用户名: 密码: 验证码:
多元样条及其某些应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
计算几何是一门新兴的几何分支学科,是几何学、计算数学与计算机科学的交叉学科.样条是计算几何的基本理论工具和基础.自1946年I. J. Schoenberg建立了一元样条的基础以来,多元样条的研究一直没有取得实质性的进展.1975年,王仁宏教授开创了以光滑余因子协调方法为核心的多元样条的代数几何方法,得到了任意剖分下多元样条的充分必要条件,把任意剖分下的多元样条归结为求解以多项式为系数的方程组,从而建立了任意剖分下多元样条的基本理论框架.本文主要利用研究多元样条的光滑余因子协调方法,对多元样条的理论及应用进行了研究.本文的主要工作如下:
     1.本文回顾了王仁宏教授建立的研究多元样条的基本理论框架,介绍了光滑余因子协调方法及其在相关领域中取得的成果.
     2.1980年,G.Farin在多元样条的基本理论框架下考虑了三角形剖分上的的分片多项式的:Bezier坐标和光滑拼接条件之间的关系,建立了B网方法的理论基础.需要指出的是,B网方法只适用于研究单纯形剖分上的多元样条,而光滑余因子协调方法可以进行任意剖分上的多元样条的研究,本文证明了这样一个事实:B网方法是建立在王仁宏教授建立的研究多元样条的基本理论框架之上的,它可由光滑余因子协调方法直接导出.
     3.利用多元样条进行散乱数据拟合是计算几何中一个非常重要的课题.本文讨论了2-型三角剖分上的2元样条空间S21(△m,n(2))的结构和性质,并利用S21(△m,n(2))中的基函数对给定的散乱数据点进行拟合,提出了BS2算法.该算法避开了适定结点组的选取.数据实验表明BS2算法能够达到较好的拟合效果.为了构造出精确度更高,光顺性更好的拟合函数,本文对BS2算法进行了改进:提出了一种新的算法:MBS算法.该算法利用多重拟合的思想,对前一步用BS2算法得到的拟合函数的误差进行拟合,这样形成了一组拟合函数,最终的拟合函数是这组拟合函数的和.
     4.本文利用2-型剖分上带有边界条件的样条空间S21;0(△m,n(2))和S42,3;0(△m,n(2))对线性抛物型方程求数值解,并提出了一种自适应的非连续伽略金有限元方法(简称ADB方法).数据实验表明,利用ADB方法得到的线性抛物型方程的数值解具有较高的精确度.样条函数基底具有对称性,可存储性和可计算性等优点,这些优点使得ADB方法在实现上也更为方便.
Computational geometry is a new subject of geometry. It is a interdisciplinary subject of geometry, computational mathematics and computer science. The spline is a basic theoretical tool of computational geometry. After I. J. Schoenberg established the theory of the univariate spline in 1946, the research on the multivariate spline does not improve essentially. In 1975, Prof. Renhong Wang established the algebraic geometry method for the multivariate spline using the so-called conforamlity method of smoothing cofactor (CSC method). Then the sufficient and necessary conditions for multivariate splines over arbitrary partitions are obtained. The problems of multivariate splines over arbitrary partitions turn to solving a system of equations with polynomials as coefficients, and the theoretical framework of multivariate splines is established. This article uses the conformality method of smoothing cofactor to discuss the theories and applications of multivariate splines. The main work is as follows:
     1. We retrospect the basic theoretical framework of multivariate splines established by Prof. Renhong Wang, and discuss the conformality method of smoothing cofactor and his advanced products about the research on the space of multivariate splines.
     2. In 1980, under the basic theoretical framework of multivariate splines established by Prof. Renhong Wang, G. Farin considered the relationship between the barycentric coordinates of a piecewise polynomial over two adjacent triangles and smoothness con-ditions. He introduced the B-net method which is suitable for studying the multivariate splines over simplex partitions. We know that, the CSC method is an approach to study multivariate splines over arbitrary partition. So there is some relationship between the CSC method and the B-net method. This article indicates that the B-net method is established the basic theoretical framework of multivariate splines established by Prof. Renhong Wang. It could be derived directly by the CSC method.
