用户名: 密码: 验证码:
大断面煤巷围岩稳定性控制及动态评价体系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤巷围岩大多属于层状或块状结构,其本身强度较低,且节理裂隙发育,完整性较差;同时受复杂外部工程环境的影响,煤巷围岩控制和支护越来越成为煤矿生产与安全的重要难题。究其原因,主要存在的问题是:①对煤巷围岩地质力学特性和工程环境条件缺乏准确的掌握和科学的评价;②对煤巷围岩的变形失稳机理的认识不够清楚;③缺乏针对煤巷围岩力学特性的围岩控制和锚固理论;④未能对煤巷围岩的稳定性做出科学有效的评价;⑤煤巷围岩稳定性评价与支护设计不能紧密结合,不能用于指导围岩控制和支护设计。目前人们对特定条件下煤巷围岩稳定性缺乏科学定量的判断手法,缺乏对不同巷道围岩稳定性进行科学评价的理论体系,从而影响煤巷围岩控制和支护效果。因此,深入探讨煤巷围岩稳定性控制及锚固理论,运用岩层控制学及地质力学理论系统研究大断面煤巷围岩的地质力学特性和所处工程环境条件的影响,准确掌握围岩结构及其对围岩稳定性的影响,探索出一条以支护设计为中心的适用于大断面煤巷的围岩稳定性评价体系成为急待解决的技术课题。
     煤巷围岩稳定性控制与评价的目的是科学准确的反映巷道围岩结构的复杂性,为煤巷围岩控制和支护设计提供可靠依据。总结国内外对煤巷围岩的各种评价方法,发现存在反映的全面性不足,侧重点和选用指标以及分级方法也欠准确。目前国内外对煤巷围岩稳定性控制和评价研究主要表现为如下特点:
     (1)对煤巷围岩地质力学特性和工程环境条件的研究不够全面和准确,对煤巷围岩的变形失稳机理的认识不够清楚;缺乏针对煤巷围岩力学特征的稳定性控制及锚固理论。
     (2)围岩稳定性分类现在虽然由单因素定性分级向多因素定性和多因素定量动态模式发展,但影响围岩质量的多种因素具有明显的不确定性、复杂性和模糊性特征,用少数几个固定评价指标和简单的数学表达式难以准确、全面地概括其真实情况,围岩质量的完全定量化分级只能具有数学意义。
     (3)各类围岩质量的评价方法都是从不同侧面选择几个固定的参评因素,按一定标准进行简单的线性运算,从而得出围岩质量的单一评分,并据此进行围岩稳定性分类。这些方法虽然简单方便,但无法反映复杂多变的地质情况,只能反映围岩稳定性的某一方面特征。由于影响围岩稳定性的因素常具有多层次性、模糊性、不确定性等复杂特点,对于不同地质背景和具体工程,其影响因素及权值都不是固定的,既有共同性,又有特殊性。
     (4)围岩稳定性的分类主要是针对矿区地质条件下巷道具有的共性进行分析,而在同一矿区甚至同一巷道,巷道围岩状况具有很大的差异,受地质构造和相邻工程环境影响的不同形成局部的特殊性。在同一矿区巷道围岩稳定性各不相同,进行评价时应充分考虑地质构造和工程环境的影响。因此,巷道围岩稳定性评价应当采用静态和动态等多种评价方法从不同侧面进行围岩稳定性的动态评价。在同一矿区进行巷道稳定性评价时应充分考虑个体巷道所处不同的地质构造和工程环境的影响。
     本文以上述观点为基础,以山西亚美大宁能源有限公司大断面煤巷和矿区地质构造为研究对象,采用理论分析、现场实测、数值模拟计算和工业性试验等方法,对煤巷围岩稳定性控制理论、地质力学评价与支护设计、扰动因素影响加权与修正、数值模拟分析与验证优化等几个方面做了探索性研究;形成了煤巷围岩稳定性控制和动态评价体系。主要研究成果如下:
     (1)以煤巷围岩地质力学特性为基础,研究煤巷围岩应力分布特征和支护对煤巷围岩稳定性的影响机理,探讨煤巷围岩的变形破坏规律。
     (2)运用弹塑性理论分析煤巷围岩的稳定性状态,揭示煤巷围岩失稳破坏机理,依据裂隙体及破碎体的煤体力学特征,运用厚板(体)理论进行煤体两帮锚固体厚度、锚杆几何和力学参数设计。
     (3)研究煤巷在不同围岩稳定性平衡状态下的控制和锚固原理;提出对围岩稳定性状态较好的围岩采用状态控制原理,对稳定性状态差的大变形围岩采用变形控制原理;对围岩整体强度低,围岩应力状态呈静水压力状态的采用整体锚固结构原理。
     (4)以煤巷围岩控制和支护设计为中心,运用岩层控制学和地质力学理论,采用地质力学评价与支护设计、扰动因素影响加权与修正、数值模拟分析与验证优化,形成了三位一体的巷道围岩稳定性动态评价体系。
     (5)运用现场取芯和实验室力学测试方法,研究分析15m范围内围岩各岩层的地质力学特性指标。进行煤巷围岩稳定性初步评价和支护方案设计。建立地质力学特性分析—稳定性评价—支护设计为一体的地质力学评价方法。
     (6)确定了外部扰动因素(地质构造、相邻工程、采动压力)对围岩稳定性影响的重要性;针对煤巷所处工程环境特点,分析地质构造、相邻工程、采动压力外部扰动因素对煤巷围岩稳定性的影响范围及影响等级,确定扰动因素权值,进行影响程度评价和对初步支护方案进行修正,形成了独特的扰动因素加权评价方法。
     (7)运用数值模拟方法分析煤巷在无支护状态下和在支护方案条件下围岩的应力和变形分布规律。验证煤巷围岩的稳定状态,优化支护设计方案和支护参数。
     总之,本文通过系统研究,建立了大断面煤巷围岩稳定性控制及动态评价体系,解决了大断面煤巷围岩稳定性控制和支护存在的实际问题,为今后煤巷围岩控制、稳定性评价和支护设计提供科学依据。
