用户名: 密码: 验证码:
二维连续型动态交通分配模型及其数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
动态交通分配模型及其算法构成了智能交通系统中交通流诱导的理论基础。满足Wardrop第一或第二平衡原理的交通分配模型统称为平衡模型,否则,称为非平衡模型。基于交通系统的不同抽象方式,交通分配模型又可分为离散型(或微观)模型和连续型(或宏观)模型。其中,连续型模型是路网的一种较为抽象的表达,主要应用于大范围区域交通研究的初期规划和建模阶段,从宏观角度关注区域总体趋势、格局分布以及用户群体路径选择行为等。与传统的离散型模型相比较,连续型模型在国内外的研究并不多见;但较之前者,后者有诸多优势,这主要表现在它们易于描述规模庞大/路段稠密的城市交通系统,便于刻画庞大用户群体的路径选择行为,且能更好地诠释动态交通系统的宏观交通特性(如交通密度、速度、流量),从而为城市交通系统的规划与设计提供有用的信息。鉴于此,本文采用连续方法研究动态交通分配模型及其数值模拟。
     本文的主要研究内容包括数学建模、算法设计和模拟应用三部分。
     第一部分(第二章)(1)将连续型单用户等级和多用户等级静态交通平衡分配模型推广为满足动态用户最优原则(即反应型和预测型动态用户最优条件)的动态交通平衡分配模型, (2)将一维各向同性和各向异性车辆交通流动力学模型推广为描述动态网络交通流的非平衡分配模型,从而得到一系列连续型动态交通平衡与非平衡分配模型(即流体力学中非线性偏微分方程组的耦合系统),并对这些连续型模型作相关的理论分析,讨论模型粘性解存在性和模型线性稳定性条件等。
     第二部分(第三章)构造求解动态交通平衡与非平衡分配模型的混合数值方法,主要包括非结构网格上交通流量守恒方程空间离散的高分辨率有限体积方法,用户最优路径选择模型(即动态或静态Hamilton-Jacobi方程)空间离散的迎风差分方法和有限元方法,以及半离散方程的显式TVD Runge-Kutta时间离散方法等。
     第三部分将所推广的连续型动态交通平衡与非平衡分配模型及其算法用于研究一些典型的城市交通问题,包括(1) (第四章)将单用户等级预测型动态交通平衡分配模型及其算法用于研究拥有单一吸收点(如城市商业中心)的城市交通系统内预测型单向路网交通流的平衡分配问题; (2)(第五章)将多用户等级反应型动态交通平衡分配模型及其算法用于研究拥有两对出入口的地铁站台内反应型双向行人流的平衡分配问题;(3)(第六章)将单用户等级反应型动态交通非平衡分配模型及其算法用于研究设置有障碍物的步行设施内反应型单向行人流的非平衡分配问题。数值模拟结果表明,连续型动态交通分配模型可以短时预测动态网络交通流(包括路网交通流和行人交通流)的宏观交通特性,交通拥挤形成与消散过程以及用户路径选择行为等。这些定性或定量的结果将对交通系统的规划与设计、交通控制与管理等提供有用的信息。
     综上所述,本文发展了一系列描述动态网络交通流的连续型模型,并构造了模型求解的混合数值方法,较为系统地研究了规模庞大/路段稠密的城市交通系统中动态交通分配问题。论文中涉及到的模型及其数值模拟结果为交通科学的理论研究和应用实践提供了新的参考。
The dynamic traffic assignment (DTA) models together with their solution algo-rithms constitute the theoretical basis of intelligent transportation systems (ITS) for the guidance of traffic flow. These satisfying Wardrop's first or second principles of equi-librium are classified as the traffic equilibrium assignment models, and the others as the traffic non-equilibrium assignment models. By the abstraction of a traffic system, the modeling approaches can be either discrete or continuous. The resultant continuum models concisely depict traffic networks with the complicatedly intersected roads and are mainly used for the initial planning and modeling phase in broad-scale regional traffic studies. The focuses hereby are on the general trend and the distribution pattern of area transportation networks as well as path-choice behavior of any user group at the macroscopic level. Compared with the discrete modeling approach, there are many advantages for the continuum modeling approach. First, it is particularly suited for de-picting a large/dense transportation system. Second, it conveniently depicts a collective path-choice behavior of large amounts of travelers. Third, it provides full information with the quantities of important macroscopic variables (the density, average velocity and flow rate) for the construction and management of transportation networks.
     For the aforementioned advantages, this dissertation focuses on the DTA mod-els and algorithms based upon the continuum assumption. The contents are arranged to include three major subjects:(1) mathematical modeling; (2) design of numerical schemes; and (3) the simulation applications, which are indicated as follows.
