用户名: 密码: 验证码:
植物DNA条形码序列筛选与鉴定研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
DNA条形码是指用短的、标准的DNA序列作为物种标记来鉴定物种的一种新技术,它是传统形态学分类的有效补充。目前,植物类群中DNA条形码的研究和应用尚处于探索阶段,筛选候选片段、进而确定通用条形码是当前植物条形码研究的首要任务。为了评估候选条形码在植物中的通用性,本文选取了植物主要类群之一裸子植物门作为取样对象进行研究。此外,由于DNA条形码的应用主要集中在属内物种水平,因此本文还专门针对被子植物门中蔷薇科和大戟科两个具体类群进行小范围研究,进而加快植物标准DNA条形码的确定,促进植物完整条形码数据库的建立。综合实验分析结果,得出的主要结论如下:
     (1)基于扩增效率、种内种间遗传距离、"DNA barcoding gap"和物种鉴定能力四个筛选标准,本文评估了七个DNA片段(psbA-trnH, rbcL, matK, rpoB, rpoCl,ITS和ITS2)对裸子植物鉴定的有效性。研究结果表明ITS2是所选片段中最适合鉴定裸子植物的条形码。为了进一步验证ITS2对裸子植物的鉴定能力,我们扩大了样本范围对其进行评估。对于涵盖12科80属502种的888个样本,ITS2的正确鉴定效率在种水平和属水平分别达到73%和98%。
     (2)以蔷薇科植物为研究对象,本文分别对四个DNA片段(rbcL, matK, rpoCl和ITS2)的扩增成功率、遗传距离差异、"DNA barcoding gap"和物种鉴定能力四个方面进行了评估和比较。研究结果表明ITS2是所评估DNA片段中最有潜力的DNA条形码。为了进一步检验ITS2对蔷薇科植物鉴定的有效性,本文基于一个更大的样本量对其进行验证。对于来自96属893种的1410个样本,ITS2可以将其78%的样本正确鉴定到种,属水平的鉴定成功率可达到100%。此外,本文还专门针对蔷薇科中12个富含密切相关种的属进行了研究。结果表明,除了Amelanchier, Alchemilla和Rosa之外,ITS2对其他九个属均有较高的物种鉴定成功率(69%-97%)。对于含有大于100个物种的属(Cliffortia, Prunus和Rubus),ITS2仍能正确鉴定>70%的物种。
     (3)通过对大戟科植物四个DNA条形码候选序列rbcL, matK, ITS和ITS2在种内种间遗传距离差异,"DNA barcoding gap"以及物种鉴定能力等方面的评估和比较,结果表明,ITS/ITS2非常适合鉴定大戟科植物。为了证明ITS/ITS2的鉴定能力,本文在扩大样本量的基础上对这两个片段进行了进一步评估,对于大戟科66属871种的1183个样本,ITS/ITS2可以成功鉴定大于90%的种以及100%的属。此外,本文还专门研究了ITS/ITS2对大戟科中七个属(Andrachne, Mallotus, Euphorbia, Croton, Phyllanthus, Macaranga and Glochidion)的鉴定能力。结果表明,ITS/ITS2对七个属均有较高的物种鉴定成功率(68%-100%)。对于Euphorbia和Croton两个属,每个属的物种数均大于240个,ITS/ITS2仍能正确鉴定88%-99%的物种。
     本研究以裸子植物、蔷薇科以及大戟科为例,系统地分析和比较了不同DNA片段作为植物DNA条形码的鉴定有效性。ITS2在所选取的三个植物分类单元中均有较好表现,因而我们的研究结果表明ITS2有潜力成为植物标准DNA条形码之一。该研究将会给其他植物类群DNA条形码研究提供参考并最终促进植物标准DNA条形码的确定。
DNA barcoding is a new technique that uses a short DNA sequence from a standardized and agreed-upon position in the genome as a molecular diagnostic for species-level identification, it is an effective complement for traditional taxonomy based on morphology. At present, the research and application of DNA barcoding in plants is in exploration stage, so the most important task is to select candidate genes or DNA regions and identify a suitable DNA barcode. In this study, we compared different candidate DNA barcodes from gymnosperms to evaluate their universality. In addition, we also aimed at two specific families (Rosaceae and Euphorbiaceae) to test the effectiveness of different candidate barcodes for identifying plants, which will accelerate the determination of universal DNA barcodes for plants and help to build up a comprehensive DNA barcode library. Based on the results of experimental research, the main results are as follows:
     1. In order to determine an effective DNA barcode for gymnosperms, seven DNA regions(psbA-trnH, rbcL, matK, rpoB, rpoCl, ITS and ITS2) were evaluated on four criteria including the success rates of PCR amplification, the extent of specific genetic divergence, the DNA barcoding gap and the ability for species discrimination. Our results suggest that ITS2 is most appropriate for barcoding gymnosperms among the seven loci tested. To further evaluate the ability of ITS2 for identifying gymnosperms, we also tested it in 888 gymnosperm samples collected from 502 species of 80 diverse genera in 12 families. ITS2 correctly identified 73% and 98% of them at the species and genus levels, respectively.
