用户名: 密码: 验证码:
物体入水问题的分析研究及其在船舶与海洋工程中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
入水问题作为工程应用中一种比较常见的现象,一直以来都是船舶和海洋工程领域中十分重要的课题。由于涉及到移动物体边界和自由液面,因此能够准确地数值模拟入水过程是具有挑战性的。本文采用自由液面捕捉方法,将自由面作为计算域内的接触间断进行捕捉,建立非均匀不可压缩的欧拉方程作为流场控制方程组。并且利用直角切割网格来离散计算域,通过局部更新物体边界附近的网格信息来解决动边界问题。在此基础上,采用基于单元中心的有限体积法对控制方程进行离散。其中,采用Roe的近似Riemann解算子的复合格式计算流体网格边界处的流通量。边界处的流场变量采用分片线性表达式进行重构,利用最小二乘法求解流场变量梯度,引入限制器来抑制高阶重构方法在间断解附近产生的虚假振动,物体边界处的流通量由Riemann间断理论得出。采用压强分裂算法对压强梯度进行预处理,从而解决由于自由面引起的静压梯度不连续的问题。使用人工压缩法将压强项引入到不可压缩约束方程中,采用双时间推进方法来获得流场的非定常数值解。通过流固耦合算法,将本文方法扩展应用到刚体自由入水问题上。采用二维刚性楔形、圆形剖面常速入水和楔形、船型剖面的自由入水作为实例,验证了本文计算方法的有效性和适用性。
     采用上述流场计算方法对双圆柱同步入水问题进行了求解,结果表明双圆柱的相互作用对压强分布和所受水作用力的影响较为显著,并且发现双圆柱半径、间距和入水速度对这种相互作用效果有很大的影响。然后,变换这三个状态参量,设计各种不同的双圆柱同步入水数值试验。根据计算结果,在不同入水阶段,对于附加水作用力分别采用类似正态分布和Weibull分布的解析表达式进行数值拟合。并且通过两个任意双圆柱入水模型对估算表达式进行验证,计算所得结果满足工程精度。这说明本文所得的代数表达式能够用于工程中双圆柱入水的附加水作用力估算。这种思想方法同样可以用于多柱状体的入水分析中。
     将造消波理论引入到本文流场计算方法中建立数值波浪水槽。控制圆柱入水的时间和运动形式来研究不同波浪参数对圆柱入水过程的影响。然后在圆柱运动方程中加入绳索张力的作用,从而实现对悬吊圆柱在波浪中入水过程的数值模拟。最后变化计算模型的圆柱运动和波浪参数,分析不同工况下绳索张力变化和重物运动的特性。
     将刚架结构有限元理论与本文流场计算方法相结合,并采用单向耦合策略联合计算流场和弹性变形,从而将本文方法扩展应用到水弹性问题的求解中。建立弹性楔形体的自由入水模型,将本文结果与实验数据进行比较,证明了本文方法求解弹性楔形体入水问题的正确性和合理性。然后改变楔形体的入水参数建立不同的模型,分别进行数值计算,并且分析了入水参数对自由入水的弹性楔形体的整体运动和局部变形的影响。
     最后针对三维船体从船台上纵向重力式下水这一工程实际问题,采用Fluent软件计算船体下水流场,并在此基础上编制的船体下水三维运动方程的VC源代码来进行二次开发,从而达到动态模拟船体下水过程的目的。对渤海造船厂159000t油船下水实例进行数值计算,结果表明采用本文的下水数值方法分析船体下水过程是准确可行的。然后以大连重工集团的298000t油船首部从H3倾斜平台下水为例,来分析船体和船台各状态参数对下水运动的影响,得到一些有用结论用来指导实船下水工艺。
Water entry problem is of concern in practical application and an important research topic in marine and ocean engineering field. Because of its moving solid boundary and free surface, the water enty model is very difficult to be numerically simulated. In free surface capturing method, this paper presents the incompressible Euler equations for a variable density fluid system as governing equations, and the free surface is captured as a contact discontinuity in density field. Furthermore, due to its convience for treating moving solid boundary by updating a few cut cells locally, Cartesian cut cell mesh system is taken to discrete computational domain. On this basis, a centered finite volume method is adopted for numerical calculation. Therein, Roe's approximate Riemann solver is used to obtain numerical flux on edge of fluid cell, where fluid variables are reconstructed by a piecewise linear expression. Then a least-square method is employed to calculate variable gradients, and limiter is introduced to restrict the false vibration near discontinuity solution. Besides this, the flux on solid boundary is computed by using exact Riemann discontinuous solution. Splitting scheme is used to eliminate the effect of discontinuity of static pressure variable on the calculation of pressure gradient. Dual-time stepping technique with artificial compressibility method is applied for time advancing. A full body-fluid coupled method is taken into account for extending the method to the free-falling water entry problem of rigid body. Four test cases (2D rigid wedge and circle section entering water with a constant velocity, and free-falling water entry models for wedge and ship section) are calculated to verify the efficiency and applicability of the above method.