     In Chapter 2, the continuum single and multiple user-class static traffic equilib-rium assignment models are extended to the dynamic ones which satisfies the dynamic user-optimal principles (i.e. the reactive and predictive user-optimal conditions). Fur-thermore, both one dimensional (1D) isotropic and anisotropic vehicle traffic flow mod-els are extended to deal with the assumed two dimensional (2D) transportation systems. The resultant models substantially enhance the nonlinearity and the dynamic property of traffic flow on road networks and might truly reflect non-equilibrium transportation systems. Theoretical properties including solution existence and linear stability of these models are also investigated.
     In Chapter 3, some hybrid numerical methods are constructed to solve the devel- oped models. The solution procedure includes three major steps in the following order. First, the unstructured high-resolution finite volume methods are designed for the space discretization of the flow conservation equations. Second, the upwind difference and finite element schemes are used for the space discretization of the user-optimal path choice models, which are essentially the dynamic or static Hamilton-Jacobi equations. Finally, the explicit TVD Runge-Kutta methods are applied for the time discretization of the resultant ordinary differential equations.
     In Chapters 4-6, the proposed equilibrium and non-equilibrium models and their solution algorithms are applied to study several typical urban DTA problems. Chapter 4 investigates the single user-class predictive dynamic traffic equilibrium assignment pat-tern of traffic flow on a road network with a single absorption point (e.g., a central busi-ness district); Chapter 5 deals with the multiple user-class reactive dynamic traffic equi-librium assignment pattern of traffic flow on a dense network (e.g., bi-direction pedes-trian flow moving in a railway platform with two pairs of entrances and exits); Chapter 6 applies the non-equilibrium isotropic model to simulate the single user-class reactive dynamic traffic non-equilibrium assignment pattern of unidirectional pedestrian flow passing a walking facility with an obstruction. All these numerical simulations indicate that macroscopic traffic characteristics of dynamic traffic flow on networks, the forma-tion and dissipation process of traffic congestion, and travelers' path-choice behaviors can be predicted in short term by the proposed continuum DTA models. Both qualita-tive and quantitative results will provide useful information for planning and design of an urban transportation system as well as for traffic control and management.
     In summary, this dissertation systematically studies the DTA problem for a large/dense transportation system through the development of 2D continuum models and the construction of hybrid numerical schemes. The contents together with the sim-ulation results as a whole will surely provide new references for theoretical researches and practical applications in the transportation science.
引文
[王殿海2002]王殿海.交通流理论.人民交通出版社,北京,2002.
    [刘儒勋2003]刘儒勋,舒其望.计算流体力学的若干新方法.科学出版社,北京,2003.
    [高自友2005]高自友,任华玲.城市动态交通流分配模型与算法.人民交通出版社,北京,2005.
    [陆化普2006]陆化普.交通规划理论与方法(第二版).清华大学出版社,北京,2006.
    [张鸣远2008]张鸣远.高等工程流体力学.西安交通大学出版社,西安,2008.
    [汪继文2001]汪继文.有限体积法与浅水波方程的求解.博士学位论文,中国科学技术大学,合肥,2001.
    [李祥贵2001]李祥贵.Hamilton-Jacobi方程数值方法研究.博士学位论文,中国工程物理研究院,北京,2001.
    [张鹏2003]张鹏.交通流模型的数学理论分析与数值模拟方法.博士学位论文,中国科学技术大学,合肥,2003.
    [周溪召1999]周溪召,范炳全.动态路线行程时间研究.上海理工大学学报,21:385-388,1999.
    [裴玉龙2002]裴玉龙,郎益顺.基于动态交通分配的拥挤机理分析与对策研究.华中科技大学学报,19:95-98,2002.
    [张鹏2005]张鹏,戴世强,刘儒勋.多等级交通流LWR模型中的非线性波描述与WENO数值逼近.应用数学和力学,26:637-644,2005.
    [杜豫川2008]杜豫川,孙立军.基于二维平面空间的连续型交通分析模型.武汉理工大学学报,32:9-11,2008.
    [蒋艳群2009]蒋艳群,段雅丽,刘儒勋,张韵华.基于MATLAB的非结构网格生成器和浅水问题的数值模拟.水动力学研究与进展,24A:398-405,2009.
    [Abgrall 1996] Abgrall R. Numerical discretization of the first-order Hamilton-Jacobi equation on triangular meshes. Commun Pure Appl Math,49:1339-1373,1996.
    [Adalsteinsson 1999] Adalsteinsson D, Sethian JA. The fast construction of extension velocities in level set methods. J Sci Comput,148:2-22,1999.