     2. We tested the applicability of four DNA regions (rbcL, matK, rpoCl and ITS2) as the barcodes for identifying species within Rosaceae. Based on assessments of the success rates of PCR amplification, the extent of specific genetic divergence, the DNA barcoding gap and the ability for species discrimination, our results suggest that ITS2 is the best of the four loci tested for barcoding Rosaceae. We further evaluated the effectiveness of ITS2 for identifying a wide range of species within Rosaceae. Of the 1410 plant samples collected from 893 species in 96 diverse genera, ITS2 successfully identified 78% and 100% of them at the species and genus levels, respectively. Moreover, we also evaluated the species identification ability of the ITS2 region in 12 genera that are rich in closely related species using the BLAST1 method. Although problems were encountered in the genera (Amelanchier, Alchemilla and Rosa), using ITS2 for species identification resulted in an 86%-97% success rate for five genera (Acaena, Polylepis, Pyrus, Malus, and Fragaria) and an 69%-76% success rate for four other genera (Crataegus, Cliffortia, Rubus and Prunus). For three genera(Cliffortia, Prunus and Rubus) with more than 100 species per genus in our samples, ITS2 also performed well with a>70% successful identification rate.
     3. We compared the specific genetic divergence, the DNA barcoding gap and the ability for species discrimination of four DNA regions (rbcL, matK, ITS and ITS2) of species within Euphorbiaceae, the present results affirmed that ITS/ITS2 is a potential barcode for Euphorbiaceae species. This study also provided a large-scale test to evaluate the effectiveness of ITS/ITS2 for differentiating species within Euphorbiaceae. For the 1,183 plant samples collected from 871 species in 66 diverse genera, ITS/ITS2 successfully identified>90% and 100% of them at the species and genus levels, respectively. Furthermore, we evaluated the two loci in 7 genera(Andrachne, Mallotus, Euphorbia, Croton, Phyllanthus, Macaranga and Glochidion) within Euphorbiaceae. For the samples collected, using ITS/ITS2 for species identification resulted in an 68-100% success rate for the genera. For two genera(Euphorbia and Croton) with more than 240 species in our sample, ITS/ITS2 also performed well with 88-99% successful identification rates.
     The research systematically analyzed and compared the effectiveness of different candidate DNA barcodes for identifying plants using gymnosperms, Rosaceae and Euphorbiaceae. The ITS2 locus is a powerful barcode among all three plant taxa tested, so our results strongly suggest that the ITS2 region should have a great potential to be used as one of the universal barcodes for plants. Our work contributes valuable information for identifying species in other plant taxonomic groups and promotes the determination of the standard DNA barcode for plants.
引文
[1]Davis PH, Heywood VH. Principles of AngiospermTaxonomy [M]. Edinburgh: Oliver&Boyd,1963:23.
    [2]Heinrich M. The identification of medicinal plants [J]. Journal of Ethnopharmacology, 2007,111:440.
    [3]Hawksworth DL. Challenges in mycology [J]. Mycol Res,1995,99:127-128.
    [4]Gregory TR. DNA barcoding does not compete with taxonomy [J]. Nature,2005,434: 1067.
    [5]Hammond P. Species inventory [M]. London:Chapman& Hall,1963:17-39.
    [6]Hawksworth DL, Kalin-Arroyo MT. Magnitude and distribution of biodiversity [M]. Cambridge University Press,1995:107-191.