Most surrounding rocks in coal roadway belong to layered or massive structure with low intensity, joint fissures, and poor integrity; influenced by many project environmental factors simultaneously, it becomes a difficult problem more and more that how to control and support the surrounding rock for production and safety in coal mine. Tracing its reasons, the main problems include:①it lacks accurate mastering and scientific appraisement about geological mechanical properties and project environmental condition;②there is no clear recognition to the deformation destabilizing mechanism of roadway surrounding rock;③there is no enough stability control and anchorage theory aimed at the mechanical properties of roadway surrounding rock;④accurate and scientific appraisement on the stability of roadway surrounding rock cannot be made;⑤the surrounding rock stability appraisement cannot be combined with support design closely and cannot guide the surrounding rock control and support. There is no scientific quantitative judgment technique direct to the stability of roadway surrounding rock under special conditions; it lacks scientific theory system for appraising on the stability of different roadway surrounding rocks, which all influence the stability control and support effect of roadway surrounding rock. Therefore, it is a technique subject pressing for solution to further discuss on stability control and anchorage theory of roadway surrounding rocks, systematically study the influence of geological mechanical properties of surrounding rock in large section roadway and project environmental condition utilizing strata control science and geological mechanical theory, accurately master the structure of surrounding rock and its influence on surrounding rock stability, and taking support design as the central explore a surrounding rock stability appraisement system which is suitable for large section roadway.
     The surrounding rock stability control and appraisement in coal roadway aims to reflect the complexity of surrounding rock structure scientifically and accurately and to provide a reliable basis for the roadway surrounding rock control and support design. Summarized all kinds of appraisement methods at home and aboard, we can see that those methods had insufficient integrity, the emphasis points, the selected indicators and grading methods were diffident. At present the studies on surrounding rock stability control and appraisement in coal roadway at home and aboard mainly have the following characteristics:
     (1) The study on geological mechanical properties and project environmental condition of surrounding rock in coal roadway is not very comprehensive and accurate. There is no clear recognition to deformation destabilizing mechanism of roadway surrounding rock. There is no enough stability control and anchorage theory aimed at the mechanical properties of roadway surrounding rock.
