土工程学报,1998,4,16-19
    [79]张金才,刘天泉.论煤层底板采动裂隙带的深度及分布特征[J].煤炭学报,1990,15(2):46-55
    [80] B.斯列萨列夫.水体下安全采煤的条件[R].国外矿山防治水技术的发展和实践,冶金矿山设计院,1983
    [81][波]M.鲍莱茨基,M.胡戴克著.于振海,刘天泉译.矿山岩体力学[M].北京:煤炭工业出版社,1985
    [82][苏]и.Α.多尔恰尼诺夫.赵义译.构造应力与井巷工程稳定性[M].北京:煤炭工业出版社,1984
    [83] B.H.G.布雷斯,E.T.布朗.冯树仁等译.地下采矿岩石力学[M].北京:煤炭工业出版社,1990
    [84]刘天泉等.煤矿地表移动与覆岩破坏规律及其应用[M].北京:煤炭工业出版社,1981
    [85]张金才,刘天泉.论煤层底板采动裂隙带的深度及分布特征[J].煤炭学报,1990,15(2):46-55
    [86]张金才,张玉卓,刘天泉.岩体渗流与煤层底板突水[M].北京:地质出版社,1997
    [87]高延法,李白英.受奥灰承压水威胁煤层采场底板变形破坏规律研究[J].煤炭学报,1992,17(1):25-27
    [88]李白英.预防矿井底板突水的“下三带”理论及其发展与应用[J].山东矿业学院院报,1999,18(4):11-18
    [89]张玉卓.岩层与地表移动计算原理及程序[M].北京:煤炭工业出版社,1993,137-138
    [90]曹胜根,刘文斌,袁文波等.房式采煤工作面的底板岩层应力分析[J].湘潭矿业学院学报,1998,13(3):14-19
    [91]王作宇,刘鸿泉.承压水上采煤[M].北京:煤炭工业出版社,1993
    [92]王作宇.底板零位破坏带最大深度的分析计算[J].煤炭科学技术,1992,2:1-8
    [93]王作宇,刘鸿泉,王培彝等.承压水上采煤学科理论与实践[J].煤炭学报,1994,19(1):40-48
    [94]杨硕.采动损害空间变形力学预测[M].北京:煤炭工业出版社,1994
    [95]李增琪.计算矿山压力和岩层移动的三维层体模型[J].煤炭学报,1994, 19 (2):109-121
    [96]何国清,杨伦,凌赓娣等编.矿山升采沉陷学[M].徐州:中国矿业大学出版社,1991,87-114
    [97]李增琪.用富氏积分变换计算开挖引起的地表移动之二[J].煤炭学报,1985,10(1):100-106
    [98]谢和平.岩石、混凝土损伤力学[M].徐州:中国矿业大学出版社,1990
    [99]何满潮,赵经彻.建筑物下开采理论与实践[M].徐州:中国矿业大学出版社,1995
    [100]于广明.分形及损伤力学在开采沉陷中的应用研究[D].北京:中国矿业大学,1997
    [101]颜荣贵.地基开采沉陷及其地表建筑[M].北京:冶金工业出版社,1995
    [102]麻凤海,范学理,王泳嘉.岩层移动动态过程的离散单元分析[J].煤炭学报,1996,21 (4):388-392
    [103]麻凤海,王泳嘉,范学理.连续介质流变理论及其在岩层下沉动态过程中的应用[J].中国有色金属学报,1996,6 (4):7-12
    [104]崔希民,陈至达.开采位移场的有限变形分析[J].中国矿业大学学报,1995, 24(4):1-5
    [105]崔希民,陈至达.非线性几何场论在开采沉陷预测中的应用[J].岩土力学,1997,18 (4):15-29
    [106]李德海.近水平层状岩层移动规律的探讨[J].矿山压力与顶板管理,1996,2:39-42
    [107] HAO Haijin,ZHANG Yong. Stability analysis of coal wall in full-seam cuttingworkface with fully-mechanized in thick seam[J]. Journal of Liaoning Technical University(Natural Science),2005,24(4):489-491
    [108]武建国.大采高综采工作面与巷道围岩控制技术研究[D].太原:太原理工大学,2004
    [109]夏均民.大采高综采围岩控制与支架适应性研究[D].泰安:山东科技大学,2004
    [110]陈炎光,徐永圻.中国采煤方法[M].徐州:中国矿业大学出版社,2001
    [111]王国法.大采高技术与大采高液压支架的开发研究[J].煤矿开采,2009,14(1):1-4
    [112]高玉斌,李永学.寺河矿6.2m大采高综采工作面设备选型研究与实践[J].煤炭工程,2008,5:5-7
    [113]苏清政.国产首套6.2m大采高综采支架应用实践[J].煤炭工程,2007,5:99-101
    [114]陈昆木.厚煤层大采高回采工艺探讨[J].煤炭技术,2008,27(10):160-161
    [115]孙攀,李阳,郭丹丹. 6m以上大采高液压支架稳定性分析与控制措施[J].中州煤炭,2009,10:14-15
    [116]格罗莫夫Ю.В.著,赵宏珠译.缓倾斜厚煤层开采矿山压力控制[M].徐州:中国矿业大学出版社,1990
    [117]赵宏珠.大采高支架的使用及参数研究[J].煤炭学报,1991,16(1):32-38
    [118]郝海金,吴健,张勇等.大采高开采上位岩层平衡结构及其对采场矿压显现的影响[J].煤炭学报,2004,29(2):137-141
    [119]弓培林,金钟铭.大采高采场覆岩结构特征及运动规律研究[J].煤炭学报,2004,29(1):7-11
    [120]钱鸣高,石平五.矿山压力与岩层控制[M].徐州:中国矿业大学出版社,2003:284
