用户名: 密码: 验证码:
原位反应自润滑陶瓷刀具的设计开发及其减摩机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文提出了原位反应自润滑陶瓷刀具的概念,即:利用刀具切削高温作用下的摩擦化学反应,在刀具材料表面原位生成具有润滑作用的反应膜,从而实现刀具的自润滑。研制成功以Al2O3为基体、ZrB2为增强相、ZrO2为弥散相的新型自润滑陶瓷刀具材料,并对其制备工艺、性能、微观结构、摩擦磨损特性及自润滑机理、切削性能及减摩机理进行了深入的研究。
     在对刀具切削加工的摩擦特点分析的基础上,提出了原位反应自润滑陶瓷刀具材料的设计原则,确定了自润滑刀具的材料体系;对原位反应自润滑陶瓷刀具材料配方进行了优选,并设计出Al2O3/ZrB2/ZrO2原位反应陶瓷刀具材料;对自润滑陶瓷刀具材料进行了化学物理相容性设计,结果表明在热压烧结过程中不会发生化学反应,同时确定了添加相的极限体积含量;对自润滑陶瓷刀具材料进行了摩擦学设计,热力学结果证明了切削中原位反应能够发生,同时分析了润滑膜的减摩机理。
     利用热压烧结工艺制备出Al2O3/ZrB2/ZrO2自润滑刀具材料(AZ系列自润滑材料),对材料的配比及烧结压力、保温时间等工艺参数进行了优选,并确定了最佳值。经研究发现,采用二次球磨工艺,当ZrB2/ZrO2含量为20%,在烧结温度为1700℃,烧结压力为30MPa,保温时问为20min时,可以制备出综合力学性能最好的自润滑刀具材料AZ20,其维氏硬度为23.1GPa,抗弯强度为760.9MPa,断裂韧性为6.19MPa·m1/2。在此基础上,进行了材料相组成扫描和显微结构观察,研究了球磨细化工艺对材料性能与微观结构的影响,并分析了原位反应自润滑陶瓷刀具材料内在的增韧补强机制。
     提出了自润滑陶瓷刀具材料高温氧化模型,根据复合材料的相关物性参数,模拟出Al2O3/ZrB2/ZrO2自润滑刀具材料在氧化温度θ<1000℃的氧化简图,并对AZ系列材料在900℃时氧化增重进行了预测。对AZ系列自润滑陶瓷刀具材料进行了高温氧化试验,研究了不同条件下自润滑陶瓷刀具材料的高温氧化特性,其氧化增重大体符合抛物线规律。理论预测曲线与实际氧化曲线的大体趋势相似,试验的氧化增重数值比理论预测的值要高,主要因为理论模型过于理想化,实际影响氧化增重的因素较多所致。随着氧化时间的增加,AZ系列自润滑材料氧化速率逐渐降低,氧化进程逐渐缓慢。主要因为氧化生成的ZrO2覆盖在材料的表面,一定程度上阻碍了复合材料继续氧化。AZ系列自润滑材料在不同温度下氧化20h后,力学性能均有不同程度下降,其中,当氧化温度为700℃时下降明显。氧化试验和X射线衍射结果表明复合材料在500~700℃时已开始氧化。
     对原位反应自润滑陶瓷刀具材料的摩擦特性及减摩机理进行了研究。建立了摩擦磨损过程中接触区平均压力与最高温度的解析计算式。研究了ZrB2/ZrO2含量、摩擦速度和环境温度对AZ系列自润滑刀具材料的摩擦磨损特性的影响,对润滑膜的转移与破坏机理进行了深入分析,同时探讨了不同摩擦条件下原位反应自润滑的作用。结果表明:AZ系列自润滑刀具材料的摩擦系数随ZrB2/ZrO2含量的增加而降低,当ZrB2/ZrO2含量为20%时,其磨损率最小,由于该陶瓷材料的综合力学性能在AZ系列材料中最好,并且在摩擦中其表面形成了一层润滑膜,改善了摩擦性能,有助于磨损率的降低。AZ20自润滑陶瓷材料摩擦系数和磨损率总体上随着摩擦速度和环境温度的升高呈现下降的趋势。主要因为原位反应后有ZrO2和B2O3的生成,其在高温下具有一定的润滑性,不易产生粘结磨损。
     研究了原位反应自润滑陶瓷刀具的切削性能及减摩机理。AZ20陶瓷刀具在空气中切削45号正火钢和淬火钢时,当切削深度ap=0.2mm,进给量f=0.1mm/r,切削速度v超过160m/min时,刀具表面可以发生原位反应自润滑,形成了ZrO2和B2O3自润滑膜,具有一定的减摩特性,不易产生粘结磨损,并使得切削时刀具的磨损较均匀,不易发生崩刃的情况。由于原位反应自润滑的作用,AZ20陶瓷刀具在空气中切削45号正火钢和淬火钢时,后刀面磨损、切削力、摩擦系数和已加工工件的表面粗糙度总体上要比AZ20在氮气环境和SG4在空气环境中切削时低。在切削深度ap=0.2mm,进给量f=0.1mm/r,切削速度v=160m/min的切削条件下,切削45号正火钢时,AZ20自润滑刀具的寿命较SG4陶瓷刀具提高了17.6%;切削45号淬火钢时,寿命较SG4陶瓷刀具提高了20%。提出了一种考虑材料与摩擦特性的切削温度场仿真方法,试验均值与仿真结果值相差不大且变化趋势较为一致。
The concept of self-lubricating ceramic tool base on in-situ reaction is proposed in this paper, namely that by the friction chemical reaction under high-temperature, generate the lubricating film on the cutting tool surface to achieve the self-lubricating tools. A new self-lubricating cutting tool material has been developed successfully with adding reinforcement phase-ZrB2 and dispersed phase-ZrO2 to Al2O3 matrix, as well as its ratio design, fabrication process, properties, microstructures, tribological behaviors and cutting performance more over, the antifriction mechanism are studied in detail.
     On the analyzing of friction characteristics in cutting process, the design principles of self-lubricating ceramic tool material is proposed and the material system is also determined. Optimize the composition of the materials, meanwhile, the Al2O3/ZrB2/ZrO2 self-lubricating ceramic tool material is designed. Analysis of physical and chemical compatibility of self-lubricating material determine that there is no chemical reaction in the hot pressing sintering process, and make sure the maximum volume content of additions. Tribological design of self-lubricating ceramic tool material is proposed, and thermodynamic results show that in-situ reaction could occur in machining proces, meanwhile, the antifriction mechanism is analyzed.