    [7]Blaxter M. Molecular systematics-counting angels with DNA [J]. Nature,2003,421: 122-124.
    [8]Tautz D, Arctander P, Thomas RH, Vogler AP. A plea for DNA taxonomy [J]. Trend Ecol Evol,2003,18:70-74.
    [9]Dayrat B. Towards integrative taxonomy [J]. Biol J Linn Soc,2005,85:407-415.
    [10]Fitzhugh K. DNA barcoding:an instance of technology-driven science [J]? Bioscience,2006,56:462-463.
    [11]Agnarsson I, Kuntner M. Taxonomy in a changing world:seeking solutions for a science in crisis [J]. Syst Biol,2007,56:531-539.
    [12]Newmaster SG, Fazekas AJ, Ragupathy S. DNA barcoding in land plants:evaluation of rbcL in a multigene tiered approach [J]. Can J Bot,2006,84:335-341.
    [13]Taberlet P, Coissac E, Pompanon F, Gielly L, Miquel C, Valentini A, Vermat T, Corthier G, Brochmann C, Willerslev E. Power and limitations of the chloroplast trnL (UAA) intron for plant DNA barcoding [J]. Nucleic Acids Res,2007,35:e14.
    [14]陈士林,姚辉,宋经元,李西文,刘昶,陆建伟.基于DNA barcoding条形码)技术的中药材鉴定[J].世界科学技术-中医药现代化,2007,9:7-12.
    [15]Valentini A, Pompanon F, Taberlet P. DNA barcoding for ecologists [J]. Trend Ecol Evol,2009,24:110-117.
    [16]Chen SL, Yao H, Han JP, Liu C, Song JY, Shi LC, Zhu YJ, Ma XY, Gao T, Pang XH, Luo K, Li Y, Li XW, Jia XC, LinYL, Leon C. Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species [J]. PLoS One,2010,5: e8613.(doi:10.1371/journal.pone.0008613)
    [17]Wheeler QD. Taxonomic triage and the poverty of phylogeny [J]. Philos Trans R Soc Lond B Biol Sci,2004,359:571-583.
    [18]Ebach MC, Holdrege C. DNA barcoding is no substitute for taxonomy [J]. Nature, 2005,434:697-697.
    [19]Kress WJ, Wurdack KJ, Zimmer EA, et al. Use of DNA barcodes to identify flowering plants [J]. Proc Natl Acad Sci USA,2005,102:8369-8374.
    [20]Godfray HCJ. Towards taxonomy's'glorious revolution'[J]. Nature,2002,420:
    461-461.
    [21]Mallet J, Willmott K. Taxonomy:renaissance or tower of Babel [J]? Trend Ecol Evol, 2003,18:57-59.
    [22]Hebert PDN, Gregory TR. The promise of DNA barcoding for taxonomy [J]. Syst Biol,2005,54:852-859.
    [23]Schindel DE, Miller SE. DNA barcoding a useful tool for taxonomists [J]. Nature, 2005,435:17.
    [24]DeSalle R, Egan MG, Siddall M. The unholy trinity:taxonomy, species delimitation and DNA barcoding [J]. Philos Trans R Soc Lond B Biol Sci,2005,360: 1905-1916.
    [25]Vogler AP, Monaghan MT. Recent advances in DNA taxonomy [J]. J Zoolog Syst Evol Res,2007,45:1-10.
    [26]Hajibabaei M, Singer GAC, Hebert PDN, Hickey DA. DNA barcoding:how it complements taxonomy, molecular phylogenetics and population genetics [J]. Trend Genet,2007,23:167-172.
    [27]Haase M, Wilke T, Mildner P. Identifying species of Bythinella (Caenogastropoda: Rissooidea):a plea for an integrative approach [J]. Zootaxa,2007,1563:1-16.
    [28]Kristiansen KA, Cilieborg M, Drabkova L, Jorgensen T, Petersen G, Seberg O. DNA taxonomy-the riddle of Oxychloe (Juncaceae) [J]. Syst Bot,2005,30:284-289.
    [29]Will KW, Mishler BD, Wheeler QD. The perils of DNA barcoding and the need for integrative taxonomy [J]. Syst Biol,2005,54:844-851.
    [30]Niesters HG, Goessens WH, Meis JF, Quint WG. Rapid, polymerase chain reaction-based identification assays for Candida species [J]. Journal of Clinical Microbiology,1993,31:904-910.