     (2) The classification of surrounding rock stability is developing from the mode of single factor and qualitative graduation to the dynamic mode of multi-factors and quantitative graduation. However, the factors influencing surrounding rock quality have obvious characteristics of uncertainty, complexity and fuzziness. It is difficult to generalize the practical situations accurately and comprehensively by minority fixed appraisement indicators and simple mathematical expressions, and the complete quantitative graduation of surrounding rock quality only has mathematical significance.
     (3) All kinds of surrounding rock quality appraisement methods select several fixed participating factors from different sides, and carry on simple linear operation according to certain standards, then obtain single scores of surrounding rock quality, and then based on these scores make classification about the stability of surrounding rock. Although these methods are simple and convenient, they cannot reflect the complicated and diversified geological situation, but only reflect one aspect characteristic of surrounding rock stability. The factors influencing the surrounding rock stability usually have complex characteristics of multi-levels, fuzziness, uncertainty, etc. Regarding the different geological backgrounds and the concrete project, their influencing factors and weights are not fixed, which both have the intercommunity and the particularity.
     (4) The classification of rock stability is founded on analysis mainly on the intercommunity of geological condition in mining areas. However, in same mining area even in same roadway, the rock condition has great difference and each forms partial particularity as result of the different influence of geologic structure and neighboring project environment. The rock stability is different in same mining roadway, so we should consider the influence of geologic structure and project environment completely while carrying on appraisement.
     Therefore, the stability appraisement of roadway surrounding rock should adopt both static and dynamic appraisement methods to dynamically appraise from different sides. In same mining area we should consider the influence of geologic structure and project environment where the individual roadway locates while carrying on appraisement.
     Based on the above viewpoints, taken large section coal roadway of Shanxi Yamei Daning energy Limited company and geological structure as the study objects, this paper has adopted theoretical analysis, field measurement, numerical simulation calculation, industrial experiment and other methods to make an exploratory research on the surrounding rock stability control theory in coal roadway, geological mechanical appraisement and support design, the influencing weight and revision of the disturbance factors, numerical simulation and verified optimization, and formed the surrounding rock stability control and dynamic appraisement system. The main research achievements as follows:
     (1) Based on geological mechanical properties in coal roadway surrounding rock, the paper has studied the characteristic of stress distribution and the mechanism that support influence roadway surrounding rock stability, and discussed on the rule of deformation and destruction of coal roadway surrounding rock.
     (2) The research has analyzed the stability condition of coal roadway surrounding rock utilizing elastic-plastic theory, exposed the destabilization and destruction mechanism of surrounding rock, and also according to coal seam’s mechanical properties of cracked body and coal body studied how to design the anchorage wall’s thickness, bolts’geometric and mechanical parameters of the broken sides using thick plate theory.
     (3) The paper has researched the principle of control and anchorage under the different equilibrium states of surrounding rock stability; and suggested adopting the principle of state control for surrounding rock with good stable condition, the principle of deformation control for surrounding rock with bad stable condition, and the principle of whole anchorage structure for surrounding rock with low intensity and hydrostatic pressure state.
     (4) Taken stability control of roadway surrounding rock and support design as the central, utilizing strata control science and geological mechanical theory, the paper has formed a trinity dynamic appraisement system of roadway surrounding rock stability based on geological mechanical appraisement and support design, the influencing weight and revision of the disturbance factors, numerical simulation and verified optimization.
     (5) Through taking the core on spot and testing it in the laboratory, the paper has made experimental analysis on each layer’s geological mechanical properties in 15m scope. Also it has made preliminary appraisal on surrounding rock stability and design of support scheme, and constructed the appraisement method based on the trinity of geological mechanical properties of surrounding rock, stability appraisement and support design.