     By the present method, synchronous water entry model of twin cylinders is solved. The results show that the interaction of twin cylinders has obvious influence on pressure distribution and hydrodynamic. Futhermore, it can be found that radius, distance and entry velocity of twin cylinders can affect the interaction. Then according to the three parameters, various different numerical tests for synchronous water entry of twin cylinders are designed. At different water entry phases, analytical expressions of Normal and Weibull distribution are numerically fitted to estimate the additional hydrodynamic on a cylinder. Finally, two arbitrary water entry models of twin cylinders are created to verify the analytical expressions and the results are satisfactory in engineering precision, thus the analytical expressions can be applied in the evaluation of additional hydrodynamic in practical water entry problem of twin cylinders. The above way can also be applied in the water entry problem of multi-bodies.
     In combination with the theories of a piston-type wave-making and sponge damping wave-absorbing, the present method of this paper is used to implement numerical wave flume. Then the effect of wave parameters (wave height, wave period, wave phase versus cylinder touching free surface, and so on) on the hydrodynamic is analyzed. By introducing the influence of wire tension into the motion equation of cylinder, water entry model of cylinder in wave by lifting operation is numerically simulated. Finally, according to various parameters of cylinder and wave, the tension variation of wire and motion characteristic of cylinder under different working conditions are mainly studied.
     In this section, finite element theory about rigid frame structure is taken to analyze the structural response. On the other hand, the present method is applied in calculation of fluid variables. Futhermore, the above two methods are combined by single-direction coupled method to deal with the hydroelastic problems. Free-falling water entry models of elastic wedge are numerically computed and the results are compared with experimental data to show the feasibility and validaty of the above method. Finally, the effects of different water entry parameters on global motion and local deformation of elastic wedge are discussed.
     In order to dynamicly simulate longitudinal gravity launching of a hull along a slipway, CFD software Fluent is used to calculate fluid variables. On the basis, the VC codes about 3D motion equations of ship launching are programmed for secondary development.159 000t oil carrier is taken for numerical example, and it can be found from the results that current method is available and feasible for the calculation of ship launching. Finally, based on the forebody of 298 OOOt oil ship launching from H3 slipway, the influence of various parameters of slipway and hull on motion of ship is studied and some meaningful conclusions are proposed to guide the practical engineering design.
引文
[1]Sun H. A Boundary Element Method Applied to strongly Nonlinear Wave-Body Interaction Problems [D]. Norway:Norwegian University of Science and Technology,2007.
    [2]Yamamoto Y, Iida K, Fukasawa T, et al. Structural damageanalysis of a fast ship due to bow flare slamming [J]. International shipbuilding progress,1985,32(369):124-136.
    [3]Gu XK, Moan T. Long-term fatigue damage of ship structures under non-linear wave loads [J]. Marine Technology,2002,39(2):95-104.
    [4]Faltinsen OM. Sea Loads on Ships and Offshore Structures [M]. UK:Cambridge University Press, 1990.
    [5]Worthington A.M. Impact with a liquid surface studied with aid of instantaneous photography [J]. Philosophical Transactionsof the Royal Society of London,1897,189:137-148.
    [6]Bottomley G.H. The impact of a model seaplane floats on water:reports and Memoranda [R]. Washington, DC:NACA, No 583,1919.
    [7]Von Karman. The impact of seaplane floats during landing:Technical Note [R]. Washington, DC: NACA, vol.321,1929
    [8]Watanabe. Resistance of impact on water surface [J]. Inst Phys Chem Res,1930,12:251-267.
    [9]Taylor JL. Hydrodynamical inertia coefficients [J]. Philosophical Magazine,1930,9:161-183.
    [10]Wagner H. Uber Stoss-und Gletivorgange an der Oberflache von Flussigkeiten [J]. Zeitschriff fur Angewandte Mathematik und Mechanik.1932,12(4):193-235.
    [11]Mayo WL. Hydrodynamic impact of a system with a single elastic mode [R]. Washington, DC: NACA,1074-1075,1947.
    [12]Milwitzhy B. Generalization theory for seaplane impact [R]. Washington, DC:NACA,1103,1948.
    [13]White F.G. Photographic studies of splash in vertical and oblique water entry of sphere:NOTS NAVORD Report [R]. California:US Naval Ordnance Test Station,1950.
    [14]Egorov I T. Impact on a compressible fluid [R]. Washington, DC:NACA, vol.1413,1956.
    [15]Sharov Y F. Slamming stresses in ship bottom plates [J]. Sudostroenie.1958,24(4):5-9.