    [Alastansiou 1997] Alastansiou K, Chan CT. Solution of the 2D shallow water equations using the finite volume method on unstructured triangular meshes. Int J Numer Methods Fluids, 24:1225-1245,1997.
    [Alcrudo 1993] Alcrudo F, Garcia-Navarro P. A high resolution Godunov-type scheme in finite volumes for the 2d shallow water equation, Int J Numer Methods Fluids,16:489-505,1993.
    [Anastaciou 1997] Anastaciou K, Chan CT. Solution of the 2D shallow water equations using the finite volume method on unstructured triangular meshes. Inter. J Numer Meth,24:1225-1245,1997.
    [Asano 2007] Asano M, Sumalee A, Kuwahara M, et al. Dynamic cell-transmission-based pedes-trian model with multi-directional flows and strategic route choices. Transport Res Rec, 2039:42-49,2007.
    [Astarits 1996] Astarits V. Continuous time link model for dynamic network loading models based on travel time function. ISTTT13. Lyon, France, pp.79-102,1996.
    [Aw 2000]Aw A, Rascle M. Resurrection of "second order" models of traffic flow. SIAM J Appl Math,60:916-938,2000.
    [Bardi 1997] Bardi M, Capuzzo-Dolcetta I. Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations. Birkhauser Verlag, Boston-Basel-Berlin,1997.
    [Barth 1999] Barth TJ. Aspects of unstructured grids and finite volume solvers for the Euler and Navier-Stokes equations. AGARD Report 787,6.1-6.61,1999.
    [Beckmann 1952] Beckmann M. A continuous model of transportation. Econometrica,20:643-660,1952.
    [Beckmann 1.956] Beckmann M, McGuire C, Winsten C. Studies in the economics of transporta-tion. New Haven:Yale University Press,1956.
    [Bellomo 2008] Bellomo N, Dogbe C. On the modelling crowd dynamics from scaling to hyper-bolic macroscopic models. Math Models Methods Appl Sci,18(suppl.):1317-1345,2008.
    [Blue 2000] Blue VJ, Adler JL. Cellular automata microsimulation of bi-directional pedestrian flows. Transport Res Rec,1678:135-141,2000.
    [Blue 2001] Blue VJ, Adler JL. Cellular automata microsimulation for modeling bi-directional pedestrian walkways. Transport Res B,35:293-312,2001.
    [Blumenfeld 1977] Blumenfeld DE. Modeling the joint distribution of home and workplace loca-tion in a city. Transport Sci,11:307-377,1977.
    [Blumenfeld 1985] Blumenfeld DE, Beckmann MJ. Use of continuous space modeling to estimate freight distribution costs. Transport Res A,19:173-187,1985.
    [Bornemann 2006] Bornemann F, Rasch C. Finite element discretization of static Hamilton-Jacobi equations based on a local variational principle. Comput Visual Sci,9:57-69,2006.
    [Buckley 1979] Buckley DJ. Traffic assignment in a two-dimensional continuous representation of a traffic network with flow-dependent speeds. Transport Res B,13:167-179,1979.
    [Carey 2003] Carey M, Ge YE, Mccartney M. A whole-link travel time model with desirable prop-erties. Transport Sci,37:83-96,2003.
    [Chow 2009] Chow AHF. Dynamic system optimal traffic assignment-A state-dependent control theoretic approach, Transportmetrica,5:85-106,2009.
    [Coscia 2008] Coscia V, Canavesio C. First-order macroscopic modelling of human crowd dynam-ics. Math Models Methods Appl Sci,18:1217-1247,2008.
    [Crandall 1983] Crandall MG, Lions PL. Viscosity solutions of Hamilton-Jacobi equations. Trans Amer Math Soc,277:1-42,1983.
    [Crandall 1984a] Crandall MG, Evans LC, Lions PL. Some properties of viscosity solutions of Hamilton-Jacobi equations. Trans Amer Math Soc,282:487-502,1984.
    [Crandall 1984b] Crandall MG, Lions PL. Two approximations of solutions of Hamilton-Jacobi equations, Math Comput,1984,43:1-19.
    [Daamen 2003] Daamen W, Hoogendoorn SP. Experimental research of pedestrian walking behav-ior. Transport Res Rec,1828:20-30,2003.
    [Daamen 2005] Daamen W, Hoogendoorn SP. Pedestrian behavior at bottlenecks. Transport Sci, 39:147-159,2005.
    [Dafermos 1980] Dafermos SC. Continuum modeling of transportation networks. Transport Res B,14:295-301,1980.
    [Daganzo 1984] Daganzo CF. The distance traveled to visit N points with a maximum of C stops per vehicle:An analytical model and an application. Transport Sci,18:331-350,1984.