     (6) The paper has confirmed the importance that the exterior disturbance factors (geological structure, neighboring project) had influence on surrounding rock stability; In view of the characteristic of project environment where the coal roadway locates, the paper has analyzed the influencing scope and graduation of each exterior disturbance factor including geologic structure, neighboring project environment and mining pressure to the stability of roadway surrounding rock, fixed the weight of disturbance factors, appraised the influence and revised the supporting scheme of surrounding rock stability, and formed a unique appraisement system based on the disturbance factor weight.
     (7) Utilizing numerical simulation analysis, the paper has researched the stress and deformation distribution rule and the characteristic of abscission layer under supporting and non-supporting roadway surrounding rock. And through the analysis on the stability state of surrounding rock, the paper identified and optimized the supporting scheme.
     In a word, this paper constructed the surrounding rock stability control and dynamic appraisement system of large section roadway through systematic research, which has solved the actual problems existing in the surrounding rock stability control and support of large section roadway and provided a scientific basis for the future control and support of surrounding rock in coal roadway.
引文
[1]韩可琦,王玉浚,中国能源消费的发展趋势与前景展望,中国矿业大学学报,2004,33(1),1-5.
    [2]申宝宏,我国煤炭开采技术发展现状及展望,见,中国煤炭工业可持续发展的新型工业化之路—高效、安全、洁净、结构化,中国煤炭学会岩石力学与支护专业委员会,北京,煤炭工业出版社,2004,9,55-58.
    [3]中国石油和化学工业协会,中国石油和化工经济数据快报,2005,16,258.
    [4] Anchoring & Grouting,Proceedings of International Conference on Anchoring & Grouting toward the new century, zhongshan University Publisher, 1999.
    [5] W.ZHU, Z.LIANG, J.XU. Physical Simulation Tests on Jointed Rock and Strength Prediction. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. Vol.30, No.5, pp.545-550, 1993.
    [6] oodman, R.E. Block theory and its application. Geotechnique, 1995,3:383-423.
    [7] GSharpe, RS, Non-destructive Ultrasonic Testing, Chartered MechanicalEngineer June 1979, pp. 65-68.
    [8] J.C.施坦库斯等,锚杆支护新进展,中国煤炭,1997(2) .
    [9]徐坤.围岩稳定性综合控制技术的应用[J].煤矿开采,2005,10(4):49-51.
    [10]曹锋,程永.神火矿区回采巷道围岩稳定性分类研究[J].煤矿开采,2006,11(6):63-66.
    [11]肖猛,丁德馨,莫勇.刚软岩巷道围岩稳定性的FLAC3D数值模拟研究[J].矿业研究与开发,2007,27(1):1005-2763.
    [12]李义.高国付.赵阳升.基于特征锚杆工作荷载无损检测的巷道围岩稳定性评估初步研究[J].岩石力学与工程学报,2004,23(增2):4893-4897.
    [13] P.G.Fuller. Flexibolt flexible roof bolts, a new concept for strata control. 12th conference on ground control in minging,1993.
    [14] P.A.Cundall. A Computer Model for Simulating Progressive Large Scale Movements in Block System. Rock Fracture Proc. Int. Symp. R.M., 1971.P2-8.
    [15] N.J.Halison,Design of the roof bolting system,Colliery Guardian.1987.9.
    [16]朱银昌,陈庆禄,张铁岗.复杂难采煤层的开采,北京,世界图书出版社,1998,1.
    [17]陈庆敏,郭颂,张农.煤巷锚杆支护新理论与设计方法[J].矿山压力与顶板管理,2002, (1):12-15.
    [18]侯朝炯,宏亮.我国煤巷锚杆支护技术的发展方向[J].煤炭学报,1996.21(2):113—118.
    [19]张世雄.巷道稳定性分析及其支护设计的智能研究[D],武汉,武汉理工大学:8—14.
    [20]中华人民共和国国家标准编写组,工程岩体分级标准(GB50218一94),北京,中国计划出版社:1995.