     Self-lubricating tool materials of Al2O3/ZrB2/ZrO2 ceramic (AZ series) are fabricated by technology of the hot-pressing sintering. Test results of material properties give a preferred value for ratio of materials, sintering pressure and holding time. By detailed X-ray diffraction and microstructure analysis, toughening and strengthening mechanisms are derived. Based on the above conclusions, the effect of ball milling refinement on properties and microstructure of Al2O3/ZrB2/ZrO2 ceramic materials are investigated. AZ20 ceramic composite shows higher synthetic mechanical properties in AZ series self-lubricating materials with double milling refinement technology, when the sintering temperature is 1700℃, pressure is 30MPa, holding time is 20min and the volume of ZrB2/ZrO2 is 20%. The optimized properties are:Vicker's hardness 23.1GPa, bending strength 760.9MPa and fracture toughness 6.19 MPa-m1/2.
     The oxidation model of self-lubricating ceramic tool materials is proposed. According to the relevant physical properties of the composite, simplified oxidation surface of Al2LO3/ZrB2/ZrO2 at oxidation temperatureθ<1000℃is simulated, and the weight gains of AZ series self-lubricating ceramic materials are predicted. High temperature oxidation experiments of AZ series self-lubricating ceramic materials are conducted under different conditions, and oxidation behavior of the composite is studied, and the weight gains accord with parabolic law characteristics, and the general trend of the oxidation curves experimental weight gain is obviously greater than the forecast model, the reason is that the theoretical models is idealistic and many more factors can affect the oxidation process. Oxidation rate of the self-lubricating materials decreases with increasing the oxidation time, and the oxidation process change to slow gradually. This is because the generated ZrO2 on the surface can prevent continued oxidation of the composite materialsin a sence. The mechanical properties of AZ series ceramic materials decrease in varying degrees when oxidate 20 hours at different temperatures, and has obvious decline at 700℃. Oxidation test and XRD analysis indicated that the composites began to oxidate at 500~700℃.
     The tribological properties and antifriction mechanisms of in-situ reaction self-lubricating ceramic tool materials are studied. Analytic equations of the average pressure and maximum temperature in contact area are established. The effects of ZrB2/ZrO2 content, friction velocity and environmental temperature on the tribological behaviors of AZ self-lubricating ceramic tool materials are studied in detail, and the relevant researchs about the transfer and failure mechanisms of self-lubricating film are analyzed. Moreover, antifriction functions of self-lubrication in different conditions are discussed. The results show that:the friction coefficient of AZ self-lubricating ceramic tool material decrease with the increasing of ZrB2/ZrO2 content, and the wear rate can reach to the minimum data when the ZrB2/ZrO2 content is 20%. The reason is that the mechanical properties of AZ self-lubricating material is the best at this time, and the lubricating film generated on the friction surface can improve the tribological behavior and reduce the wear rate. The friction coefficient and wear rate of AZ20 composite decrease with the increasing of friction speed or environmental temperature. This is because the in-situ reaction can generate the ZrO2 and B2O3 self-lubricating film, which can improve the tribological behavior and prevent the adhesive wear at high temperature.
     The cutting performance and anti-friction mechanism of self-lubricating ceramic tool base on in-situ reaction are studied. Dry cutting of normalized and hardened 45# steel in air with AZ20 self-lubricating ceramic tool, when the cutting depth ap= 0.2mm, feed rate f= 0.lmm/r, cutting speed v exceeds 160m/min, a self-lubricating film of ZrO2 and B2O3 is formed on the friction surface of AZ20 in cutting process, which has an anti-friction behavior and can prevent the adhesive wear. With the self-lubricating base on in-situ reaction, it was found that the tool wear is homogeneous and no chipping situation. According to the effect of self-lubricating, the tool flank wear, cutting force, friction coefficient and surface roughness of machined workpiece when dry cutting of normalized and hardened 45# steel in air with AZ20 tool are reduced compared SG4 in the air and AZ20 in nitrogen environment. Under the same cutting conditions that the cutting depth ap= 0.2mm, feed rate f= 0.1mm/r, cutting speed v= 160m/min, the tool life of AZ20 ceramic tool is prolonged more than 17.6% compared the SG4 tool when machining normalized 45# steel, and 20% when machining hardened 45# steel. A simulation way of cutting temperature field considering property of materials and friction is is proposed, and the results of simulation agree with experiment.
引文
[1]艾兴.高速切削加工技术[M].北京:国防工业出版社,2003:1-25.
    [2]邓建新,赵军.数控刀具材料选用手册[M].北京:机械工业出版社,2005:1-19.
    [3]张世昌,李旦,高航.机械制造技术基础[M].北京:高等教育出版社,2001:260-267.
    [4]王西彬.绿色切削加工技术的研究[J].机械工程学报,2000,36(8):6-11.
    [5]Aronson R B. Why dry cutting[J]. Manufacturing Engineering,1995, (1):33-36.
    [6]Klocke F, Eisenblatter G. Dry cutting[J]. CIRP Annals-Manufacturing Technology,1997, 46(2):519-526.
    [7]刘志峰,张崇高,任家隆.干切削加工技术及应用[M].北京:机械工业出版社,2005:1-16.
    [8]Tumis S, Weinert K.绿色制造中的干切削技术[J].航空制造技术,2007,46(2):32-35.
    [9]Kustas F M, Fehrehnbacher L L, Komanduri R. Nanocoatings on Cutting Tools for Dry Machining[J]. CIRP Annals-Manufacturing Technology,1997,46(1):39-42.
    [10]邓建新,葛培琪,艾兴.切削加工的润滑技术研究进展与展望[J].摩擦学学报,2003,23(6):546-550.
    [11]Wakabayashi T, Suda S, Inasaki I, et al. Tribological Action and Cutting Performance of MQL Media in Machining of Aluminum[J]. CIRP Annals-Manufacturing Technology,2007,56(1): 97-100.
    [12]Richardson D J, Keavey M A, Dailami F. Modelling of cutting induced workpiece temperatures for dry milling[J]. International Journal of Machine Tools and Manufacture, 2006,46(10):1139-1145.