    [31]Pace NR. A molecular view of microbial diversity and the biosphere [J]. Science, 1997,276:734-740.
    [32]Allander T, Emerson SU, Engle RE, Purcell RH, Bukh J. A virus discovery method incorporating DNase treatment and its application to the identification of two bovine
    parvovirus species [J]. Proceedings of the National Academy of Sciences USA,2001, 98:11609-11614.
    [33]Hamels S, Gala JL, Dufour S, Vannuffel P, Zammatteo N, Remacle J. Consensus PCR and microarray for diagnosis of the genus Staphylococcus, species, and methicillin resistance [J]. Biotechniques,2001,31:1364-1372.
    [34]Brown B, Emberson RM, Paterson AM. Mitochondrial CO I and II provide useful markers for Weiseana (Lepidoptera, Hepialidae) species identification [J]. Bulletin of Entomological Research,1999,89:287-294.
    [35]Doukakis P, Birstein VJ, Ruban GI, Desalle R. Molecular genetic analysis among subspecies of two Eurasian sturgeon species, Acipenser baerii and A. stellatus [J]. Molecular Ecology,1999,8:S117-S127.
    [36]Jackson RB, Moore LA, Hoffmann WA, Pockman WT, Linder CR. Ecosystem rooting depth determined with caves and DNA [J]. Proceedings of the National Academy of Sciences USA,1999,96:11387-11392.
    [37]Vincent S, Vian JM, Carlotti MP. Partial sequencing of the cytochrome oxydase b subunit gene I:A tool for the identification of European species of blow flies for postmortem interval estimation [J]. Journal of Forensic Sciences,2000,45:820-823.
    [38]Wells JD, Pape T, Sperling FAH. DNA-based identification and molecular systematics of forensically important sarcophagidae (Diptera) [J]. Journal of Forensic Sciences,2001,46:1098-1102.
    [39]Wells JD, Sperling FAH. DNA-based identification of forensically important Chrysomyinae (Diptera:Calliphoridae) [J]. Forensic Science International,2001,120: 110-115.
    [40]Tautz D, Arctander P, Minelli A, et al. DNA points the way ahead in taxonomy [J]. Nature,2002,418:479.
    [41]Hebert PDN, Cywinska A, Ball SL, deWaard JR. Biological identifications through DNA barcodes [J]. Proc. R. Soc. Lond. B,2003,270:313-321.
    [42]Hebert PDN, Ratnasingham S, Dewaard JR. Barcoding animal life:cytochrome c
    oxidase subunit 1 divergences among closely related species [J]. Proc. R. Soc. Lond. B (Suppl.),2003,270:S96-S99.
    [43]Ekrem T, Willassen E, Stur E. A comprehensive DNA sequence library is essential for identification with DNA barcodes [J]. Mol phylogenet Evol,2007,43:530-542.
    [44]徐红,王峥涛,胡之璧.中药DNA分子鉴定技术的发展与应用[J].世界科学技术,2003,5(2):24-30.
    [45]Tsio P, Woo H, Wong M, et al. Genotype and species identification of Fritillaria by DNA chips [J]. Acta Pharmaceutica Sinica,2003,38:185-190.
    [46]邵鹏柱,曹晖.中药分子鉴定[M].上海:复旦大学出版社,2004:229-247.
    [47]Ratnasingham S, Hebert PDN. Bold:the barcode of life data system (www.barcodinglife.org) [J]. Molecular Ecology Notes,2007,7:355-364.
    [48]宁淑萍,颜海飞,郝刚,等.植物DNA条形码研究进展[J].生物多样性,2008,16(5):417-425.
    [49]Lahaye R, van der Bank M, Bogarin D, Warner J, Pupulin F, Gigot G DNA barcoding the floras of biodiversity hotspots [J]. Proc Nat Acad Sci USA,2008,105: 2923-2928.
    [50]Lahaye R, Savolainen V, Duthoit S, Maurin O, van der Bank M. A test of psbK-psbl and atpF-atpH as potential plant DNA barcodes using the flora of the Kruger National Park (South Africa) as a model system [J].2008, Available from Nature Precedings.
    [51]Meyer CP, Paulay G. DNA barcoding, error rates based on comprehensive sampling [J]. Plos Biology,2005,3:2229-2238.