    [16]Grigoryan SS. Approximate solution on separated flow around axisymmetric body [J]. Prikladnaya matematika i mehanika.1959,23(5):951-953 [in Russian].
    [17]Burt F S. Hydrodynamic research [J]. British Journal of Applied Physics.1961,12:323-328.
    [18]Ogilvie T F. First and Second Order Forces on a Cylinder Submerged Under a Free Surface [J]. J. Fluid Mech.1963,16:451-472.
    [19]Stoffmacher G. Hydrodynamic impact of conical-nosed vehicles during vertical water entry [J]. Journal of Spacecraft and Rockets.1964, 1(2):222-223.
    [20]Herting D N, Pohlen J C, Pollock R A. Analysis and design of the Apollo landing impact system [C]. Proceeding of the AIAA and NASA Third Manned Space Flight Meeting. Houston, USA. 1964.
    [21]Meyerhoff W K. Die berechnung hydroelastischer stoβe [J]. Schiffstechnik.1965,12:18-30 and 49-64.
    [22]Benson H E. Water impact of the Apollo spacecraft [J]. Journal of Spacecraft and Rockets,1966, 3(8):1282-1284.
    [23]Ferdinace I.V. Theoretical consideration on the penetration of a wedge [J]. ISP,1966,4:102-116.
    [24]Chuang S L. Experiments on flat-bottom slamming [J]. Journal of Ship Research.1966,10:10-17.
    [25]Chuang S L. Investigation of impact of rigid and elastic bodies with water [R]. Naval Warfare and Marine Engneering,1970.
    [26]Dobrovolskaya Z N. On some problems of similarity flow of fluid with a free surface [J].. Journal of Fluid Mechanics,1969,36(4):805-829.
    [27]May A. Review of water-entry and data [J]. AIAA Journal,1970,70:1-5.
    [28]Huges O.F. Solution of wedge entry problem by numerical conformalmapping [J]. J.Fluid Mech. 1972,56:173-192.
    [29]Sellars, Frank H. Comparison of Model and Full-Scale Slamming Impact Pressure Data [R]. Washington DC:MPR Associates INC,1972.
    [30]Ochi M K, Motter L E. Prediction of slamming characteristics and hull response for ship design [J]. Trans. SNAME,1973,81:144-176.
    [31]Waugh J G. Hydroballistics modeling [R]. NASA,1975.
    [32]Stavovy A B, Chuang S L. Analytical determination of slamming pressures for high-speed vehicle in wave [J]. JSR.1976,20(4):190-198.
    [33]Marcal P V. Hydrodynamic impact analysis, technical report [R]. USA:CA,1978.
    [34]Eroshin V A, Romanenkov N I, Serebryakov IV, et al. Hydrodynamic forces produced when bluent bodies strike the surface of a compressible fluid [J]. Mekhanika Zhidkostii Gaza,1979,6:44-51.
    [35]Evans D V, Jeffrey D C, Salter S H, et al. Submerged cylinder wave energy device:theory and experiment [J]. Applied Ocean Research.1979,1:3-12.
    [36]Pukhnachov V V. Linear approximation in the problem on a blunt body entry in water [J]. Din.Sploshnoi Sredy.1979,38:143-150.
    [37]Rochester M C. The impact of a liquid drop and the effect of liquid properties on erosion [D]. London:University of Cambridge,1979.
    [38]戴仰山,贺五周.底部砰击预报[J].中国造船,1979,2:37-48.
    [39]戴仰山,宋竞正.船体在海浪中的弯矩[J].中国造船,1980,3:71-84.
    [40]Belyschko T, Mullen R. Two-dimensional fluid-structure impact computations with regularization [J]. Computer Methods in Applied Mechanics and Engineering.1981,27(2):139-154.
    [41]Sarpkaya T, Isaacson M. Mechanisms of Wave Forces on Off-shore Structures [J]. J. Appl. Mech. 1982,49(2):466-468.
    [42]Pukhnachov V.V. and Korobkin A.A. Initial asymptotic in problem of blunt body entrance into liquid [C]. Proceedings of the 3rd International Conference on Numerical Ship Hydrodynamics, 1981:579-591.
    [43]梁世凯.第三阶段下水计算的简化[J].造船技术,1982,3:25-30.
    [44]Korobkin A A, Pukhnachov V V. Initial asymptotics in contact hydrodynamics problems [C]. Proceedings of the 4th International Conference on Numerical Ship Hydrodynamics,1985:138-151
    [45]Geers T L. A boundary-element method for slamming analysis [J]. Journal of Ship Research.1982, 26(2):117-124.
    [46]Gavrilenko V D. Penetration of parabolic cylinders into compressible fluid [J]. Prikl. Mech.1984, 20:65-71.