    [13]Harris S G, Doyle E D, Vlasveld A C, et al. Dry cutting performance of partially filtered arc deposited titanium aluminium nitride coatings with various metal nitride base coatings[J]. Surface and Coatings Technology,2001,146-147:305-311.
    [14]Ginting A, Nouari M. Optimal cutting conditions when dry end milling the aeroengine material Ti-6242S[J]. Journal of Materials Processing Technology,2007,184(1-3):319-324.
    [15]焦明华,尹延国,俞建卫,等.镀镍石墨粉与铜基自润滑材料摩擦磨损特性研究[J].摩擦学学报,2007,27(5):492-496.
    [16]Erdemir A, Erck R A., Robles J. Relationship of hertzian contact pressure to friction behavior of self-lubricating boric acid films[J]. Surface and Coatings Technology,1991,49(1-3): 435-438.
    [17]Basnyat P, Luster B, Kertzman Z, et al. Mechanical and tribological properties of CrAlN-Ag self-lubricating films[J]. Surface and Coatings Technology,2007,202(4-7):1011-1016.
    [18]Gearing B P, Moon H S, Anand L. A plasticity model for interface friction:application to sheet metal forming[J]. International Journal of Plasticity,2001,17(2):237-271.
    [19]邓建新,丁泽良,赵军,等.高温自润滑陶瓷刀具材料及其切削性能的研究[J].机械工程学报,2003,39(8):106-109.
    [20]Deng Jianxin, Ai Xing. Wear behavior and mechanisms of alumina-based ceramic tools in machining of ferrous and non-ferrous alloys[J]. Tribology International,1997,30(11): 807-813.
    [21]Deng Jianxin, Liu Lili, Yang Xuefeng, Liu Jianhua, Sun Junlong, Zhao Jinlong. Self-lubrication of Al2O3/TiC/CaF2 ceramic composites in sliding wear tests and in machining processes[J]. Materials and Design,2007,28(3):757-764.
    [22]Deng Jianxin, Cao Tongkun, Ding Zeliang, Liu Jianhua, Sun Junlong, Zhao Jinlong. Tribological behaviors of hot-pressed Al2O3/TiC ceramic composites with the additions of CaF2 solid lubricants[J]. Journal of the European Ceramic Society,2006,26(8):1317-1323.
    [23]曹同坤.自润滑陶瓷刀具的设计开发及其自润滑机理研究[D].山东大学博士论文,2005:1-37.
    [24]Deng Jianxin, Cao Tongkun, Liu Lili. Self-lubricating behaviors of Al2O3/TiB2 ceramic tools in dry high-speed machining of hardened steel[J]. Journal of the European Ceramic Society, 2005,25(7):1073-1079.
    [25]Taro S, Tatsuhiko A, Shigeo Y. In-situ formation of self-lubricating tribo-films for dry machinability[J]. Surface and Coatings Technology,2005,200(5-6):1797-1803.
    [26]Tatsuhiko A, Atsushi M, Shigeo Y, et al. Dry machining tool design via chlorine ion implantation [J]. Transactions of Materials and Heat Treatment,2004,25(5):879-882.
    [27]Molins C. High-performance sintered self-lubricating bearings[J]. Metal Powder Report,2002, 57(7-8):86-86.
    [28]Smith S, Tlusty J. Current Trends in High-Speed Machining[J]. Journal of Manufacturing Science and Engineering,1997,119(11):664-666.
    [29]Jin Y, Kato K, Umehara N. Effects of sintering aids and solid lubricants on tribological behaviours of CMC/A12O3 pair at 650℃[J]. Tribology Letters,1999,6(1):15-21.
    [30]Deng Jianxin, Cao Tongkun. Self-lubricating mechanisms via the in situ formed tribofilm of sintered ceramics with CaF2 additions when sliding against hardened steel[J]. International Journal of Refractory Metals and Hard Materials,2007,25(2):189-197.
    [31]Harris S G, Vlasveld A C, Doyle E D, et al. Dry machining-commercial viability through filtered arc vapour deposited coatings[J]. Surface and Coatings Technology,2000,133-134: 383-388.
    [32]Holubr P, Jilek M, Sima M. Nanocomposite nc-TiAlSiN and nc-TiN-BN coatings:their applications on substrates made of cemented carbide and results of cutting tests[J]. Surface and Coatings Technology,1999,120-121:184-188.
    [33]Fox-Rabinovich G S, Kovalev A I, Afanasyev S N. Characteristic features of wear in tools made of high-speed steels with surface engineered coatings I:Wear characteristics of surface engineered high-speed steel cutting tools[J]. Wear,1996,201(1-2):38-44.
    [34]Fox-Rabinovich G S, Kovalev A I, Afanasyev S N. Characteristics features of wear in tools made of high-speed steels with surface engineered coatings II:Study of surface engineered high-speed steel cutting tools by AES, SIMS and EELFAS methods[J]. Wear,1996,198(1-2): 280-286.
    [35]戴振东,王珉,薛群基.摩擦体系热力学引论[M].北京:国防工业出版社,2002:1-178.
    [36]Astakhov V P. Tribology of Metal Cutting[M]. USA:Elsevier,2006:2-67.
    [37]Astakhov V P, Shvets S V, Osman M O M. Chip structure classification based on mechanics of its formation[J]. Journal of Materials Processing Technology,1997,71(2):247-257.
    [38]Astakhov V P, Shvets S V. A system concept in metal cutting[J]. Journal of Materials Processing Technology,1998,79(1-3):189-199.
    [39]Trent E M, Wright, P K, Metal Cutting[M]. Boston:Butterworth-Heinemann,2000:2-67.
    [40]Trent E M. Metal cutting and the tribology of seizure:I seizure in metal cutting[J]. Wear,1988, 128(1):29-45.
    [41]徐锦芬.摩擦学与固体润滑讲义[M].北京:中国科学院,2002:51-103.
    [42]Wang Weizu, Huang Ping. Mechanism of boundary lubrication under point contact[J]. Chinese Journal of Mechanical Engineering,2006,19(4):618-621.
    [43]Braun O M, Naumovets A G. Nanotribology:Microscopic mechanisms of friction[J]. Surface Science Reports,2006,60(6-7):79-158.