    [21]董方庭.巷道围岩松动圈支护理论及应用技术[M].煤炭工业出版社.2001.
    [22]陈炎光,陆卜良.中国煤矿巷道围岩控制[M].中国矿业人学出版社.1994.
    [23]周保生,综放回采巷道围岩稳定性分类及其支护对策研究,博士学位论文,中国科学院武汉岩土力学研究所.1999,6.
    [24]钱鸣高,刘听成,矿山压力及其控制[M],北京:煤炭工业出版社,1991.
    [25]沈明荣.岩体力学[M].上海:同济大学出版社.1999.
    [26]何满潮.中国煤矿锚杆支护理论与实践[M] .北京:科学出版社,2004.
    [27]周保生,朱维中,李术才.综放回采巷道围岩稳定性分类的研究[J].煤炭学报,2000,25(5).
    [28]杨科,谢广祥.基于ANN的综放回采巷道围岩稳定性预测研究[J].煤炭科学技术,2004,32(7):48-50.
    [29]陈明耀.巷道围岩稳定性与锚杆支护设计探讨[J].甘肃科技.2003,19卷(11):83-84.
    [30]蒋金泉,韩继胜,石永奎.巷道围岩结构稳定性与控制设计[M].北京:煤炭工业出版社,1999.
    [31]布雷斯BHG.布朗ET.地下采矿岩石力学[M]冯树仁,余诗刚.朱柞铎等译没,北京:煤炭工业出版社.1990.
    [32] Dai S H, Wang M O. Reliability analysis in engineering applications.NewYork:Van Nostrand Reinhold,1992,107(6):1191-1208.
    [33] N Mohammand, The relation between in situ and laboratory rock properties used in numeric modeling, int, J, Rockmech, Min, Sci, 1997, 34(2) , 289-297.
    [34] Yuxiang Song, Yong Liu in the reliability analysis of underground structures. Application of Computer Method in Rock Mechanics.1993,20(5):266-269.
    [35]田敬学,张庆贺.姜福兴煤矿巷道围岩稳定性动态工程分类技术研究与应用[J].岩土力学,2004,22(1):29-32.
    [36]剑万禧.巷道围岩稳定性的判据及岩石分类[J].工程地质学报,1999,7(1):20-24.
    [37]鲁岩,邹喜正,崔道品.围岩破碎圈的理论分析与实践[J],辽宁工程技术大学学报,2007 ,26(2),219-221.
    [38]靖洪文,李元海,许国安.深埋巷道围岩稳定性分析与控制技术研究[J].岩土力学,2005,26(6):877-880.
    [39]顾士亮.软岩动压巷道围岩稳定性原理及控制技术研究[J].能源技术与管理,2004,(1):15-18.
    [40]多尔恰尼诺夫.构造应力与井巷工程稳定性[M].赵悖义译.北京:煤炭工业出版社,1984.(Dorhnov H A.Tectonic Stress and Stability of Roadways[M].Translated by Zhao Chunyi.Bei,iing:China Coal Industry Pu blishing House, 1984.
    [41] FU Guo-bin,JING Hong·wel1.Stability analysis ofsurrounding rock of roadway and its supportingpractice[A] . Proceedings of the International Congress on Rock Mechanics[C].Tokyo:Is.n.1995:559-661.
    [42]李迎富,华心祝.回采巷道围岩稳定性模糊综合评判研究[J].采矿技术,2006,6(1):21-22.
    [43]王果,宋选民.缓倾斜煤层巷道围岩稳定性分类与锚杆支护设计决策系统研究[J].山西煤炭, 2006,26(1):13-16.
    [44] The effect of anchorage on the effectiveness of the shear reinforcement in the punching zone. Cement and Concrete Composites, Volume 24, Issue 6, December 2002,Pages 539-54 .
    [45]李恩涛,赵军.软岩巷道岩石力学实验与巷道稳定性控制研究[J].山东煤炭科技,2007,4:60-61.
    [46]黄汉富,张彬,方新秋.松软厚煤层开切眼围岩稳定性研究及其应用[J].煤炭科学技术,2007,35(7):103-107.