    [47]Venkatesan S K. Added mass of two cylinders [J]. J Ship Res.1985,29:234-240.
    [48]Walton P. The hydrodynamics of floating bodies [D]. University of Manchester,1986.
    [49]Basset A B. A treatise on hydrodynamics [R]. Cambridge:Deighton Bell, vol.2,1888.
    [50]Ferro G, Mansour H. Probabilistic analysis of the combined slamming and wave induced response [J]. JSR.1985,29:170-188.
    [51]Watanabe I. Analytical expression of hydrodynamic impact pressure by matched asymptotic expansion technique [R]. T.West-Japan Soc. Nav. Arch, vol.71,1986.
    [52]黄震球,张文海.减小平底体砰击的试验研究[J].华中科技大学学报.1986,5:725-730.
    [53]李国钧,黄震球.平底物体对水面的斜向冲击[J].华中理工大学学报.1995,51:145-147.
    [54]Greenhow M, Li Y B. Added Masses for circular cylinders near or penetrating fluid boundaries-review, extension and application to water-entry, -exit and slamming [J]. Ocean Engineering.1987,14 (4):325-348.
    [55]Korobkin A A, Pukhnachov V V. Initial stage of water impact [J]. Annu Rev. Fluid Mech.1988, 20:159-185.
    [56]Cointe R, Armand J L. Hydrodynamic impact analysis of a cylinder [J]. Journal of Offshore Mechanics and Arctic Engineering.1989,109:237-243.
    [57]Howison S D, Ockendon J R, Wilson S K. Incompressible water entry problems at small deadrise angles [J]. Journal of Fluid Mechanics.1991,222:215-230.
    [58]陈学农,何友声.平头物体三维带空泡入水的数值模拟[J].力学学报.1990,22(2):129-137.
    [59]Cointe R. Two-dimensional water solid impact [J]. Journal of Offshore Mechanics and Arctic Engineering Mathematics.1991,25(1):77-92.
    [60]Wilson S K. A mathematical model for the initial stages of fluid impact in the presence of a cushioning fluid layer [J]. Journal of Engineering Mathematics.1991,25:265-285.
    [61]Miloh T. On the oblique water entry problem of a rigid sphere [J]. Journal of Engineering Mathematics.1991,25(1):77-92.
    [62]顾懋祥,程贯一,张效慈.平头旋转壳撞水水弹性效应的研究[J].水动力学研究与发展.1991,6(1):42-51.
    [63]Miloh T. Mathematical approaches in hydrodynamics [M]//Coint R. Free surface flows close to a surface-piercing body. Mathematical Approaches in Hydrodynamic,1991:319-334.
    [64]Howison, S.D. Ockendon, J.R. and Wilsen, S.K. Incompressible water-entry problems at small deadrise angles. J.Fluid Mech,1991,222:215-230.
    [65]金伏生.入水冲击问题变分原理及其它[J].应用数学和力学.1992,13(6):543-552.
    [66]李森虎,何友声,鲁传敬.超声速平头物体垂直撞水的数值模拟[J].水动力学研究与发展.1992,7(1):72-78.
    [67]郑际嘉,岳亚丁.刚性圆板自由落体在水面上的冲击压力[J].水动力学研究与发展.1992,7(2):219-226.
    [68]Zhao R, Faltinsen O M. Water entry of 2D bodies [J]. J.Fluid Mech.1993,246:593-612.
    [69]Takagi K. Influence of elasticity on hydrodynamic impact Problem [J]. J. Kansai Social Navel Architecture. (Japan).1994,222:97-106.
    [70]钱勤,黄玉盈,王石刚,等.任意的拉格朗日欧拉边界元-有限元混合法分析物体撞水响应[J].固体力学学报.1994,15(1):12-18.
    [71]Anghileri M, Spizzica A. Experimental validation of finite element models for water impacts [C]. Proceedings of the Second International Crash Users Seminar. Cranfield, U K.1995.
    [72]张效慈.90年以来砰击与撞水研究的进展[J].中外船舶科技.1995(4):7-1.
    [73]钱勤,黄玉盈,乐东义.时域边界元法分析撞水响应[J].固体力学学报.1996,17(1):49-57.
    [74]顾王明,唐文勇,陈铁云,等.结构流-固冲击屈曲研究进展[J].力学进展.1996,26(1):56-67.
    [75]卢炽华,郑际嘉.刚性细长柱体倾斜姿态落水冲击的附加质量法[J].华中理工大学学报.1996,24(8):89-93.
    [76]卢炽华,郑际嘉.空投鱼雷倾斜姿态落水冲击研究[J].应用力学学报.1996,4:17-23.
    [77]Zhao R, Faltinsen O M, Aarsnes J. Water entry of arbitrary with and without flow separation [C]. Proceedings of the two-dimensional sections 21st Symposium on Naval Hydrodynamics. Trondheim, Norway.1997.