    [44]Kingsbury E, Pepper S V, Ebihara B. Lubrication of slow rolling contacts-The NASA Ball on Plate Tribometer[C]. ASME/STLE 1996 Tribology Conference, San Francisco, Ca,1996,119: 525-530.
    [45]Fuks I G, Ivankina E B, Kozlovtsev A P, et al. Lubricating oils with ultrafine molybdenum disulfide or graphite as an additive (Review)[J]. Chemistry and Technology of Fuels And Oils, 1975,11(8):652-656.
    [46]Harp S R, Salant R F. An average flow model of rough surface lubrication with inter-asperity cavitation[J]. Journal of Tribology-transactions of the Asme,2001,123(1):134-143.
    [47]Fox-Rabinovich G S, Totten G E. Self-Organization During Friction:Advanced Surface Engineered Materials and Systems Design[M]. New York:Taylor and Francis Group,200: 18-245.
    [48]Tonshoff H K, Denkena B. Wear of ceramic tools in milling[J]. Lubrication Engineering,1991, 47(9):772-778.
    [49]Kovacevic R, Cherukuthota C, Mazurkiewicz M. High pressure waterjet cooling/lubrication to improve machining efficiency in milling[J]. International Journal of Machine Tools and Manufacture,1995,35(10):1459-1473.
    [50]Tsao C C. An experiment study of hard coating and cutting fluid effect in milling aluminum alloy[J]. International Journal of Advanced Manufacturing Technology,2007,32(9-10): 885-891.
    [51]Obikawa T, Kamata Y, Asano Y, et al. Micro-liter lubrication machining of Inconel 718[J]. International Journal of Machine Tools and Manufacture,2008,48(15):1605-1612.
    [52]Thepsonthi T, Hamdi M, Mitsui K. Investigation into minimal-cutting-fluid application in high-speed milling of hardened steel using carbide mills[J]. International Journal of Machine Tools and Manufacture,2009,49(2):156-162.
    [53]贾晓鸣,张秀玲,王宝忠.含硼切削抗磨润滑性能研究[J].润滑油,2000,15(3):26-27.
    [54]薛群基,吕晋军.高温固体润滑研究的现状及发展趋势[J].摩擦学学报,1999,19(1):91-96.
    [55]邓建新,曹同坤,艾兴.Al2O3/TiC/CaF2自润滑陶瓷刀具切削过程中的减摩机理.机械工程学报,2006,42(7):109-113.
    [56]Yamamoto Y, Ura A. Influence of interposed wear particles on the wear and friction of silicon carbide in different dry atmospheres [J]. Wear,1992,154(1):141-150.
    [57]邓建新,艾兴,冯益华.陶瓷刀具切削加工时的磨损和润滑及其与加工对象的匹配研究[J].机械工程学报,2002,38(4):40-45.
    [58]Deng Jianxin, Ai Xing, Li Zhaoqian. Friction and wear behavior of Al2O3/TiB2 composite against cemented carbide in various atmospheres at elevated temperature[J]. Wear,1996, 195(1-2):128-132.
    [59]Deng Jianxin, Ai Xing. Wear behavior and mechanisms of alumina-based ceramic tools in machining of ferrous and non-ferrous alloys[J]. Tribology International,1997,30(11): 807-813.
    [60]Lugscheider E, Barwulf S, Barimani C. Properties of tungsten and vanadium oxides deposited by MSIP-PVD process for self-lubricating applications[J]. Surface and Coatings Technology, 1999,120-121:458-464.
    [61]Fox-Rabinovich G S, Yamamoto K, Kovalev A I, et al. Wear behavior of adaptive nano-multilayered TiAlCrN/NbN coatings under dry high performance machining conditions[J]. Surface and Coatings Technology,2008,202(10):2015-2022.
    [62]Donnet C, Erdemir A. Historical developments and new trends in tribological and solid lubricant coatings[J]. Surface and Coatings Technology,2004,180-181:76-84.
    [63]Fox V C, Renevier N, Teer D G., et al. The structure of tribologically improved MoS2-metal composite coatings and their industrial applications[J]. Surface and Coatings Technology, 1999,116-119:492-497.
    [64]Fox V C, Hampshire J, Teer D. MoS2/metal composite coatings deposited by closed-field unbalanced magnetron sputtering:tribological properties and industrial uses[J]. Surface and Coatings Technology,1999,112(1-3):118-122.
    [65]Renevier N M, Hamphire J, Fox V C, et al. Advantages of using self-lubricating, hard, wear-resistant MoS2-based coatings[J]. Surface and Coatings Technology,2001,142-144: 67-77.
    [66]Renevier N M, Lobiondo N, Fox V C, et al. Performance of MoS2/metal composite coatings used for dry machining and other industrial applications[J]. Surface and Coatings Technology, 2000,123(1):84-91.
    [67]Renevier N M, Fox V C, Teer D G, et al. Coating characteristics and tribological properties of sputter-deposited MoS2/metal composite coatings deposited by closed field unbalanced magnetron sputter ion plating[J]. Surface and Coatings Technology,2000,127(1):24-37.
    [68]Kao W H. Tribological properties and high speed drilling application of MoS2-Cr coatings[J]. Wear,2005,258(5-6):812-825.
    [69]Ning L, Veldhuis S C, Yamamoto K. Investigation of wear behavior and chip formation for cutting tools with nano-multilayered TiAlCrN/NbN PVD coating[J]. International Journal of Machine Tools and Manufacture,2008,48(6):656-665.
    [70]Grimanelis D, Yang S, Bohme O, et al. Carbon based coatings for high temperature cutting tool applications[J]. Diamond and Related Materials,2002,11(2):176-184.
    [71]Brady M P, Gleeson B, Wright I G. Alloy design strategies for promoting protective oxide scale formation[J]. JOM journal of The Minerals Metals and Materials Society,2000,52(1): 16-21.
    [72]Brady M P, Smialek J L, Smith J, et al. The role of Cr in promoting protective alumina scale formation by gamma-based Ti-Al-Cr alloys. Part Ⅰ:Compatibility with alumina and oxidation behavior in oxygen[J]. Acta Materialia,1997,45(6):2357-2369.
    [73]Brady M P, Smialek J L, Humphrey D L, et al. The role of Cr in promoting protective alumina scale formation by gamma-based Ti-Al-Cr alloys. Part Ⅱ:Oxidation behavior in air[J]. Acta Materialia,1997,45(6):2371-2382.