    [52]Newmaster SG, Fazekas AJ, Steeves RAD, Janovec J. Testing candidate plant barcode regions in the Myristicaceae [J]. Molecular Ecology Resources,2008,8: 480-490.
    [53]Meier RS, Kwong S, Vaidya G, Ng PKL. DNA barcoding and taxonomy in Diptera: A tale of high intraspecific variability and low identification success [J]. Systematic Biology,2006,55:715-728.
    [54]Will K, Rubinoff D. Myth of the molecule:DNA barcodes for species cannot replace morphology for identification and classification [J]. Cladistics,2004,20:47-55.
    [55]Funk D, Omland K. Species-level paraphyly and polyphyly:Frequency, causes, and consequences, with insights from animal mitochondrial DNA [J]. Annu Rev Ecol Evol Syst,2003,34:397-423.
    [56]Erickson DL, Spouge J, Resch A, et al. DNA barcoding in land plants:developing standards to quantify and maximize success [J]. Taxon,2008,57:1304-1316.
    [57]Steinke D, Vences M, Salzburger W, et al. Taxi:a software tool for DNA barcoding using distance methods [J]. Philos Trans Roy Soc B,2005,360:1975-1980.
    [58]Edwards D, Horn A, Taylor D, et al. DNA barcoding of a large genus, Aspalathus L. (Fabaceae) [J]. Taxon,2008,57:1317-1327.
    [59]Driskell A, Ane C, Burleigh J, et al. Prospects for building the tree of life from large sequence databases [J]. Science,2004,306:1172-1174.
    [60]Ross HA, Murugan S, Li WL. Testing the reliability of genetic methods of species identification via simulation [J]. Syst Biol,2008,57:216-230.
    [61]陈四保,彭勇,陈士林,等。药用植物亲缘学[J].世界科学技术,2005,7(6):97-103.
    [62]周荣汉,段金廒.植物化学分类学[M].上海科学技术出版社,2005:38。
    [63]陈士林,宋经元,姚辉,等。药用植物DNA条形码鉴定策略及关键技术分析[J].中国天然药物,2009,7(5):322-327.
    [64]Hebert PDN, Stoeckle M, Zemlak T, et al. Identification of birds through DNA barcodes [J]. PLoS Biol,2004,2:1657-1663.
    [65]Hebert PDN, Penton EH, Burns JM, et al. Ten species in one:DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator [J]. Proc Natl Acad Sci USA,2004,101:14812-14817.
    [66]Song JY, Yao H, Li Y, et al. Authentication of the family Polygonaceae in Chinese pharmacopoeia by DNA barcoding technique [J]. J Ethnopharmacol,2009,124: 434-439.
    [67]Sass C, Little DP, Stevenson DW, et al. DNA barcoding in the cycadales:testing the potential of proposed barcoding markers for species identification of cycads [J]. PLoS One,2007,2:e1154.
    [68]Pennisi E. Modernizing the tree of life [J]. Science,2003,300:1692-1697.
    [69]Marshall E. Taxonomy. Will DNA barcodes breathe life into classcification [J]? Science,2005,307:1037.
    [70]Thomas C. Plant bar code soon to become reality [J]. Science,2009,325:526.
    [71]CBOL Plant Working Group. A DNA barcode for land plants [J]. Proc Nat Acad Sci USA,2009,106:12794-12797.
    [72]http://www.nytimes.com/2004/09/28/science/28fly.html?ex=1181880000&en=88a8f b62bcc3520f&ei=5070
    [73]http://news.nationalgeographic.com/news/2005/01/0126_050126_dnabarcode .html
    [74]Smith MA, Fisher BL, Hebert PDN. DNA barcoding for effective biodiversity assessment of a hyperdiverse arthropod group:the ants of Madagascar [J]. Philos Trans R Soc Lond B Biol Sci 2005,360:1825-1834.
    [75]Hajibabaei M, Janzen DH, Burns JM, Hallwachs W, Hebert PDN. DNA barcodes distinguish species of tropical Lepidoptera [J]. Proc Natl Acad Sci USA 2006,103: 968-971.
    [76]Yoo HS, Eah JY, Kim JS, Kim YJ, Min MS, Paek WK, Lee H, Kim CB. DNA barcoding Korean birds [J]. Mol Cells,2006,22:323-327.