    [78]王冰,叶天麟.边界元的耦合界面步进法分析物体撞水响应[J].1997,18(5):551-554.
    [79]Faltinsen O M, Zhao R. Water entry of ship sections and axisymmetric bodies [C]. AGARD FDP Workshop on High Speed Body Mation in Water. Kiev, Ukraine.1997.
    [80]Fraenkel L E, McLeod J B. Some results for the entry of a blunt wedge into water [J]. Philosophical Transactions of the Royal Socirty A:Mathematical, Physical and Engineering Sciences.1997,355:523-535.
    [81]Greenhow M, Moyo S. Water entry and exit of horizontal circular cylinders [J]. Mathematical, Physical and Engineering Sciences.1997,355:551-563.
    [82]卢炽华,何友声.二维弹性结构入水冲击过程中的流固耦合作用[J].力学学报.2000,32(2):129-140.
    [83]Sames P C, Schellin T E, Muzaferijia S. Application of a two-fluid finite Volume method of ship slamming [J]. Journal of Offshore Mechanics and Arctic Engineering.1999,121:47-52.
    [84]Wu G X. Hydrodynamic force on a rigid body during impact with liquid [J]. Journal of Fluids and Structures.1998,12(5):549-559.
    [85]Korobkin A A, Pukhnachov V V. Initial stage of water impact [J]. Annual Review of Fluid Mechanics.1998,20:159-185.
    [86]陈铁云,王刚.高速船舶结构设计中流体冲击载荷的数值计算[J].上海交通大学学报.1998,32(11):30-33.
    [87]Xu L, Troescj A W, Vorus W S. Asymmetric Vessel and Planning Hydrodynamics [J]. Journal of Ship Research.1998,41 (3):187-198.
    [88]Xu L, Troesch A W, Peterson R. Asymmetric hydrodynamic impact and dynamic response of vessels. Journal of Offshore Mechanics and Arctic Engineering.1999,121:83-89.
    [89]Mei X M, Liu Y M, Yue D K P. On the water impact of general two dimensional sections [J]. Applied Ocean Research.1999,21(1):1-15.
    [90]Xu L, Troesch A W, Peterson R. Asymmetric hydrodynamic impact and dynamic response of vessels [J]. Journal of Offshore Mechanics and Arctic Engineering.1999,121:83-89.
    [91]卢炽华,何友声,王刚.船体砰击问题的非线性边界元分析[J].水动力学研究与发展.1999,14(2):169-175.
    [92]刘理,刘土光,李天匀,等.大型船舶机舱结构冲击响应的数值模拟[J].船舶工程.1999,2:8-10.
    [93]高岚虹,叶家玮.船舶纵向重力式下水的预测模型[J].2000,2:19-22.
    [94]Peng W, Peregrine D H. Pressure-Impulse Theory for Plate Impact on Water Surface [C]. The 15th International Workshop on Water Waves and Floating Bodies. Caesarea,2000.
    [95]Cui S, Cheong H K, Hao H. Experimental study of dynamic post-buckling characteristics of columns under fluid-solid slamming [J]. Engineering Structures.2000,22(6):647-656.
    [96]Hao H, Cheong H K, Cui S. Analysis of imperfect column buckling under intermediate velocity impact [J]. International Journal of Solids and Structures.2000,37 (38):5297-5313.
    [97]Cheong H K, Hao H, Cui S. Experimental investigation of dynamic post-buckling characteristics of rectangular plates under fluid-solid slamming [J]. Engineering Structures.2000,22:947-960.
    [98]Korobkin A A, Peregrine D H. The energy distribution resulting from an impact on a floating body [J]. Journal of Fluid Mechanics,2000,417:157-181.
    [99]Carcaterra A, Ciappi E, Iafrati A, et al. Shock spectral analysis of elastic systems impacting on the water surface [J]. Journal of Sound and Vibration.2000,229(3):579-605.
    [100]Okada S, Sumi Y. On the water impact and elastic response of a flat plate at small impact angles [J]. Journal of Marine Science and Technology.2000,5:31-39.
    [101]朱克强.船体结构的线性水弹性分析[J].华东船舶工业学院学报.2000,14(4):13-19.
    [102]朱克强,郑道昌,周江华,等.典型高速船的非线性水弹性响应[J].宁波大学学报(理工版).2005,18(4):458-462.
    [103]Korobkin A A, Wu G X. Impact on a floating circular cylinder [J]. Proceeding of the Royal Society A.2000,456:2489-2514.
    [104]宣建明,缪戈,程军,等.返回舱水上冲击特性的试验研究与理论计算[J].水动力学研究与发展.2000,15(3):276-286.