    [74]庞思勤.CVD涂层硬质合金刀具的耐磨性和破损特性[J].兵工学报,1997,18(2):139-143.
    [75]Bae Y W, Lee W Y, Besmann T M, et al. Preparation and friction characteristics of self-lubricating TiN-MoS2 composite coatings[J]. Materials Science and Engineering A,1996, 209(1-2):372-376.
    [76]Carrera S, Salas O, Moore J J, et al. Performance of CrN/MoS2(Ti) coatings for high wear low friction applications [J]. Surface and Coatings Technology,2003,167(1):25-32.
    [77]Deng Jianxin, Song Wenlong, Zhang Hui. Design, fabrication and properties of a self-lubricated tool in dry cutting[J]. International Journal of Machine Tools and Manufacture, 2009,49(1):66-72.
    [78]张永振.材料的干摩擦学[M].北京:科学出版社,2007:137-172.
    [79]Wang Hui, Wang Haowei. Fabrication of self-lubricating coating on aluminum and its frictional behaviour[J]. Applied Surface Science,2007,253(9):4386-4389.
    [80]Koshy R A, Graham M E, Marks L D. Synthesis and characterization of CrN/Mo2N multilayers and phases of Molybdenum nitride[J]. Surface and Coatings Technology,2007, 202(4-7):1123-1128.
    [81]肖汉宁,千田哲也,殷冀湘.氧化铝陶瓷的高温磨损与自润滑机理研究[J].无机材料学报,1997,12(3):420-424.
    [82]Senda T, Drennan J, McPherson R. Sliding Wear of oxide ceramics at elevated temperatures[J]. Journal of the American Ceramic Society,1995,78(11):3018-3024.
    [83]黄业中,王静波,欧阳锦林.WC-Ni-Mo-PbO高温自润滑金属陶瓷材料的研制及其综合性能考察[J].摩擦学学报,1994,14(1):49-56.
    [84]Nishiyama K, Sagawa S, Kojima T, et al. Friction and wear of SiC, Si3N4, B4C-TiB2 and Al2O3[J]. Journal of the Japan Society of Powder and Powder Metallurgy,1993,40(1):49-52.
    [85]Wilson S, Alpas A T. Dry sliding wear of a PVD TiN coating against Si3N4 at elevated temperatures[J]. Surface and Coatings Technology,1996,86-87:75-81.
    [86]Peng F, Speyer R F. Oxidation resistance of fully dense ZrB2 with SiC, TaB2, and TaSi2 additives[J]. Journal of the American Ceramic Society,2008,91(5):1489-1494.
    [87]Zimmermann J W., Hilmas G E, Fahrenholtz W G, et al. Thermophysical properties of ZrB2 and ZrB2-SiC ceramics[J]. Journal of the American Ceramic Society,2008,91(5):1405-1411.
    [88]Chamberlain A L., Fahrenholtz W G., Hilmas G E. Low-temperature densification of zirconium diboride ceramics by reactive hot pressing[J]. Journal of the American Ceramic Society,2006,89(12):3638-3645.
    [89]Han Jiecai, Hu Ping, Zhang Xinghong, et al. Oxidation-resistant ZrB2-SiC composites at 2200 ℃[J]. Composites Science And Technology,2008,68(3-4):799-806.
    [90]Rangaraj L, Divakar C, Jayaram V. Fabrication and mechanisms of densification of ZrB2-based ultra high temperature ceramics by reactive hot pressing[J]. Journal of the European Ceramic Society,2010,30(1):129-138.
    [91]Zhou S B, Li W J, Hu P, et al. Ablation behavior of ZrB2-SiC-ZrO2 ceramic composites by means of the oxyacetylene torch[J]. Corrosion Science,2009,51(9):2071-2079.
    [92]Fu H Z, Lu Y, Liu W F, et al. Pressure effects on elastic and thermodynamic properties of ZrB2[J]. Journal of Materials Science,2009,44(20):5618-5626.
    [93]Monteverde F, Bellosi A. Effect of the addition of silicon nitride on sintering behaviour and microstructure of zirconium diboride[J]. Scripta Materialia,2002,46(3):223-228
    [94]Monteverde F, Bellosi A, Guicciardi S. Processing and properties of zirconium diboride-based composites[J]. Journal of the European Ceramic Society,2002,22(3):279-288.
    [95]Basu B, Vleugels J, Van D B O. Development of ZrO2-ZrB2 composites[J]. Journal of Alloys and Compounds,2002,334(1-2):200-204.
    [96]Zhang Xinghong, Li Weijie, Hong Changqing, et al. A novel development of ZrB2/ZrO2 functionally graded ceramics for ultrahigh-temperature application[J]. Scripta Materialia, 2008,59(11):1214-1217.
    [97]赵宏,金宗哲,丁德辉,等.ZrO2相变对ZrB2陶瓷的增强和增韧效应[J].硅酸盐学报,1990,18(1):54-58.
    [98]赵海雷,王俭,李文超.ZrB2-刚玉/莫来石复合材料氧化动力学的研究[J].耐火材料,1998,32(6):322-325.
    [99]Mishra S K, Das S K, Sherbacov V. Fabrication of Al2O3-ZrB2 in situ composite by SHS dynamic compaction:A novel approach[J]. Composites Science And Technology,2007, 67(11-12):2447-2453.
    [100]Mishra S K, Das S K, Pathak L C. Sintering behaviour of self-propagating high temperature synthesised ZrB2-Al2O3 composite powder[J]. Materials Science and Engineering:A,2006, 426(1-2):229-234.
    [101]Salamon D, Eriksson M, Nygren M, et al. Homogeneous TiB2 ceramics achieved by electric current-assisted self-propagating reaction sintering[J]. Journal of the American Ceramic Society,2007,90(10):3303-3306.
    [102]Liu Changxia, Zhang Jianhua, Zhang Xihua, et al. Fabrication of Al2O3/TiB2/AlN/TiN and Al2O3/TiC/AlN composites[J]. Materials Science and Engineering:A,2007,465(1-2):72-77.
    [103]Li Aiju, Zhen Yuhua, Yin Qiang, et al. Microstructure and properties of (SiC, TiB2)/B4C composites by reaction hot pressing[J]. Ceramics International,2006,32(8):849-856.