    [121]贺兴元,江杰.回采工作面木锚杆防片帮技术[J].煤矿开采,2001,1:72-73
    [122]路建军,苏毅,崔建井.综采松软煤壁聚氨脂加固技术[J].煤矿开采,2002,7(4):69-74
    [123]徐金海,张顶立,李正龙等.综放工作面破碎顶板冒落特点及控制技术[J].煤,1999,8(2):30-32
    [124]郝洪海,于明献,姚治彬等.煤壁浅孔注水控制“三软”煤层煤壁片帮[J].矿山压力与顶板管理,2003,2:34-35
    [125]李建国,田取珍,杨双锁.河滩沟煤矿综放面煤壁片帮机理及其控制[J].煤炭科学技术,2003,31(12):73-74
    [126]赵宏珠.大采高支架采面煤壁片帮规律及防护[J].矿山压力,1989,2:15-20
    [127]吴士良.三软煤层大采高综采围岩控制技术[J].焦作工学院学报,1995,18(3): 185-188
    [128]郝海金;张勇.大采高开采上作面煤壁稳定性随机分析[J].辽宁工程技术大学学报,2005,24(4):489-491
    [129]刘波,韩彦辉. FLAC原理、实例与应用指南[M].北京:人民交通出版社,2005
    [130]钟玲文.煤内生裂隙的成因[J].中国煤田地质,2004,16(3):6-9
    [131]赵理中,翟建山.对煤层断裂破坏的预测[J].山西矿业学院学报,1992,10(4):282-286
    [132]宋选民.潞安矿区构造裂隙分布特征的实测分析[J].矿山压力与顶板管理,2002,3:101-106
    [133]宋选民.放顶煤开采顶煤裂隙分布与块度的相关研究[J].煤炭学报,1998,23(2):150-154
    [134]周维垣.高等岩石力学[M].北京:水利水电出版社,2005
    [135]凌贤长,蔡德所.岩体力学[M] .哈尔滨:哈尔滨工业大学出版社,2002
    [136]张培森.采动条件下底板应力场及变形破坏特征的研究[D].泰安:山东科技大学,2005
    [137]蒋金泉.采场围岩应力与运动[M].北京:煤炭工业出版社,1993
    [138]杨天鸿,唐春安等.岩石破裂过程渗流与应力祸合分析[J].岩土工程学报,2001,(4):489-493
    [139] Li Shiping, Wu Daxin. Effect of Confining Pressure, Pore Pressure and Specimen Dimension on Permeability of Yinzhuang sandstone. Int. J. Rack Mech. Min. Sci..1997 (3):435-441
    [140]杨强,张浩,吴荣宗.二维格构模型在岩石类材料开裂模拟中的应用[J].岩石力学与工程学报,2000,(19):941-945
    [141]张金才,张玉卓,刘天泉.岩体渗流与煤层底板突水[M].北京:地质出版社,1993
    [142]代长青.承压水体上开采底板突水规律的研究[D].淮南:安徽理工大学,2005
    [143]朱昌星.综放工作面开切眼与停采线大断面巷道支护技术研究[D].泰安:山东科技大学,2004
    [144]王宝廷.马丽散加固巷道围岩技术方案之探讨[J].同煤科技,2006,(2):29-30
    [145]宋国华.马丽散加固破碎煤体技术的应用[J].科技情报开发与经济,2007,17(17):295-297
    [146]高新亮,梁志荣,闫斌移.马丽散注浆加固技术在综放面顶板管理中应用[J].能源技术与管理,2006,5:25
    [147]刘长友,钱鸣高,曹胜根等.采场直接顶对支架与围岩关系的影响机制[J].煤炭学报,1997,5:471-476
    [148]方新秋,何富连,钱鸣高.直接顶稳定性的相似模拟试验[J].矿山压力与顶板管理,1999,3:41-44
    [149]徐芝纶.弹性力学[M],北京:高等教育出版社,1990
    [150] C.Mark, T.M.Barton. A New Look at the Uniaxial Compressive Strength of Coal Rock Mechanics, Baljema 1996, 405-412
    [151]朱涛,张兆民,宋敏.塔山煤矿超厚煤层综放工作面重型装备搬撤技术[J].煤炭工程,2008,10:15-17
    [152]康立勋,翟英达.块体结构岩体中的应力传递与采场基本顶结构载荷计算[J].岩石力学与工程学报,2005,23(5):1720-1723
    [153]朱涛,张百胜,冯国瑞等.极近距离煤层下层煤采场顶板结构与控制[J].煤炭学报,2010,2:190-193
    [154]贺广零,黎都春,翟志文等.采空区煤柱-顶板系统失稳的力学分析[J].煤炭学报,2007,32 (9):897–898
    [155]康立勋,杨双锁,钱鸣高.大同综采工作面直接顶端面块体失稳与平衡分析[J].煤炭学报,1999,24(3):247-251
    [156]于海勇,阎保金.放顶煤综采工作面支架受力研究[J].岩石力学与工程学报,1994,13(3):261-269
    [157] ZHAI Ying da, KANG Li xun. Study on the cutting plane friction law of sandstone [J]. Journal of Coal Science & Engineering(China), 2003,9(2): 40-42

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700