    [47] Melchers R E. Structural reliability analysis and prediction(Second edition).New York:John Wiley & Sons,1999,15-28.
    [48] Haycocks Chris A general analytical solution for the required anchor force in rock slopes with toppling failure. International Journal of Rock Mechanics and Mining Sciences, Volume 38, Issue 3, April 2001, Pages 421-435 .
    [49]郭志宏.煤巷锚杆支护理论与技术的研究[J].中国矿业学院学报,1990(2):22-25.
    [50]张茂林,汪小东,王庆弟等.大阳煤矿综放回采巷道采动影响变形规律研究[J].煤炭科学技术, 2007.8,35(8):35-38.
    [51]马世志,张茂林,靖洪文.巷道围岩稳定性分类方法评述[J].建井技术,2004,25(5):24-27.
    [52]廖巍,徐海清,刘贵应.岩体结构面组合对巷道围岩稳定性的影响[J].安全与环境工程,2004,11(2):65-67.
    [53] Z.Y.Yang, C.C.Di, S.C.Lo,Two-dimensional Hursi Index of Joint Surfaces ,Rock Mechanics and Rock Engineering 2001,11 (PP.323-345) .
    [54] Application & Development of Anchering & Grouting Technology. Proceedings of the International Symposium on Anchoring and Grouting Techniques. Econarc Communication (Group) LTD, HongKong, 1994.
    [55] A.A.鲍里索夫.矿山压力原理与计算[M].王庆崇译.北京:煤炭工业出版社,1986.
    [56]姜耀东,刘文岗,赵毅鑫等.开滦矿区深部开采中巷道围岩稳定性研究[J].岩石力学与工程学报,2005,24(11):1857-1862.
    [57]刘太福,杨为民,刘桥二矿巷道围岩稳定性影响因素的初步研究[J].淮南工业学院学报,2001,21(2):5-8.
    [58]孔德森,蒋金泉.深部巷道围岩稳定性预测与锚杆支护优化[J].矿山压力与顶板管理,2002,29-31.
    [59]陈宗基.地下巷道长期稳定性力学问题[J].岩石力学与工程学报,1982,(1):1-20.
    [60]候朝炯,郭励生.煤巷锚杆支护[M].徐州:中国矿业大学出版社,1999.
    [61]煤和岩石物理力学性质测定的采样一般规定.中华人民共和国煤炭工业部部标准.1987.
    [62] Kripakov, Nicholas P., Beckett, Les A., Donato, Douglas A., Loading on underground mining structures influenced , Soc of Mining Engineers of AIME, 1986, 225-236.
    [63] Sharpe, RS, Non-destructive Ultrasonic Testing, Chartered MechanicalEngineer June 1979, pp. 65-68.
    [64] A. Higginson,“The effect of physical and chemical factors on the corrosivity of a synthetic mine water”, Mintek report N ?M 140, Randburg, South Africa, (1984) .
    [65] Goodman, R.E., Shi, G.H., and Boyle,W.Calculation of support for hard, jointed rock using the keyblock principle. Proceedings of the 23rd US Symposium of Rock Mechanics, 1982, 883-898.
    [66]肖望高.巷道稳定性分析与对策[J].矿业快报,2002,(18):11-12.
    [67]刘会林,朱明,张爱霞.应用神经网络方法评定巷道围岩稳定性[J].矿业安全与环保,2006,33(4):37-39.
    [68]伍永平,来兴平,南葆等.深部高应力松软岩层稳定性监测及实验研究[J].西安科技大学学报. 2005,25(4):407-410.
    [69]李旺,夏建波.锚杆支护参数对围岩稳定性的影响[J],陕西煤炭,2007:45-47.
    [70]刘志刚.煤矿构造学[M].北京:世界图书出版社, 1990.
    [71]李东旭,周济元.地质力学导论[M].北京:地质出版社, 1986: 102-103.
    [72]康红普,林健,张晓.深部矿井地应力测量方法研究与应用[J].岩石力学与工程学报, 2007,26(5):929-933.