    [104]王皓,王为民,辜萍,等.热压烧结TiB2-ZrB2固溶复合陶瓷的结构研究[J].硅酸盐学报,2002,30(4):486-490.
    [105]Otani S, Aizawa T, Kieda N. Removal of carbon impurities from boride powders:ZrB2, NbB2, CrB2, and LaB6[J]. Journal of Alloys and Compounds,2007,429(1-2):321-323.
    [106]Spring A, Guo W M, Zhang G J, et al. Fabrication and characterization of ZrB2-Based ceramic using synthesized ZrB2-LaB6 powder[J]. Journal of the American Ceramic Society,2008, 91(8):2763-2765.
    [107]高瑞兰,于化顺,韩建德,等.ZrB2含量对LaB6-ZrB2复合材料性能的影响[J].硅酸盐学报,2004,32(4):507-511.
    [108]Whitney E. D. Ceramic Cutting Tools[M]. New Jersey:Noyes Publications,1994:28-188.
    [109]Erdemir A. A crystal-chemical approach to lubrication by solid oxides[J]. Tribology Letters, 2000,8(2-3):97-102.
    [110]叶大伦,胡建华.实用无机物热力学数据手册(第二版)[M].北京:冶金工业出版社,2002:1-1210.
    [111]Low I M. Ceramic Matrix Composites Microstructure, properties and applications[M]. New York:CRC Press,2006:99-128.
    [112]周玉.陶瓷材料学[M].哈尔滨:哈尔滨工业大学出版社,1995:263-314.
    [113]张玉军,张伟儒.结构陶瓷材料及其应用[M].北京:化学工业出版社,2005:75-128.
    [114]Sciti D, Monteverde F, Guicciardi S, et al. Microstructure and mechanical properties of ZrB2-MoSi2 ceramic composites produced by different sintering techniques [J]. Materials Science and Engineering:A,2006,434(1-2):303-309.
    [115]Selsing J. Orgen. Internal Stresses in Ceramics[J]. Journal of the American Ceramic Society, 1961,44(8):419-419.
    [116]Taya M, Hayashi S, Kobayashi A S, et al. Toughening of a particulate-reinforced ceramic-matrix composite by thermal residual stress[J]. Journal of the American Ceramic Society,1990,73(5):1382-1391.
    [117]韩德刚,高执棣.化学热力学[M].北京:高等教育出版社,1997:.377-419.
    [118]Moore W J. Basic physical chemistry [M]. USA:Prentice-Hall,1983:55-110.
    [119]Coker A K. Modeling of Chemical Kinetics and Reactor Design[M]. Houston:Gulf Publishing Company,2001:109-217.
    [120]Nakai H, Suzuki J, Kikuchi Y. Determination of active sites based on unified analysis of potential energy profile in chemical reaction:Application to C-H activation of methane by Ti(Ⅳ)-imido complex[J]. Chemical Physics Letters,2008,460(1-3):347-351.
    [121]Stolen S, Grande T, Allan N L. Chemical Thermodynamics of Materials[M]. USA:John Wiley & Sons, Ltd.,2004:303-378.
    [122]Honig J. M. Thermodynamics, Third Edition:Principles Characterizing Physical and Chemical Processes[M]. USA:Elsevier Science & Technology,2007:287-346.
    [123]Bhushan B. Modern Tribology Handbook[M]. Florida:CRC Press,2001:1-292.
    [124]Hasegawa T. Tribology Research Trends[M]. New York:Nova Science Publishers,2008: 1-230.
    [125]Kato K, Ito K. Modern tribology in life cycle assessment[J]. Journal of Japanese Society of Tribologists,2006,51(3):193-203.
    [126]Bhushan B, Dandavate C. Thin-film friction and adhesion studies using atomic force microscopy[J]. Journal of Applied Physics,2000,87(3):1201-1210.
    [127]Bhushan B, Liu H W, Hsu S M. Adhesion and friction studies of silicon and hydrophobic and low friction films and investigation of scale effects[J]. Journal of Tribology-transactions of the ASME,2004,126(3):583-590.
    [128]Bhushan B, Nosonovsky M. Comprehensive model for scale effects in friction due to adhesion and two-and three-body deformation (plowing)[J]. Acta Materialia,2004,52(8):2461-2474.
    [129]Bhushan B, Burton Z. Adhesion and friction properties of polymers in microfluidic devices[J]. Nanotechnology,2005,16(4):467-478.
    [130]Bhushan Bharat.葛世荣译,摩擦学导论(Introduction to Tribology)[M].北京:机械工业出版社,2007:56-304.
    [131]郑林庆.摩擦学原理[M].北京:高等教育出版社,1994:1-161.
    [132]王野平,王成焘.关于摩擦粘着理论的一点看法[C].第六届全国摩擦学学术会议,西安,西安交通大学.1997:13-15.
    [133]Chilamakuri S K, Bhushan B. A comprehensive kinetic meniscus model for prediction of long-term static friction[J]. Journal of Applied Physics,1999,86(8):4649-4656.
    [134]温诗铸,黄平.摩擦学原理[M].北京:清华大学出版社,2002:271-300.
    [135]Mang T, Dresel W. Lubricants and Lubrication[M]. USA:Wiley-VCH,2007:7-22.
    [136]Girma B, Mittal K L. Surfactants in Tribology[M]. USA:CRC,2008:89-222.
    [137]Postrach S, Potschke J. Pressureless sintering of Al2O3 containing up to 20 vol% zirconium diboride (ZrB2)[J]. Journal of the European Ceramic Society,2000,20(10):1459-1468.
    [138]孙军龙.新型B4C基复合陶瓷喷嘴研究开发及其冲蚀机理研究[D].山东大学博士论文,2007:29-32.
    [139]Liu Changxia, Zhang Jianhua, Sun Junlong, et al. Addition of Al-Ti-C master alloys and diopside to improve the performance of alumina matrix ceramic materials[J]. Ceramics International,2007,33(7):1149-1154.
    [140]Riu D H, Kong Y M, Kim H E. Effect of Cr2O3 addition on microstructural evolution and mechanical properties of Al2O3[J]. Journal of the European Ceramic Society,2000,20(10): 1475-1481.
    [141]Khan A S, Farrokh B, Takacs L. Effect of grain refinement on mechanical properties of ball-milled bulk aluminum[J]. Materials Science and Engineering:A,2008,489(1-2):77-84.