    [Daganzo 2008] Daganzo CF, Geroliminis N. An analytical approximation for the macroscopic fundamental diagram of urban traffic. Transport Res B,42:771-781,2008.
    [D'Este 1987] D'Este G. Trip assignment to radial major roads. Transport Res B,21:433-442, 1987.
    [Emmerich 1997] Emmerich H, Rank E. Cellular automata models of highway traffic. Physica A, 234:676-686,1997.
    [Friesz 1993] Friesz TL, Bernstein D, Smith TE, et al. A variational inequality formulation of the dynamic network user equilibrium problem. Operat Res,41:179-191,1993.
    [Gazis 1959] Gazis DC, Herman R, Potts RB. Car-following theory of steady-state traffic flow. Operat Res,7:499-505,1959.
    [Gendreau 2002] Gendreau M, Marcotte P. Transportation and network analysis-Current trends: Miscellanea in honor of Michael Florian. Kluwer Academic, Dordrecht, Netherlands,2002.
    [Gentile 2005] Gentile G, Papola N, Persia L. Advanced pricing and rationing policy for large scale multimodal networks. Transport Res A,39:612-631,2005.
    [Geroliminis 2008] Geroliminis N, Daganzo CF. Existence of urban-scale macroscopic fundamen-tal diagrams:some experimental findings. Transport Res B,42:759-770,2008.
    [Gremaud 2006] Gremaud PA, Kuster CM. Computational study of fast methods for the Eikonal equations. SIAM J Sci Comput 27:1803-1816,2006.
    [Helbing 1976] Helbing D. Derivarion and empirical validation of a refined traffic flow model. Physica A,233:253-282,1996.
    [Helbing 1992] Helbing D. A fluid-dynamic model for the movement of pedestrians. Complex Sys-tems,6:391-415,1992.
    [Helbing 1995] Helbing D, Molnar P. Social force model for pedestrian dynamics. Phys Rev E, 51:4282-4286,1995.
    [Helbing 2000] Helbing D, Farkas I, Vicsek T. Simulating dynamical features of escape panic. Nature,407,487-490,2000.
    [Helbing 2001] Helbing D, Molnar P, Farkas IJ, et al. Self-organizing pedestrian movement. Envi-ron Plann B,28:361-383,2001.
    [Helbing 2005] Helbing D, Buzna L, Johansson A, et al. Self-organized pedestrian crowd dynam-ics:Experiments, simulations, and design solutions. Transport Sci,39,1-24,2005.
    [Helbing 2007] Helbing D, Johansson A, Al-Abideen HZ. The dynamics of crowd disasters:An empirical study. Phys Rev E,75:046109,2007.
    [Ho 2005]HW Ho, Wong SC, Yang H, et al. Cordon-based congestion pricing in a continuum traffic equilibrium system. Transport Res A,39:813-834,2005.
    [Ho 2006a]Ho HW, Wong SC. Two dimensional continuum modeling approach to transportation problems. J Transport Systems Eng Inform Technol,6:53-68,2006.
    [Ho 2006b]Ho HW, Wong SC, Loo BPY. Combined distribution and assignment model for a con-tinuum traffic equilibrium problem with multiple user classes. Transport Res B,40:633-650, 2006.
    [Ho 2007]Ho HW, Wong SC. Housing allocation problem in a continuum transportation system. Transportmetrica,3:21-39,2007.
    [Hoogendoorn 2001] Hoogendoorn SP, Bovy PHL. Nonlocal continuous-space microscopic sim-ulation of pedestrian flows with local choice behavior. Transport Res Rec,1776:201-210, 2001.
    [Hoogendoorn 2004a] Hoogendoorn SP, Bovy PHL. Pedestrian route-choice and activity schedul-ing theory and models. Transport Res B,38:169-190,2004.
    [Hoogendoorn 2004b] Hoogendoorn SP, Bovy PHL. Dynamic user-optimal assignment in contin-uous time and space. Transport Res B,38:571-592,2004.
    [Hu 1999]Shu CW, Hu CQ. A discontinuous Galerkin finite element method for Hamilton-Jacobi equations. SIAM J Sci Comput,21:666-690,1999.
    [Huang 2002] Huang HJ, Lam WHK. Modeling and solving the dynamic user equilibrium route and departure time choice problem in network with queues. Transport Res B,36:253-273, 2002.
    [Huang 2009a] Huang L, Wong SC, Zhang MP, et al. Revisiting Hughes' dynamic continuum model for pedestrian flow and the development of an efficient solution algorithm. Transport Res B,43:127-141,2009.
    [Huang 2009b] Huang L, Xia YH, Wong SC, et al. Dynamic continuum model for bi-directional pedestrian flows. Eng Comput Mech,162:67-75,2009.