     3. Scattered data approximation is a very important issue in computational geome-try. This article discusses the structure and nature of spline space (?). We proposed an algorithm (named BS2 Algorithm), which uses the bases in (?)to fitting the given scattered data points. The BS2 Algorithm avoids the selection of the Lagrange interpo-lation set. The numerical results indicate that the BS2 Algorithm has fine accuracy. In order to obtain a approximation function with higher accuracy and finer smoothness, we modify the BS2 Algorithm and propose a new algorithm:MBS Algorithm. It makes use of a hierarchy of 2-type partitions to generate a sequence of functions whose sum approaches the desired approximation functions.
     4. Using 2-type partitions spline space with boundary conditions, (?) and (?), this article proposes a numerical method to solve linear parabolic equations. We give an adaptive discontinuous Galerkin finite element method (the ADB method). The numerical results show that the solutions obtained by the ADB method have high accuracy. Since the bases of (?) and (?) are easy to store and evaluate, the ADB method is more convenient to implement.
引文
[1]Schoenberg I J. Contribution to the problem of application of equidistant data by analytic functions. Quart. Appl. Math.,1946,4:45-99;112-141.
    [2]王仁宏.多元齿的结构与插值.数学学报,1975,18:91-106.
    [3]王仁宏.施锡泉,罗钟铉,苏志勋.多元样条函数及其应用.北京:科学出版社,1994.
    [4]Wang R H. Multivariate Spline Functions and Their Applications. Beijing/New York: Science Press/Kluwer Pub.,1994/2001.
    [5]王仁宏.任意剖分下的多元样条分析.中国科学,数学专辑I,1979:215-226.
    [6]王仁宏.任意剖分下的多元样条分析ii-空间形式.高等学校计算数学学报,1980,1:78-81.
    [7]Wang R H. The dimension and basis of spaces of multivariate spline. Journal of Computational and Applied Mathematics,1985,12-13:163-177.
    [8]Wang R H. Multivariate spline and algebraic geometry. Journal of Computational and Applied Mathematics,2000,121:153-163.
    [9]王仁宏.多元弱样条.广州计算数学会议,1987.
    [10]王仁宏,何天晓.不均匀第二型三角剖分下的带有边界条件的样条函数空间.科学通报:1985,4:249-251.
    [11]王仁宏,卢旭光.关于三角剖分下二元样条空间的维数.中国科学(A辑),1988,1:585-594.
    [12]王仁宏.关于多元样条空间的维数.科学通报,1988,6:473-474.
    [13]王仁宏,许志强.分片代数曲线Bezout数的估计.中国科学(A辑),2003,2:185-192.
    [14]王仁宏,朱春钢.实分片代数曲线的拓扑结构.计算数学,2003,25:505-512,
    [15]许志强,王仁宏.贯穿剖分的若干性质.高等学校计算数学学报,2001,4:289-292.
    [16]罗钟铉.非线性样条函数:博士学位论文.大连理工大学,1991.
    [17]苏志勋.分片代数曲线曲面及其在CAGD中的应用:博士学位论文.大连理工大学,1993,
    [18]赵国辉.多元样条中的几个相关问题研究:博士学位论文.大连理工大学,1996.
    [19]刘秀平.分片代数曲线问题的研究:博士学位论文.大连理工大学,1999.
    [20]赖义生.分片代数曲线与分片代数簇的若干研究:博士学位论文.大连理工大学,2002.
    [21]许志强.分片代数曲线及线性丢番图方程组:博士学位论文.大连理工大学,2003.
    [22]崔利宏.多元Lagrange插值与多元]Kergin;插值:博士学位论文.吉林大学,2003.