    [142]果世驹.粉末烧结理论[M].北京:冶金工业出版社,1998:11-360.
    [143]Rahaman M N. Ceramic Processing and Sintering[M]. New York:CRC Press,2003:55-59.
    [144]李荣久,茹红强,孙旭东.陶瓷-金属复合材料[M].北京:冶金工业出版社,1995:152-167.
    [145]Cook R F, Lawn B R. A modified indentation toughness technique[J]. Journal of the American Ceramic Society,1983,66(11):200-201.
    [146]Kang S L. Sintering:Densification, Grain Growth and Microstructure[M]. UK:Elsevier,2005: 91-96.
    [147]崔国文.缺陷、扩散与烧结[M].北京:清华大学出版社,1990:42-196.
    [148]Herring C. Diffusional viscosity of a polycrystalline solid[J]. Journal of Applied Physics,1950, 21(5):437-445.
    [149]Coble R L. A model for boundary diffusion controlled creep in polycrystalline materials[J]. Journal of Applied Physics,1963,34(6):1679-1682.
    [150]Coble R L. Diffusion models for hot pressing with surface energy and pressure effects as driving forces[J]. Journal of Applied Physics,1970,41(12):4798-4807.
    [151]Chen Chang-Ping, Gao Jing-Xia, Yang Hui-Zhi, et al. Effects of ternary compound additives on densification and microstructure of alumina[J]. Materials Science and Engineering:A, 2008,477(1-2):379-385.
    [152]Ma Weimin, Wen Lei, Guan Renguo, et al. Sintering densification, microstructure and transformation behavior of Al2O3/ZrO2(Y2O3) composites[J]. Materials Science and Engineering:A,2008,477(1-2):100-106.
    [153]Monteverde F., Bellosi A., Guicciardi S. Processing and properties of zirconium diboride-based composites[J]. Journal of the European Ceramic Society,2002,22(3):279-288.
    [154]Zhang Guo-Jun, Deng Zhen-Yan, Kondo Naoki, et al. Reactive Hot Pressing of ZrB2-SiC Composites[J]. Journal of the American Ceramic Society,2000,83(9):2330-2332.
    [155]Skorohod V V. Proceeding of the Institute for the Science of Sintering[M]. New York:Plenum Press,1987:81-87.
    [156]German R M. Liquid Phase Sintering[M]. New York:Plenum Press,1985:67-87.
    [157]Schreiner M, Schmitt T, Lux B, et al. Origins of discontinuous grain growth during liquid phase sintering of WC-Co cemented carbides[J]. Powder Metallurgy International,1984, 16(10):180-183.
    [158]Kim H W, Koh Y H, Kim H E. Densification and Mechanical Properties of B4C with A12O3 as a Sintering Aid[J]. Journal of the American Ceramic Society,2000,83(11):2863-2865.
    [159]Yamada S, Hirao K, Yamauchi Y, et al. High strength B4C-TiB2 composites fabricated by reaction hot-pressing[J]. Journal of the European Ceramic Society,2003,23(7):1123-1130.
    [160]刘荣,茹红强,赵媛,等.ZrB2颗粒增韧B4C陶瓷的原位合成[J].材料研究学报,2006,20(6):611-616.
    [161]Kim T, Goto T, Lee B. Microstructure control and mechanical properties of fibrous Al2O3/ZrO2 composites fabricated by extrusion process[J]. Scripta Materialia,2005,52(8): 725-729.
    [162]Sarkar D, Adak S, Mitra N K. Preparation and characterization of an Al2O3-ZrO2 nanocomposite, Part I:Powder synthesis and transformation behavior during fracture[J]. Composites Part A:Applied Science and Manufacturing,2007,38(1):124-131.
    [163]Han J K, Saito F, Lee B T. Microstructures of Porous Al2O3-50% ZrO2 Composites Using in-situ Synthesized Al2O3-ZrO2 Composite Powders[J]. Materials Letters,2004,58(16): 2181-2185.
    [164]温兆银,林祖镶,顾中华,等.ZrO2在β″-Al2O3复合陶瓷中的作用[J].复合材料学报,1996,13(3):38-42.
    [165]Rao Pinggen, Iwasa Mikio, Wu Jianqing, et al. Effect of Al2O3 addition on ZrO2 phase composition in the Al2O3-ZrO2 system[J]. Ceramics International,2004,30(6):923-926.
    [166]徐明霞,段仁官.AL2O3添加量对Y-TZP陶瓷烧结及力学性能的影响[J].硅酸盐通报,1997,(4):13-15.
    [167]龚江宏.陶瓷材料断裂力学[M].北京:清华大学出版社,2001:125-171.
    [168]Swanson P L, Fairbanks C J, Lawn B R, et al. Crack-interface grain bridging as a fracture resistance mechanism in ceramics:I, experimental study on alumina[J]. Journal of the American Ceramic Society,1987,70(4):279-289.
    [169]Fahrenholtz W G., Heuer A. The ZrB2 volatility diagram [J]. Journal of the American Ceramic Society,2005,88(12):3509-3512.
    [170]Opeka M M, Talmy I G, Zaykoski J A. Oxidation-based materials selection for 2000℃+ hypersonic aerosurfaces:Theoretical considerations and historical experience[J]. Journal of Materials Science,2004,39(19):5887-5904.
    [171]Tului M, Marino G, Valente T. Plasma spray deposition of ultra high temperature ceramics[C]. Surface & Coatings Technology,2006,201 (5):2103-2108.
    [172]Opeka M M, Talmy I G, Wuchina E J, et al. Mechanical, thermal, and oxidation properties of refractory hafnium and zirconium compounds[J]. Journal of the European Ceramic Society, 1999,19(13-14):2405-2414.
    [173]Zhao Jun, Deng Jianxin, Zhang Jianhua, et al. Failure mechanisms of a whisker-reinforced ceramic tool when machining nickel-based alloys[J]. Wear,1997,208(1-2):220-225.
    [174]Levine S R, Opila E J, Halbig M C, et al. Evaluation of ultra-high temperature ceramics for aeropropulsion use[J]. Journal of the European Ceramic Society,2002,22(14-15):2757-2767.