    [Hughes 2000] Hughes RL. The flow of large crowds of pedestrians. Math Comput Simul,53:367-370,2000.
    [Hughes 2002] Hughes RL. A continuum theory for the flow of pedestrians. Transport Res B, 36:507-535,2002.
    [Hughes 2003] Hughes RL. The flow of human crowds. Annu Rev Fluid Mech 35:169-182,2003.
    [Lam 1967]Lam TN, Newell GF. Flow dependent traffic assignment on a circular city. Transport Sci,1:318-361,1967.
    [Langevin 1996] Langevin A, Mbaraga P, Campbell JF. Continuous approximation models in freight distribution:An overview. Transport Res B,30:163-188,1996.
    [Lee 2003]Lee DH. Urban and regional transportation modeling:Essays in honor of David Boyce. Edward Elgar Publishing Inc., Northampton, USA,2002.
    [Leveque 1992] Leveque RJ. Numerical Methods for Conservation Laws. Lectures in Mathematics ETH. Birkhauser Verlag, Basel, Switzerland,1992.
    [Li 2003]Li XG, Yan W, Chan CK. Numerical schemes for Hamilton-Jacobi equations on unstruc-tured meshes. Numer Math,94:315-331,2003.
    [Lighthill 1955] Lighthill MJ, Whitham GB. On kinematic waves (II):A theory of traffic flow on long crowed roads. Proc Royal Soc A,229:317-345,1955.
    [Lin 1993]Lin SY, Wu TM, Chin YS. An upwind finite-volume scheme with a triangular mesh for conservation laws. J Comput Phys,107:324-337,1993.
    [Lions 1982] Lions PL. Generalized solutions of Hamilton-Jacobi equations. Pitman, London, 1982.
    [Lions 1995] Lions PL, Souganidis PE. Convergence of MUSCL and filtered schemes for scalar conservation Laws and Hamilton-Jacobi equations. Numer Math,69:441-470,1995.
    [Litinas 1982] Litinas N, Ben-Akiva M. Simplified transportation policy analysis using continuous distributions. Transport Res A,16:431-445,1982.
    [Liu 1994]Liu XD, Osher S, Chan T. Weighted essentially non-oscillatory schemes. J Comput Phys,115:200-212,1994.
    [Liu 2009]Liu TL, Huang HJ, Yang H, et al. Continuum modeling of park-and-ride services in a linear monocentric city with deterministic mode choice. Transport Res B,43:692-707,2009.
    [Lo 2001]Lo HK, Szeto WY. Advanced transportation information systems:a cost-effective alter-native for network capacity expansion? ITS Journal,6:375-395,2001.
    [Lo 2002a]Lo HK, Szeto WY. A cell-based variational inequality formulation of the dynamic user optimal assignment problem. Transport Res B,36:421-443,2002.
    [Lo 2002b]Lo HK, Szeto WY. A methodology for sustainable traveler information services. Trans-port Res B,36:113-130,2002.
    [Lo 2004]Lo HK, Szeto WY. Modeling advanced transportation information systems:Static ver-sus dynamic paradigms. Transport Res B,38:495-515,2004.
    [Lo 2005]Lo HK, Szeto WY. Road pricing modeling for hyper-congestion. Transport Res A, 39:705-722,2005.
    [Loo 2005]Loo BPY, Ho HW, Wong SC. An application of the continuous equilibrium modelling approach in understanding the geography of air passenger flows in a multi-airport region. Appl Geography,25:169-199,2005.
    [Jiang 2002] Jiang R, Wu QS, Zhu ZJ. A new continuum model for traffic flow and numerical tests. Transport Res B,36:405-419,2002.
    [Jiang 2009a] Jiang YQ, Xiong T, Wong SC, et al. A reactive dynamic continuum user equilibrium model for bi-directional pedestrian flows. Acta Math Sci,29B:1541-1555,2009.
    [Jiang 2009b] Jiang YQ, Wong SC, Ho HW, et al. A continuum dynamic traffic assignment model for urban road networks. Transport Res B, revised.
    [Jiang 2009c] Jiang YQ, Zhang P, Wong SC, et al. A higher-order macroscopic model for pedes-trian flows. Physica A, accepted.
    [Jiang 2009d] Jiang YQ, Zhang P, Wong SC, et al. Macroscopic simulation for pedestrian crowd dynamics. Traffic and granular flow'09. Springer-Verlag, in press.
    [Jiang 2010a] Jiang YQ, Liu RX, Duan YL. Numerical simulation of pedestrian flow past a circular obstruction. Acta Mechanica Sinica, accepted.