    [105]Carcaterra A, Ciappi E. Hydrodynamic shock of elastic structures impacting on the water:theory and experiments [J]. Journal of Sound and Vibration.2004,3(22):411-439
    [106]孙辉,卢炽华,何友声.二维楔形体冲击入水时的流固耦合响应的实验研究[J].水动力学研究与进展A辑.2003,1:104-109.
    [107]孙辉.二维楔形结构自由冲击入水的流固耦合研究[D].上海:上海交通大学,2001.
    [108]江松青,李永池,陈正翔.侧向不均匀冲击下环向加筋圆柱壳的动力响应[J].计算力学学报.2001,18(4):443-448.
    [109]张志荣,洪方文,张军,等.入水初期流场的测量方法[J].水动力学研究与进展A辑.2001,3:274-278.
    [110]Donguy B, Peseux B, Gornet L, et al. Three dimensional hydroelastic water entries:Preliminary results [C]. Proceedings of the 11th International Offshore and Polar Engineering Conference. Stavanger, Norway,2001.
    [111]倪樵,李其申,黄玉盈.平底物体撞水响应分析[J].华中科技大学学报.2001,4:99-101.
    [112]Wang G, Tang S J, Shin Y. A Direc Calculation Approach for Designing a Ship-shaped FPSO's Bow against Wave Slamming Load [C]. Proceddings of the the Twelfth International Offshore and Polar,2002.
    [113]Scolan Y M, Korobkin A A. Energy distribution from vetical impact of a three-dimensional solid body onto the flat free surface of an ideal fluid [J]. Journal of Fluids and Fluids and Structures. 2003,17(2):275-286.
    [114]张军,张志荣,洪方文,等.楔形体入水初期流场的数值模拟[J].船舶力学.2003,7(4):28-35.
    [115]Park M, Jung Y, Park W. Numerical study of the impact force and ricochet behaviour of high speed water entry bodies [J]. Computers and Fluids.2003,32:939-951.
    [116]Aquelet N, Souli M. Damping effect in fluid-structure interaction:Application to slamming problem [C]. ASME Pressure Vessels and Piping Conference, Cleveland,2003:233-242.
    [117]Aquelet N, Souli M. Fluid-structure coupling in a water-wedge impact problem[C]. ASME/JSME Pressure Vessels and Piping Conference, San Diego,2004:91-99.
    [118]龚建松.船舶纵向重力式下水计算[D].渤海船舶职业学院,2004.
    [119]魏莉洁.159000t油轮纵向船台下水试验研究[D].渤海船舶职业学院,2004.
    [120]Aquelet N, Souli M. Euler-Lagrange coupling with damping effects:Application to slamming problems [J]. Computer Methods in Applied Mechanics and Engineering.2006,195:110-132.
    [121]Takagi K. Numerical evaluation of three-dimensional water impact by the displacement potential formulation [J]. Journal of Engineering Mathematics.2004,48:339-352.
    [122]Battistin D, Iafrati A. A numerical model for the jet flow generated by water impact [J]. Journal of Engineering Mathematics.2004,48:353-374.
    [123]Seifl M S, Mousaviraad S M, Saddathosseini S H. A numerical study on the asymmetric water entry of a wedge section [J]. China Ocean Engineering.2004,18(4):595-604.
    [124]Wu G X, Sun H, He Y S. Numerical simulation and experimental study of water entry of a wedge in free fall motion [J]. Journal of Fluids and Structures.2004,19(3):277-289.
    [125]Oger G, Doring M, Alessandrini B, et al. Two-dimensional SPH simulations of wedge water entries [J]. Journal of Computational Physics.2005,213:803-822.
    [126]陈震,肖熙.空气垫在平底结构入水砰击中作用的仿真分析[J].上海交通大学学报.2005,5:670-673.
    [127]陈震,肖熙.平底结构砰击压力的分布[J].中国造船.2005,4:97-103.
    [128]段文洋,王治安.半潜式船台船舶下水的动力学分析[J].2005,26(3):285-288.
    [129]陈震,肖熙.平底结构砰击压力峰值分析[J].上海交通大学学报.2006,6:983-987.
    [130]陈震,肖熙.二维楔形体入水砰击仿真研究[J].上海交通大学学报.2007,9:1425-1428.
    [131]Ermanyuka E V, Ohkusub M. Impact of a disk on shallow water [J]. Journal of Fluids and Structures.2005,20:345-357.
    [132]Yettou E M, Desrichers A, Champoux Y. Experimental study on the water impact of a symmetrical wedge [J]. Fluid Dynamics Research.2006,38(1):47-66.
    [133]Wu G.X. Numerical simulation of water entry of twin-wedges [J]. J. Fluids and Structures.2006, 22:99-108.
    [134]汪鸿.FPSO底部砰击荷载预报直接算法的研究[D].大连理工大学,2006.