    [23]王晶昕.样条插值适定性与插值逼近问题研究:博士学位论文.大连理工大学,2004.
    [24]李崇君.特殊三角剖分上的多元样条及其应用:博士学位论文.大连理工大学,2004.
    [25]朱春钢.分片代数曲线、分片代数簇与分片半代数集的某些问题研究:博士学位论文.大连理工大学,2005.
    [26]Farin G. Triangular bernstein-bezier patches. Comput. Aided Geom. Des.,1986, 3:113-127.
    [27]Lorentz G G. Bernstein Polynomials. New York:Chelsea Publishing Company,1986, second ed.
    [28]Alfeld P. Bivariate spline spaces and minimal determining sets. Journal of Compu-tational and Applied Mathematics,2000,119(1-2):13-27.
    [29]周蕴时,苏志勋,奚勇江,程少春.CAGD中的曲线曲面.长春:吉林大学出版社,1993.
    [30]吴宗敏.散乱数据拟合的模型:方法和理论.北京:科学出版社,2007.
    [31]Franke R, Nielson G M. Scattered data interpolation and applications:A tutorial and survey. H. Hagen and D. Roller eds., Geometric Modelling:Methods and Their Application. Springer-Verlag. Berlin,1991:131-160.
    [32]Barnhill R E. Representation and approximation of surfaces. Mathematical Software III (J. R. Rice, Ed.) Academic Press. New York,1977:69-120.
    [33]Hoschek J, Lasser D. Computer Aided Geometric Design. A. K. Peters,1993.
    [34]Shepard D. A two dimentional interpolation function for irregularly spaced data. Proc. ACM 23rd Nat'l Conf.1968:517-524.
    [35]Franke R, Nielson G M. Smooth interpolation of large sets of scattered data. Intl. J. Numerical Methods in Eng.,1980,15:1691-1704.
    [36]Lawson C. Software for c1 surface interpolation. Mathematical Software III (J. R. Rice, Ed.) Academic Press. NewYork,1977:161-194.
    [37]Clough R, Tocher J. Finite element stiffness matrices for analysis of plates in bending. Proc. Conf. Matrix Methods in Structural Mechanics.1965:515-545.
    [38]Goshtasby A. Piecewise cubic mapping functions for image registration. Pattern Recognition,1987,20(5):525-533.
    [39]Mclain D. Two dimensional interpolation from random data. Comp. J.,1976,19:178-181.
    [40]Hardy R. Multiquadric equations of topography and other irregular surfaces. J. Geophysical Research,1971,76:1905-1915.
    [41]Duchon J. Splines minimizing rolation-invariant semi-norms in Sobolev space. W. Schempp eds. Constructive Theory of Functions of Several Variables. Springer-Verlag, 1976.
    [42]Powell M. Radial basis functions for multivariable interpolation:a review. D. Griffiths, G. Watson eds. Numerical Analysis. Longman Scientific and Technical. 1987:223-241.
    [43]Buhmann M. Multivariable Interpolation Using Radial Basis Functions. University of Cambridge:Ph.D. dissertation,1989.
    [44]Light W. Some aspects of radial basis function approximation. S. Singh ed. Approx-imation Theory, Spline Functions and Applications. NATO ASI Series,1992:356: 163-190.
    [45]Schaback R. Lower bounds for norms of inverses of interpolation matrices for radial basis functions. Journal of Approximation Theory,1994,79:287-300.
    [46]Schaback R, Wu Z M. Operators on radial functions. Journal of Computational and Applied Mathematics,1996,73:257-270.
    [47]Schaback R, Wu Z M. Construction techniques for highly accurate quasi-interpolation operators. Journal of Approximation Theory,1997,91:320-331.
    [48]Wendland H. Scattered Data Approximation. Cambridge:Cambridge Monographs on Applied and Computational Mathematics, Cambridge University Press,2005.
    [49]Wendland H. Piecewise polynomial, positive definite and compactly supported ra-dial functions of minimal degree. Adv. Comput. Math.,1995,4:389-396.