    [77]Elias M, Hill RI, Willmott KR, Dasmahapatra KK, Brower AVZ, Mallet J, Jiggins CD. Limited performance of DNA barcoding in a diverse community of tropical butterflies [J]. Proc Biol Sci,2007,274:2881-2889.
    [78]Kerr KCR, Stoeckle MY, Dove CJ, Weigt LA, Francis CM, Hebert PDN. Comprehensive DNA barcode coverage of North American birds [J]. Mol Ecol Notes, 2007,7:535-543.
    [79]Tavares ES, Baker AJ. Single mitochondrial gene barcodes reliably identify
    sister-species in diverse clades of birds [J]. BMC Evol Biol,2008,8:81.
    [80]Ward RD, Zemlak TS, Innes BH, Last PR, Hebert PDN. DNA barcoding Australia's fish species [J]. Philos Trans R Soc Lond B Biol Sci,2005,360:1847-1857.
    [81]Savolainen V, Cowan RS, Vogler AP, Roderick GK, Lane R. Towards writing the encyclopedia of life:an introduction to DNA barcoding [J]. Philos Trans R Soc Lond B Biol Sci,2005,360:1805-1811.
    [82]Min XJ, Hickey DA. Assessing the effect of varying sequence length on DNA barcoding of fungi [J]. Mol Ecol Notes,2007,7:365-373.
    [83]Cho Y, Mower JP, Qiu YL, Palmer JD. Mitochondrial substitution rates are extraordinarily elevated and variable in a genus of flowering plant [J]. Proc Natl Acad Sci USA,2004,101:17741-17746.
    [84]Chase MW, Salamin N, Wilkinson M, Dunwell JM, Kesanakurthi RP, Haidar N, Savolainen V. Land plants and DNA barcodes:short-term and long-term goals [J]. Philos Trans R Soc Lond B Biol Sci,2005,360:1889-1895.
    [85]Presting GG. Identification of conserved regions in the plastid genome:implications for DNA barcoding and biological function [J]. Can J Bot,2006,84:1434-1443.
    [86]Kress WJ, Erickson DL. A two-locus global DNA barcode for land plants:The coding rbcL gene complements the non-coding trnH-psbA spacer region [J]. PLoS One,2007,2:e508.
    [87]Chase MW, Cowan RS, Hollingsworth PM, van den Berg C, Madrinan S, Petersen G, Seberg O, Jorgsensen T, Cameron KM, Carine M, Pedersen N, Hedderson TAJ, Conrad F, Salazar GA, Richardson JE, Hollingsworth ML, Barraclough TG, Kelly L, Wilkinson M. A proposal for a standardised protocol to barcode all land plants [J]. Taxon,2007,56:295-299.
    [88]肖金花,肖晖,黄大卫.生物分类学的新动向——DNA条形编码[J].动物学报.2004,50(5):852-855.
    [89]马兰,黄原.生物分类学发展的新方向——DNA分类学[J].黄冈师范学院学报,2005,25:40-43.
    [90]王鑫,黄兵.DNA条形编码技术在动物分类中的研究进展[J].生物技术通报,2006,4:67-72.
    [91]王剑锋,乔格侠.DNA条形编码在蚜虫类昆虫中的应用[J].动物分类学报,2007,32(1):153-159.
    [92]赵明,谭玲,莫帮辉,等.DNA条形码识别V有害生物鉴定的利器[J].中国卫生检验杂志,2008,18(6):1216-1218.
    [93]陈念,赵树进,韩丽萍.DNA条形码真菌鉴定技术[J].国际检验医学杂志,2008,29:703-707.
    [94]莫帮辉,屈莉,韩松,何建伟,赵明,曾晓茂.DNA条形码识别Ⅰ.DNA条形码研究进展及应用前景[J].四川动物,2008,27:303-306.
    [95]谭玲,何建伟,王志杰,等.DNA条形码在国境卫生检疫中的应用[J].中国国境卫生检疫杂志,2009,32(5):425-431.
    [96]任保青,陈之端.植物DNA条形码技术[J].植物学报,2010,45(1):1-12.