    [73]康红普,林健.我国巷道围岩地质力学测试技术新进展[J].煤炭科学技术, 2001, 29 (7): 27-30.
    [74]周小平,张永兴,郭映忠.共轭平移断层中各序次应力场和断裂等构造形迹相互关系的力学分析[J].工程地质学报,2001,9(4):373-376.
    [75]谢富仁.利用断层滑动资料确定构造应力主方向的方法[A].活动断裂研究[M].北京:地震出版社, 1994:191-201.
    [76]谢富仁,崔效峰,赵建涛.全球应力场与构造分析[J].地学前缘, 2003 (S1): 23-31.
    [77]李方全.断层活动与原地应力状态[A].中国活动断层研究[M].北京:地震出版社, 1994: 15-21.
    [78]王胜本,张晓.煤矿井下地质构造与地应力的关系[J].煤炭学报,2008,33(7):738-742.
    [79] H.Stille, Theoretical aspects on the difference between prestressed anchor bolt and grouted bolt in squeezing rock,“Rock Bolting”, PP.237-245.
    [80] M .Marence,G.Swoboba Narencal model for rock Bolts with Consideration of rock joint movements,RockMech.Rock Engine.l995.28(3). 145-165.
    [81] R.E.Goodman,G.H.shi. Block Theory and its Application to Rock Engineering. PRENTICE-HALL INC., 1985.
    [82]陈明辉.煤矿软岩巷道结构稳定性分析[J].山东煤炭科技,2007,2:63-64.
    [83]董武斌,胡建华,张文平.基于BP神经网络的巷道围岩稳定性分级识别[J].矿业工程,2006,4(6):14-16.
    [84]田伯权.采空区下松软煤层巷道围岩稳定性综合控制技术与应用[J].煤炭技术,2006,25(9):76-78.
    [85]陈育民,徐鼎平.FLAC/FLAC3D基础与工程实例[M].北京:中国水利水电出版社,2009.
    [86]王金华.我国煤巷锚杆支护技术的新发展[J].煤炭学报,2007,32(2):113-118.
    [87]王泽进,鞠文君.我国煤巷锚杆支护技术的新进展[J].煤炭科学技术,2000,28(90):4-6
    [88]秦忠诚.“孤岛”综放跨采软岩巷道稳定性分析与控制原则[J].煤炭工程学报,2004,(1):40-44.
    [89]孟祥瑞,赵启峰,刘庆林.大倾角煤层综采面围岩控制机理及回采技术[J].煤炭科学技术,2007.8, 35 (8):25-28.
    [90]史永东,张凯,赵海军.弹性波测试技术在巷道围岩松动圈测试中的应用[J].有色矿冶,2002, 18(6):1-4.
    [91]朱川曲.回采巷道围岩稳定性分类及松动圈尺寸预测[J].黄金科学技术,1999,7(5):63-66.
    [92] Lee Rand Chang C L.Some Properties of Fuzzy Logic. Inf.and Control,1971Yuxiang Song, Yong Liu (19):413-417.
    [93] RGSiddall,WJ.Gale Strata Controla new science for old Problem,Mining Engineer,1992.
    [94] Itasca Consulting Group, Inc. FLAC-3D(Fast Lagrangian Analysis of Continua in 3 Dimensions). USA; Itasca Consulting Group, Inc., 1997.
    [95] 2 Kulty, TRG, et al, Use of Ultrasonic Velocity for Nondestructive Evaluation ofFerrite Content in Duplex Stainless Steels, NDT International, Vol. 20,Number 6, Dec. 1987, pp. 359-361.
    [96] R. Grauer, P.J. Moreland and G. Pini,“A literature review of polarisation resistance constant (B) values for the measurement of corrosion rates”, NACE, Houston, (1982) .
    [97] H.P. Leckie and H.H. Uhlig, J. Electrochem. Soc., 113, p.1262, (1966) .
    [98] Z. Szklarska-Smialowska,“Pitting corrosion of metals”, NACE, Houston, (1986) .