    [50]Timoshenko S, Woinowsky-Krieger S. Theory of Plates and Shells. New York: Mcgraw-Hill International Book Company,1959.
    [51]Thomee V. Galerkin Finite Element Methods for Parabolic Problems. Lecture Notes in Mathematics 1054. Springer-Verlag,1984.
    [52]Mohanty R K. A variable mesh C-splage method of accuracy (?) for Id-nonlinear parabolic equations. Applied Mathematics and Computation,2009, 213:79-91.
    [53]Caglar H, Caglar N. Fifth-degree b-spline solution for a fourth-order parabolic partial differential equations. Applied Mathematics and Computation,2008,201:597-603.
    [54]Akyildiz F T, Vajravelu K. Orthogonal cubic spline collocation method for the non-linear parabolic equation arising in non-newtonian fluid flow. Applied Mathematics and Computation,2007,189:462-471.
    [55]Aziz T, Khan A, Rashidinia J. Spline. methods for the solution of fourth-order parabolic partial differential equations. Applied Mathematics and Computation, 2005,167:153-166.
    [56]Wang R, Keast P, Muir P. A comparison of adaptive software for Id parabolic PDEs. Journal of Computational and Applied Mathematics,2004,169:127-150.
    [57]Onah E S. Asymptotic behaviour of the galerkin and the finite element collocation methods for a parabolic equation. Applied Mathematics and Computation,2002, 127:207-213.
    [58]Onah E S. On direct methods for the discretization of a heat-conduction equation using spline functions. Applied Mathematics and Computation,1997,85:87-96.
    [59]Anttila J. A spline collocation method for parabolic pseudodifferential equations. Journal of Computational and Applied Mathematics.2002,140:41-61.
    [60]Bialecki B, Fairweather G. Orthogonal spline collocation methods for partial differen-tial equations. Journal of Computational and Applied Mathematics,2001,128:55-82.
    [61]Pedersen H, Tanoff M. Spline collocation method for solving parabolic PDEs with initial discontinuities:Application to mixing with chemical reaction. Computers and Chemical Engineering,1982,6(3):197-207.
    [62]Pons B S, Schmidt P P. Global spline collocation in the simulation of electrochemical diffusion equations. Electrochimica Acta,1980,25(8):987-993.
    [63]Hopkins T R, Wait R. Some quadrature rules for galerkin methods using B-spline basis functions. Computer Methods in Applied Mechanics and Engineering,1979, 19(3):401-416.
    [64]Jain P C, Lohar B L. Cubic spline technique for coupled non-linear parabolic equa-tions. Computers and Mathematics with Applications,1979,5(3):179-185.
    [65]Dogru H A, Alexander W, Panton L R. Numerical solution of unsteady flow problems in porous media by spline functions. Journal of Hydrology.1978,38(1-2):179-195.
    [66]Sastry S S. Finite difference approximations to one-dimensional parabolic equations using a cubic spline technique. Journal of Computational and Applied Mathematics, 1976,2(1):23-26.
    [67]李荣华,冯果忱.微分方程数值解法.北京:高等教育出版社,1997.
    [68]Popov A V. Solution of a parabolic equation of diffraction theory by a finite differ-ence method. USSR Computational Mathematics and Mathematical Physics,1968, 8(5):282-288.
    [69]Astrakhantsev G P. A finite difference method for solving the third boundary value problem for elliptic and parabolic equations in an arbitrary region. iterative solution of finite difference equations I. USSR Computational Mathematics and Mathematical. Physics,1971,11(1):141-161.
    [70]Kimble M C, White R E. A five-point finite difference method for solving parabolic partial differential equations. Computers and Chemical Engineering,1990,14(8):921-924.
    [71]Subasi M, Yildiz B, Kacar A. A difference method for solving parabolic equations of order 2n. Applied Mathematics and Computation,2003,140:475-484.