    [Jiang 2010b] Jiang YQ, Zhang P, Wong SC, et al. A higher-order continuum dynamic traffic as-signment model for urban road networks, in preparation.
    [Jameson 1985] Jameson A. Multigrid algorithms for compressible flow calculations. Multigrid Method Ⅱ, Lecture. Notes in Math,1228:166-201,1985.
    [Jin 1998]Jin S, Xin ZP. Numerical passage from systems of conservation laws to Hamilton-Jacobi Equations. SIAM J Num Anal,35:2385-2404,1998.
    [Johansson 2008] Johansson A, Helbing D, Al-Abideen HZ, et al. From crowd dynamics to crowd safety:A video-based analysis. Acad Complex Systems,11:497-527,2008.
    [Kiihne 1984] Kuhne RD. Macroscopic freeway model for dense traffic-stop-start Waves and inci-dent detection. ISTTT9. VNU Science Press, Utrecht, pp.21-42,1984.
    [Kurganov 2000] Kurganov A, Tadmor E. New high-resolution semi-discrete central schemes for Hamilton-Jacobi equations. J Comput Phys,160:720-742,2000.
    [Kurganov 2002] Kurganov A, Levy D. Central-upwind schemes for the Saint-Venant system, Math Modelling Numer Anal,36:397-425,2002.
    [Kurganov 2009] Kurganov A, Petrova G. Central-upwind schemes for two-layer shallow water equations. SIAM J Sci Comput,31:1742-1773,2009.
    [Kuwahara 2001] Kuwahara M, Akamatsu T. Dynamic user optimal assignment with physical queue for a many-to-many OD pattern. Transport Res B,35:461-479,2001.
    [Michalopoulos 1984] Michaloupolos PG, Beskos DE, Lin JK. Analysis of interrupted traffic flow by finite difference methods. Transport Res B,18:377-396,1984.
    [Michalopoulos 1993] Michaloupolos PG, Yi P, Lyrintzis AS. Continuum modeling of traffic dy-namics for congested freeways. Transport Res B,27:315-332,1993.
    [Muramatsu 1999] Muramatsu M, Irie T, Nagatani T. Jamming transition in pedestrian counter flow. Physica A,267:267:487-498,1999.
    [Muramatsu 2000] Muramatsu M, Nagatani T. Jamming transition of pedestrian traffic at a crossing with open boundaries. Physica A,286:377-390,2000.
    [Nagel 1992] Nagel K, Shreckenberg M. A cellular automaton model for freeway traffic. J de Phys I,2:2221-2229,1992.
    [Newell 1986] Newell GF, Daganzo CF. Design of multiple-vehicle delivery tours II, Other metrics. Transport Res B,20:365-376,1986.
    [Osher1988] Osher S, Sethian JA. Fronts propagating with curvature dependent speed:Algorithms based on Hamilton-Jacobi formulations. J Comput Phys,79:12-49,1988.
    [Osher 1993] Osher S. A level set formulation for the solution of the Dirichlet problem for Hamilton-Jacobi equations. SIAM J Math Anal 24:1145-1152,1993.
    [Patriksson 1994] Patriksson M. The traffic assignment problem:Models and methods. VSP. Netherlands,1994.
    [Paveri-Fontana 1975] Paveri-Fontana SL. On Boltzmann-like treatments for traffic flow:A critical review of the basic model and an alternative proposal for dilute traffic analysis. Transport Res,9:225-235,1975.
    [Payne 1971] Payne HJ. Models of freeway traffic and control. In:Bekey A.G. (ed.) Mathematical Models of Public Systems. Simulation Council Proc,1:51-61,1971.
    [Piccoli 2009] Piccoli B, Tosin A. Pedestrian flows in bounded domains with obstacles. Contin Mech Thermodyn,27:85-107,2009.
    [Prigogine 1971] Prigogine I, Herman R. Kinetic theory of vehicular traffic. Ameriean Elsevier, NewYork,1971.
    [Puu 1978]Puu T. On traffic equilibrium, congestion tolls, and the allocation of transportation capacity in a congested urban area. Environ Plann A,10:29-36,1978.
    [Qian 2007a] Qian J, Zhang YT, Zhao HK. A fast sweeping method for static convex Hamilton-Jacobi equations. J Sci Comput,31:237-271,2007.
    [Qian 2007b] Qian J, Zhang YT, Zhao HK. Fast sweeping methods for eikonal equations on trian-gular meshes. SIAM J Numer Anal,45:83-107,2007.
    [Rascle 2002] Rascle M. An improved macroscopic model of traffic flow:Derivation and links with the Lighthill-Whitham model. Math Comput Modelling,35:581-590,2002.