    [135]王建凯.FPSO在波浪中的底部砰击载荷研究[D].大连理工大学,2007.
    [136]张晓波.船底结构砰击时的流固耦合数值模拟[D].大连理工大学,2007.
    [137]郑金伟,宗智.2D刚体椭圆头结构高速撞水模拟[J].鱼雷技术.2008,16(2):9-12.
    [138]Sun H, Faltinsen O M. Asymmetric Water Entry of a Bow-Flare Ship Section with Roll Angle [C]. Proceedings of the IUTAM Symposium, Hamburg, Germany,2007.
    [139]Faltinsen O M, Yuriy A, Semenov. Nonlinear problem of flat-plate entry into an incompressible liquid [J].J. Fluid Mech.2008,611:151-173.
    [140]Tveitnes T, Fairlie-Clarke A C, Varyani K. An experimental investigation into the constant velocity water entry of wedge-shaped sections [J]. Ocean Engineering.2008,35:1463-1478.
    [141]王永虎,石秀华,王鹏,等.平头尖拱体斜入水冲击理论建模与仿真[J].鱼雷技术.2008,1:14-17.
    [142]宋保维,杜晓旭,孟锐,等.空投水雷入水冲击力仿真鱼雷技术[J].2008,3:6-12.
    [143]王永虎,石秀华.入水冲击问题研究的现状和发展[J].爆炸与砰击.2008,3:276-282.
    [144]郑传彬,朱良生,吴家鸣.结构物砰击入水问题研究进展[J].科学技术与工程.2008,21:5891-5897.
    [145]陈占晖,卢永锦.高速运动物体砰击水面后的动力学特性研究[J].船舶工程.2009,3:62-65.
    [146]李强,石秀华,曹银萍.鱼雷头部形状对入水影响的数值模拟研究[J].2009,4:168-170.
    [147]Tadd T, Truscott, Alexandrah H. T. Water entry of spinning spheres [J]. J. Fluid Mech.2009, 625:135-166.
    [148]Shao S D. Incompressible SPH simulation of water entry of a free-falling object [J]. Int. J. Numer. Meth. Fluids.2009,59:91-115
    [149]Farm J, Martinelli L, Jameson A. Fast multigrid method for solving incompressible hydrodynamic problems with free surfaces [J]. AIAA.1994,32:1175-1182.
    [150]Kleefsman K M T, Fekken G, Veldman A E P, et al. A Volume of Fluid based simulation method for wave impact problems [J]. Journal of Computational Physics.2005,206:363-393.
    [151]Kelecy, F. J.& Pletcher, R. H.1997 The development of a free surface capturing approach for multidimensional free surface flows in closed containers. J. Compu. Phys.138,939-980.
    [152]Pan D, Chang C H. The capturing of free surfaces in incompressible multi-fluid flows [J]. International Journal for Numerical Methods in Fluids.2000,33:203-222.
    [153]Qian L, Causon D M, Ingram D M, et al. A free-surface capturing method for two fluid flows with moving bodies. Proceedings of the Royal Society A.2006,462:21-42.
    [154]Weatherill N P, Forsey C R. Grid generation and flow calculations for complex aircraft geometries using a multi-block scheme [J], AIAA,1984:1665.
    [155]Steger J L, Dougherty F C, Benek J A. A Chimera grid scheme:In Advances in Grid Generation [C]. ASME FED-5.1983:59-69.
    [156]Albone C M. Embedded meshes of controllable quality synthesized from elementary geometric features [J]. AIAA.1992:0662.
    [157]Jameson A, Baker T J, Weatherill N P. Calculation of inviscid transonic flow over a complete aircraft [J]. AIAA.1986:0103.
    [158]Peraire J, Vahdati M, Morgan K, et al. Adaptive remeshing for compressible flow computations [J]. J Comp phys.1987,72:449-466.
    [159]Coirier W J, Powell K G. An accuracy assessment of Cartesian mesh approaches for the Euler equations [J]. Journal of Computational Physics.1993,117:121-131.
    [160]Yang G, Causon D M, Ingram D M, et al. A Cartesian cut cell method for compressible flows-Part A:static body problems [J]. The Aeronautical Journal.1997,101(1002):47-56.
    [161]Yang G, Causon D M, Ingram D M, et al. A Cartesian cut cell method for compressible flows-Part B:moving body problems [J]. The Aeronautical Journal,1997,101(1002):57-65.
    [162]Causon D M, Ingram D M, Mingham C G. A Cartesian cut cell method for shallow water flows with moving boundaries [J]. Advances in water resources,2001,24:899-911.
    [163]赵书廷.直角切割网格生成技术及在CFD中的应用研究[D].西北工业大学,2003.