    [72]Benito J J, Urena F, Gavete L. Solving parabolic and hyperbolic equations by the generalized finite difference method. Jouunal of Computational and Applied Math-ematics,2007,209:208-233.
    [73]Ewing R E, Lazarov R D, Vassilev A T. Finite difference scheme for parabolic prob-lems on composite grids with refinement in time and space. SIAM Journal on Nu-merical Analysis,1994,31(6):1605-1622.
    [74]Zerroukat M, Power H, Chen C. A numerical method for heat transfer problem using collocation and radial basis functions. Int. J. Numer. Methods Eng.,1998. 42:1263-1278.
    [75]Zhang Y, Tan Y. Solve partial differential equations by meshless subdomains method combined with RBFs. Applied Mathematics and Computation,2006,174:700-709.
    [76]Zhang Y. Solving partial differential equations by meshless methods using radial basis functions. Applied Mathematics and Computation,2007,185:614-627.
    [77]Dehghan M, Tatari M. Determination of a control parameter in a one-dimensional parabolic equation using the method of radial basis functions. Math. Comput. Mod-elling,2007,44:1160-1168.
    [78]Tatari M, Dehghan M. On the solution of the non-local parabolic partial differential equations via radial basis functions. Appl. Math. Modelling,2009,33:1729-1738.
    [79]Tatari M, Dehghan M. A method for solving partial differential equations via ra-dial basis functions:Application to the heat equation. Engineering Analysis with Boundary Elements,2010,34:206-212.
    [80]Lesaint P, Raviart P A. On a finite element method for solving the neutron transport equation. Mathematical Aspects of Finite Elements in Patial Differential Equations, C. de Boor, ed., Academic Press. New York,1974:89-145.
    [81]Reed W H, Hill T R. Triangular Mesh Methods for the Neutron Transport Equation. Los Alamos Scientific Laboratory:Research Report LA-UR-73-479,1973.
    [82]Eriksson K, Johnson C, Thomee V. On the solution of the non-local parabolic partial differential equations via radial basis functions. Mathematical Modeling and Numerical Analysis,1985,19(4):611-643.
    [83]Jamet P. Galerkin-type approximation which are discontinuous in time for parabolic equations in a variable domain. SIAM Journal on Numerical Analysis.1978,15:912-928.
    [84]Babuska I, Janik T. The hp-version of the finite element method for parabolic equa-tions, I:The p-version in time. Numerical Methods for Partial Differential Equations, 1989,5:363-399.
    [85]Babuska I, Janik T. The hp-version of the finite element method for parabolic equa-tions, Ⅱ:The hp-version in time. Numerical Methods for Partial Differential Equa-tions,1990,6:343-369.
    [86]Schotzau D, Schwab C. Time discretization of parabolic problems by the hp-version of the discontinuous galerkin finite element method. SIAM J. Numer. Anal.,2000, 38(3):837-875.
    [87]Kaneko H, Bey K S, Hou G J W. Discontinuous galerkin finite element method for parabolic problems. Applied Mathematics and Computation,2006,182:388-402.
    [88]Kaneko H, Bey K S, Hou G J W. A discontinuous galerkin method for parabolic prob-lems with modified hp-finite element approximation technique. Applied Mathematics and Computation,2006,182:1405-1417.
    [89]Wang R H, Li C J. Bivariate quartic spline spaces and quasi-interpolation operators. Journal of Computational and Applied Mathematics,2006,190:325-338.
    [90]Wang R H, Zhang X L. Finite element method by using bivariate b-splines. Journal of Information and Computational Science,2006,3(4):911-918.
    [91]Wu J M, Zhang X L. Finite element method by using quartic b-splines. Numerical Methods for Partial Differential Equations, published online.
    [92]Eriksson K, Johnson C. Error estimates and automatic time step control for nonlinear parabolic problem. SIAM Journal on Numerical Analysis,1987,24(1):12-23.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700