    [Reuschel 1950] Reuschel A. Vehicle movements in a platoon. Oesterreichishesing-Arch,4:193-215,1950.
    [Richards 1956] Richards PI. Shock waves on the highway. Oper Res,4:42-51,1956.
    [Ross 1988] Ross P. Traffic dynamics. Transport Res B,22:421-435,1988.
    [Sasaki 1990] Sasaki T, Iida Y, Yang H. User equilibrium traffic assignment by continuum approx-imation of network flow. ISTTT11, Japan, Yokohama, pp.233-252,1990.
    [Sethian 1996a] Sethian JA. Level set methods:Evolving interfaces in geometry, fluid mechanics, computer vision, and materials science. Cambridge University Press,1996.
    [Sethian 1996b] Sethian JA. A fast marching level set method for monotonically advancing fronts. Proc Natl Acad Sci,93:1591-1595,1996.
    [Sethian 2000] Sethian JA, Vladimirsky A. Fast methods for the eikonal and related Hamilton-Jacobi equations on unstructured mesh. Proc Natl Acad Sci,97:5699-5703,2000.
    [Sethian 2001] Sethian JA, Vladimirsky A. Ordered upwind methods forstatic Hamilton-Jacobi equations. Proc Natl Acad Sci,98:11069-11074,2001.
    [Sethian 2003] Sethian JA, Vladimirsky A. Ordered upwind methods for static Hamilton-Jacobi equations:Theory and algorithms. SIAM J Numer Anal,41:325-363,2003.
    [Shu 1988]Shu CW, Osher S. Efficient implementation of essentially non-oscillatory shock-capturing schemes. J Comput Phys,77:439-471,1988.
    [Shu 2004]Shu CW. High order numerical methods for time dependent Hamilton-Jacobi equations, WSPC/Lecture Notes Series,2004.
    [Smoller 1983] Smoller J. Shock wave and reaction-diffusion equation. Springer-Verlag,1983.
    [Szeto 2004] Szeto WY, Lo HK. A cell-based simultaneous route and departure time choice model with elastic demand. Transport Res B,38:593-612,2004.
    [Taguchi 1982] Taguchi A, Iri M. Continuum approximation to dense networks and its application to the analysis of urban road networks. Math Programming Study,20:178-217,1982.
    [Tabuchi 1986] Tabuchi T. Urban agglomeration economies in a linear city. Reg Sci Urban Econ, 16:421-436,1986.
    [Tang 1997] Tang T, Teng ZH. Viscosity methods for piedewise smooth solutions to scalar conser-vation laws. Math Comp,66:495-526,1997.
    [Tong 1997] Tong CO, Wong SC. The advantages of a high density, mixed land use, linear urban development. Transportation,24:295-307,1997.
    [Tong 2000] Tong CO, Wong SC. A predictive dynamic traffic assignment model in congested capacity-constrained road networks. Transport Res B,34:625-644,2000.
    [Toro 1997] Toro EF. Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer-Verlag. Berlin, Heidelberg,1997.
    [Vaughan 1985] Vaughan RJ. A continuous analysis of the role of transportation and crowding costs in determining trip distribution and location in a linear city. Transport Res A,19:89-107,1985.
    [Vaughan 1987] Vaughan RJ. Urban Spatial Traffic Patterns. Pion, London, UK,1987.
    [Wang 2000] Wang JW, Liu RX. A comparative study of finite volume methods on unstructured meshes for simulation of 2D shallow water wave problems. Math Comput Simul,53:171-184,2000.
    [Wang 2004] Wang JYT, Yang H, Lindsey R. Locating and pricing park-and-ride facility in a linear monocentric city with deterministic model choice. Transport Res B,38:709-731,2004.
    [Wardrop 1952] Wardrop J. Some theoretical aspects of road traffic research. Proc Inst of Civil Eng, Part Ⅱ 1:325-378,1952.
    [Weller 2008] Weller H, Weller HG. A high-order arbitrarily unstructured finite volume model of the global atmosphere:Tests solving the shallow water equations. Int J Numer Meth Fluids, 56:1589-1596,2008.
    [Wesolowsky 1973] Wesolowsky GO. Location in continuous space. Geographical Anal,5:92-112,1973.
    [Whitham 1974] Whitham GB. Linear and Nonlinear Waves. John Wiley and Sons, New York, 1974.
    [Wiles2001] Wiles PG, Brunt BV. Optimal location of transshipment depots. Transport Res A, 35:745-771,2001.
    [Williams 1976] Williams HCWL, Ortuzar JD. Some generalizations and applications of the ve-locity field concept:Trip patterns in idealized cities. Transport Res,10:65-73,1976.