    [99]王绍晋,秦嘉政,龙晓帆.漫湾水库蓄水前后库区地震活动性与构造应力场分析[J].地震研究, 2005, 28 (1):55-59.
    [100]李洪.回采巷道围岩稳定性分类的应用实践,煤第15卷第3期9.
    [101]孙亚玲,刘沛林,谷拴成等.利用模糊综合评判评价巷道围岩稳定性[J].西安矿业学院学报,1999,19(增刊):49-53.
    [102]王锐锋,刘文斌,郑挪成.巷道围岩稳定性分类及锚杆支护设计软件[J].煤矿设计,2000,2:7-10.
    [103]张云.有限差分数值模拟在围岩稳定分析中的应用[J],西部探矿工程,2006 (11):151-166.
    [104]宫显斌.复合顶板条件下煤巷锚杆支护技术[J].煤炭科学技术,2000,28(10):7-9.
    [105]马其华,郭克恭.锚杆支护技术发展前景与制约因素[J],中国煤炭,1998,24(5):21-24.
    [106]王志根,丁厚稳,王怀生.锚杆支护技术在复合顶板综采面设备拆除中的应用[J],矿业安全与环保,2002,29(3):42-44.
    [107]康红普.煤矿深部巷道锚杆支护理论与技术研究新进展[J].煤矿支护,2007,(2):1-8.
    [108]杨双锁,康立勋.煤矿巷道锚杆支护研究的总结与展望[J].太原理工大学学报,2002,第33(4):62-64.
    [109]郭颂.煤巷锚杆支护技术概况[J].煤炭科学技术,1998,26(4):50-54.
    [110]杨正华.全煤巷锚杆支护技术研究[J].矿山压力与顶板管理,2002,(1):32-24.
    [111]马其华,朱善德.我国煤矿锚杆支护技术的发展[J].中国矿业,1997,16(45):47-51.
    [112]何满潮,张国锋,齐干等.夹河矿深部煤巷围岩稳定性控制技术研究[J].采矿与安全工程学报[J]. 2007,24(1):27-32.
    [113]蒲文龙,张宏伟.郭守泉深部地应力实测与巷道稳定性研究[J].矿山压力与顶板管理.
    [114] G. Ronelli, B. Viantini, and A. Cigada, Materials and Corrosion, 46, p.628, (1995) .
    [115] R.F.A. Jargelius-Petterson, Corrosion, 54, P.162, (1998) .
    [116] G.S. Eklund, J. Electrochem. Soc., 121, p.467, (1974) .
    [117] K.J. Blom and J. Degerbeck, Materials Performance, 22 (7), p.52, (91983) .
    [118] Z. Scklarska-Smialowska and E. Lunarska, Werkst. Korros., 32, p.478, (1981) .
    [119]刘文岗,赵毅鑫,徐任飞等.深部巷道锚杆支护围岩稳定性研究[J].煤炭科学技术,2004,32(1):29-31.
    [120]张里程.巷道围岩稳定性分析研究的现状与存在问题[J].徐州工程学院学报,2005,20(3)期:30-33.
    [121]邹志晖,汪志林.锚杆在不同岩体中的工作机理[J].岩土工程学报,1993,15(6):7l一79.
    [122]高明中,段绪华.锚固体梁的失稳破坏形式分析[J].建井技术,1999,20(4):22—27.
    [123]勾擎峰,侯朝炯.回采巷道锚杆支护顶板稳定性分析[J].煤炭学报,1999,24(5):466一470.
    [124]蒋金泉,冯增强,韩继胜.跨采巷道围岩结构稳定性分类与支护参数决策[J].岩石力学与工程学报,1999,8(1):81~85.
    [125]陆士良,无煤柱护巷的矿压显现[M].北京:煤炭工业出版社,1988.
    [126] Box G.E.P, Wilson K.B. experimental attainment of optimum condition on rock.J. of the Royal Stat Sociaety.Series B.1951,13(1):1-34.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700