    [164]桑为民.基于自适应直角切割及混合网格的Euler/ N-S方程数值模拟[D].西北工业大学,2002.
    [165]王玉峰.基于笛卡尔网格的非定常气动力计算[D].西北工业大学,2005.
    [166]江继文,刘儒勋.间断解问题的有限体积法[J].计算物理.2001,18(2):97-105.
    [167]郭正.包含运动边界的多体非定常流场数值模拟方法研究[D].国防科技大学,2002
    [168]Golub G H, Loan Van C F. Matrix computations [M]. Baltimore, USA:The Johns Hopkins University Press,1983.
    [169]Beddhu M, Taylor L K, Whitfield D L. A time accurate calculation procedure for flows with a free surface using a modified artificial compressibility formulation [J]. Applied Mathematics and Computation.1994,65:33-48.
    [170]Chorin A J. A numerical method for solving incompressible viscous flow problems [J]. J. Comp. Phys.1967,2(2):12-26.
    [171]Larsen J, Dancy H. Open boundaries in short wave simulations-a new approach [J]. Coastal Eng. 1983,7:285-297.
    [172]王本龙,刘桦.一种适用于非均匀地形的高阶Boussinesq水波模型[J].应用数学和力学.2005,26:714-722.
    [173]宋帅,尤云祥,魏岗.孤立波与直墙式多孔介质结构相互作用数值分析[J].海洋工程.2007,25:7-14.
    [174]陈进于,钱若军.流固耦合问题的数值分析[C].庆祝刘锡良教授八十华诞暨第八届全国现代结构工程学术研讨会论文集,2008.
    [175]苏波,袁行飞,聂国隽,等.流固耦合理论研究述评(3)-流固耦合问题求解策略[C].第七届全国现代结构工程学术研讨会论文集,2007.
    [176]Simon J. Nonhomogeneous viscous incompressible fluids:existence of velocity, density, and pressure [J]. SIAM J. Math. Anal.1990,21:1093.
    [177]Antontsev S N, Kazhikhov A V, Monakhov V N. Boundary Value Problems in Mechanics of Nonhomogeneous Fluids [C]. North-Holland:Amsterdam,1990.
    [178]Pan D, Lomax H. A new approximate LU factorization scheme for the Navier-Stokes equations [J]. AIAA Journal.1988,26:163-171.
    [179]Golub G H, Loan Van C F. Matrix computations [M]. Baltimore, USA:The Johns Hopkins University Press,1983
    [180]潘存鸿,林炳尧,毛献忠.求解二维浅水流动方程的Godunov格式[J].水动力学研究与进展A辑.2003,18(1):16-23.
    [181]Pan D, Lomax H. A new approximate LU factorization scheme for the Navier-Stokes equations [J]. AIAA Journal.1988,26:163-171.
    [182]Campbell I M C, Weynberg P A. Measurement of parameters affecting slamming:Final Report, Rep. No.440 [R]. Southampton University:Wolfson Unit for Marine Technology,1980.
    [183]Korobkin A A. Elastic response of catamaran of wetdeck to liquid impact [J]. Ocean Engineering. 1998,25:687-714.
    [184]雷艳,刘礼华,魏晓斌,等.分层进水口导水叠梁门模型脉动压力最大幅值取值分析[J].水动力学研究与进展(A辑).2007,22(3):273-277.
    [185]李玉成,刘大中.作用于直墙堤上不规则波破碎波波浪力的统计分布特性[J].水动力学研究与进展(A辑).1995,10(1):48-60.
    [186]Tim B, Bas B. Numerical Prediction of Wave Loads on Subsea Structures in the Splash Zone [C], Proceedings of the Fourteenth International Offshore and Polar Engineering Conference Toulon, France,2004:284-290.
    [187]Johansen T A, Fossen T I, Sagatun S I, et al. Wave synchronizing crane control during water entry in offshore moonpool operations-experimental results [J], IEEE Journal of Oceanic Engineering.2003,28:720-728.
    [188]聂武,刘玉秋.海洋工程结构动力分析[J].哈尔滨工程大学出版社,2002.
    [189]沈鹏程.结构力学中的有限元法[M].水利电力出版社,1987.
    [190]盛振邦.船舶静力学[M].北京:国防工业出版社,1984.
    [191]刘儒勋,舒其望.计算流体力学的若干新方法[M].北京:科学出版社,2003.
    [192]王福军.计算流体动力学分析[M].北京:清华大学出版社,2004.
    [193]刘儒勋,王志峰.数值模拟方法和运动界面追踪[M].合肥:中国科学技术大学出版社,2001.
    [194]张光发.导管架下水运动三维数值模拟研究[D].大连理工大学,2007.
    [195]李治彬,张淑茳.海洋工程结构[M].哈尔滨:哈尔滨工程大学出版社,1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700