    [Wolf 2007] Wolf WR, Azevedo JLF. High-order ENO and WENO schemes for unstructured grids. Int J Numer Methods Fluids,55:917-943,2007.
    [Wong 1994] Wong SC. An alternative formulation of D'Este's trip assignment model. Transport Res B,28:187-196,1994.
    [Wong 1998a] Wong SC, Lee CK, Tong CO. Finite element solution for the continuum traffic equi-librium problems. Int J Numer Methods Eng,43:1253-1273,1998.
    [Wong 1998b] Wong SC. Multi-commodity traffic assignment by continuum approximation of net-work flow with variable demand. Transport Res B,32:567-581,1998.
    [Wong 2010] Wong SC, Leung WL, Chan SH, et al. Bi-directional pedestrian stream model with oblique intersecting angle. ASCE J Transp Engrg,136:234-242,2010.
    [Wong 2002] Wong GCK, Wong SC. A multi-class traffic flow model-an extension of LWR model with heterogeneous drivers. Transport Res A,36:827-841,2002.
    [Xia 2008]Xia YH, Wong SC, Zhang MP, et al. An efficient discontinuous Galerkin method on triangular meshes for a pedestrian flow model. Int J Numer Methods Eng,76:337-350,2008.
    [Xia 2009]Xia YH, Wong SC, Zhang MP, et al. Dynamic continuum pedestrian flow model with memory effect. Phys Rev E,79:066113,2009.
    [Xu 2007]Xu RY, Zhang P, Dai SQ, et al. Admissibility of a wide cluster solution in "anisotropic" higher-order traffic flow models. SIAM J Appl Math,68:562-573,2007.
    [Xue 2003]Xue Y, Dai SQ. Continuum traffic model with the consideration of two delay time scales. Phys Rev E,68:066123,2003.
    [Yang 1993] Yang H, Kitamura R, Jovanis P, et al. Exploration of route choice behavior with advanced traveler information using neural network concepts. Transportation,20:199-223, 1993.
    [Yang 2000] Yang H, Wong SC. A continuous equilibrium model for estimating market areas of competitive facilities with elastic demand and market externalities. Transport Sci,34:216-227,2000.
    [Yang 2004] Yang H, Huang HJ. The multiclass, multicriteria traffic network equilibrium and sys-tem optimum problem. Transport Res B,38:1-15,2004.
    [Zienkiewicz1989] Zienkiewicz OC, Taylor RL. The Finite Element Method. McGraw-Hill Inter-national Editions, London, UK,1989.
    [Zhang 1998] Zhang HM. A theory of nonequilibrium traffic flows. Transport Res B,32:485-498, 1998.
    [Zhang 2002] Zhang HM. A non-equilibrium traffic model devoid of gas-like behavior. Transport Res B,36:275-290,2002.
    [Zhang 2006] Zhang P, Liu RX, Wong SC, Dai SQ. Hyperbolicity and kinematic waves of a class of multi-population partial differential equations. Euro J Appl Math,17:171-200,2006.
    [Zhang 2008] Zhang P, Wong SC, Xu ZL. A hybrid scheme for solving a multi-class traffic flow model with complex wave breaking. Comput Methods Appl Mech Engrg,196:3816-3827, 2008.
    [Zhang 2009] Zhang P, Wong SC, Dai SQ. A conserved higher-order anisotropic traffic flow model: Description of equilibrium and non-equilibrium flows. Trans Res Part B,43:562-574,2009.
    [Zhang X 2008] Zhang X, Huang HJ, Zhang HM. Integrated daily commuting patterns and optimal road tolls and parking fees in a linear city. Transport Res B,42:38-56,2008.
    [Zhang YT 2006] Zhang YT, Zhao HK, Qian J. High order fast sweeping methods for static Hamilton-Jacobi equations. J Sci Comput,29:25-56,2006.
    [Zhao 1996] Zhao DH, Shen HW, Lai JS, et al. Approximate riemann solvers in FVM for 2D hydraulic shock wave modeling, ASCE J Hydraulic Eng,122:692-702,1996.
    [Zhao 2005] Zhao HK. A fast sweeping method for eikonal equations. Math Comput,74:603-627, 2005.
    [Ziliaskopoulos 2004] Ziliaskopoulos AK, Waller ST, Li Y, et al. Large-scale dynamic traffic as-signment:Implementation issues and computational analysis. J Transport Eng,130:585-593, 2004.
    [Zitron 1974] Zitron NR. A continuous model of optimal-cost route in a circular city. J Optim Theor Appl,14:291-303,1974.
    [Zitron 1978] Zitron NR. A critical condition for the cost density in the circular city model. J Optim Theor Appl,24:507-512,1978.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700