    [175]Parthasarathya T A, Rappb R A, Opekac M, et al. A model for the oxidation of ZrB2, HfB2 and TiB2[J]. Acta Materialia,2007,55(17):5999-6010.
    [176]Erdemir A, Fenske G R, Erck R A, et al. Tribological properties of boric acid and boric-acid-forming surfaces. Part Ⅱ. Mechanisms of formation and self-lubrication of boric acid films on boron-and boric oxide-containing surfaces[J]. Lubrication Engineering,1991, 47(3):179-184.
    [177]Schick H L. Thermodynamics of certain refractory compounds [M]. New York:Academic Press,1966:61-88.
    [178]韩野,田晓峰,尹衍升.硅氧铝陶瓷纤维含量对半金属摩擦材料摩擦磨损性能的影响[J]. 摩擦学学报,2008,28(1):63-66.
    [179]Rice R W. Mechanical Properties of Ceramics and Composites:Grain and Particle Effects[M]. USA:Marcel Dekker,2000:245-294.
    [180]Green D J. An Introduction to the Mechanical Properties of Ceramics[M]. New York: Cambridge University Press,1999:210-283.
    [181]Barlow F D, Elshabini A. Ceramic Interconnect Technology Handbook[M]. USA:CRC Press, 2007:163-197.
    [182]Moufki A, Molinari A, Dudzinski D. Modelling of orthogonal cutting with a temperature dependent friction law[J]. Journal of the Mechanics and Physics of Solids,1998,46(10): 2103-2138.
    [183]Nayebia A, Mauvoisin G, Vaghefpour H. Modeling of twist drills wear by a temperature-dependent friction law[J]. Journal of Materials Processing Technology,2008, 207(1-3):98-106.
    [184]马保吉;朱均.摩擦制动器接触表面温度计算模型[J].西安工业学院学报,1999,19(1):35-39.
    [185]Cho M, Cho K, Kim S, et al. The role of transfer layers on friction characteristics in the sliding interface between friction materials against gray iron brake disks[J]. Tribology Letters, 2005,20(2):101-108.
    [186]Evans A G. Perspective on the development of high-toughness ceramics[J]. Journal of the American Ceramic Society,1990,73(2):187-195.
    [187]Evans A G, Charles E A. Fracture toughness determinations by indentation [J]. Journal of the American Ceramic Society,1976,59(7-8):371-372.
    [188]Lawn B R, Evans A G, Marshall D B. Elastic/plastic indentation damage in ceramics:the median/radial crack system [J]. Journal of the American Ceramic Society,1980,63(9-10): 574-581.
    [189]Batchelor A W, Chandrasekaran M, Fu Y Q, et al. In situ friction and wear tests in a X-ray microscope [J]. Journal of Japanese Society of Tribologists,1998,43(1):8-14.
    [190]Chandrasekaran M, Batchelor A W, Jana S. Friction surfacing of metal coatings on steel and aluminum substrate[J]. Journal of Materials Processing Technology,1997,72(3):446-452.
    [191]Greenwood J A; Williamson J B P. Contact of Nominally Flat Surfaces[J]. Proceedings of the Royal Society of London:A,1966,295(1442):300-319.
    [192]Gao C, Tian X, Bhushan B. A meniscus model for optimization of texturing and liquid lubrication of magnetic thin-film rigid disks[J]. Tribology transactions,1995,38(22):201-212.
    [193]Loffler J H W. Systematic approach to improve the performance of PVD coatings for tool applications[J]. Surface and Coatings Technology,1994,68-69:729-740.
    [194]陈日曜.金属切削原理[M].北京:机械工业出版社,2005:81-96.
    [195]Zienkiewicz O C, Stagg K G, Parekh C, et al. Thermal stress and temperature fields:a finite element approach[J]. Proceedings of the international conference on thermal stresses and thermal fatigue,1971:311-323.
    [196]Zienkiewicz O C, Parekh C J, Wills A J. The application of finite elements to heat conduction problems involving latent heat[J]. Rock Mechanics,1973,5(2):65-76.
    [197]Shirakashi T, Usui E. Simulation analysis of orthogonal metal cutting process[J]. Journal of the Japan Society of Precision Engineering,1976,42(5):340-345.
    [198]Maekawa K, Maeda M. Simulation analysis of three-dimensional continuous chip formation processes.1. FEM formulation and a few results [J]. Journal of the Japan Society of Precision Engineering,1993,59(11):1827-1832.
    [199]Childs T, Maekawa K, Obikawa T, et al. Metal Machining-Theory and Applications[M]. New York:John Wiley & Sons,2000:226-264.
    [200]程林,张崇高,谢峰.金属切削温度场数值模拟的若干问题研究[J].合肥工业大学学报(自然科学版),2004,27(9):1047-1050.
    [201]Moufki A, Molinari A, Dudzinski D. Modelling of orthogonal cutting with a temperature dependent friction law[J]. Journal of the Mechanics And Physics of Solids,1998,46(10):2103-2138.
    [202]Shaw M C. Metal cutting principles[M]. New York:Oxford University Press,2005:307-535.
    [203]Dudzinski D, Molinari A. A modelling of cutting for viscoplastic materials [J]. International Journal of Mechanical Sciences,1997,39(4):369-389.
    [204]Matsumura T, Sekiguchi H, Usui E. An evaluation approach of machine tool characteristics with adaptive prediction [J]. Journal of Materials Processing Technology,1996,62(4): 440-447.
    [205]Shinozuka J, Obikawa T, Shirakashi T. Chip breaking analysis from the viewpoint of the optimum cutting tool geometry design [J]. Journal of Materials Processing Technology,1996, 62(4):345-351.
    [206]Xie L J. Estimation of Two-dimension Tool Wear Based on Finite Element Method[D]. Germany:Karlsruhe University,2004:34-79.
    [207]Coker A K. Modeling of Chemical Kinetics and Reactor Design[M]. Houston:Gulf Publishing Company,2001:109-217.
    [208]Marinescu I D, Rowe W B, Dimitrov B, et al. Tribology of Abrasive Machining Processes[M]. USA:William Andrew,2004:177-264.
    [209]陈文琳.超细晶粒Ti(C,N)基金属陶瓷刀具与切削性能研究[D].合肥:合肥工业大学,2007:76-120.
    [210]陆剑中,孙家宁.金属切削原理与刀具[M].北京:机械工业出版社,2006:34-79.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700