    [97]潘程莹,胡婧,张霞,等.斑腿蝗科Catantopidae七种蝗虫线粒体COⅠ基因的DNA条形码研究[J].昆虫分类学报,2006,28(2):103-110.
    [98]高玉时,屠云洁,童海兵,等.6个地方鸡种线粒体COⅠ基因的DNA条形码[J].农业生物技术学报,2007,15(6):924-930.
    [99]陈庆,白洁,刘力,等.北京地区7种常见嗜尸性蝇类的CO1基因序列分析及DNA条形码的建立[J].昆虫学报,2009,52(2):202-209.
    [100]范京安,顾海丰,陈世界,等.DNA条形码识别Ⅵ:基于微型DNA条形码的果实蝇物种鉴定[J].应用与环境生物学报,2009,15(2):215-219.
    [101]张金梅,王建秀,夏涛,周世良.基于系统发育分析的DNA条形码技术在澄清芍药属牡丹组物种问题中的应用[J].中国科学C辑:生命科学,2008,38:1166-1176.
    [102]Zhang JM, Wang JX, Xia T, Zhou SL. DNA barcoding:species delimitation in tree peonies [J]. Sci China C Life Sci,2009,52:568-578.
    [103]Liu Y, Yan HF, Cao T, Ge XJ. Evaluation of ten plant barcodes in Bryophyta (Mosses) [J]. J Syst Evol,2010,48:36-46.
    [104]Ren BQ, Xiang XG, Chen ZD. Species identification of Alnus (Betulaceae) using nrDNA and cpDNA genetic markers [J]. Mol Ecol Resource,2010, doi:10.1111/j.1755-0988.2009.02815.x.
    [105]Yao H, Song JY, Ma XY, et al. Identification of Dendrobium species by a candidate DNA barcode sequence:The chloroplast psbA-trnH intergenic region [J]. Planta Med,2009,75:667-669.
    [106]Song JY, Yao H, Li Y, Li XW, Lin YL, et al. Authentication of the family Polygonaceae in Chinese pharmacopoeia by DNA barcoding technique [J]. J Ethnopharm,2009,124:434-439.
    [107]Luo K, Chen SL, Chen KL, et al. Application of DNA barcoding to the medicinal plants of the Araceae family [J]. Planta Med,2009,75:416.
    [108]Gao T, Chen SL. Authentication of the medicinal plants in Fabaceae by DNA barcoding technique [J]. Planta Med,2009,75:417.
    [109]Han JP, Song JY, Shi LC, Chen J, Qian J, Zhu YJ, Liu C, Yao H, Chen SL. Using DNA barcoding to authentication of Cistanches and its fakements [J]. Planta Med, 2009,75:936.
    [110]Gao T, Pang XH, Chen SL. Authentication of plants in Astragalus by DNA Barcoding technique [J]. Planta Med,2009,75:933.
    [111]罗煜,陈士林,陈科力,宋经元,姚辉,马新业,朱英杰,庞晓慧,余华,李西文,刘震.基于芸香科的植物通用DNA条形码研究[J],中国科学,2010,40(4):342-351.
    [112]Sperling F. DNA Barcoding:deus ex machina. Newsletter of the Biological Survey of Canada (Terrestrial Arthropods) [J].2003,22:Opinion Page.
    [113]Rubinoff D, Cameron S, Will K. A genomic perspective on the shortcomings of mitochondrial DNA for "Barcoding" identification [J]. J Hered,2006,97: 581-594.
    [114]Rubinoff D, Cameron S, Will K. Are plant DNA barcodes a search for the Holy Grail [J]? Trend Ecol Evol,2006,21:1-2.
    [115]Ahrens D, Monaghan MT, Volger AP. DNA based taxonomy for associating adults and larvae in multi-species assemblages of chafers (Coleoptera:Scarabaeidae) [J]. Mol Phylogenet Evol,2007,44:436-449.
    [116]Rach J, DeSalle R, Sarkar IN, Schierwater B, Hadrys H. Character-based DNA barcoding allows discrimination of genera, species and populations in Odonata [J]. Proc Biol Sci,2008,275:237-247.
    [1]Hebert PD, Cywinska A, Ball SL, deWaard JR. Biological identifications through DNA barcodes [J]. Proc R Soc Biol Sci SerB,2003,270:313-321.
    [2]Hogg ID, Hebert PDN. Biological identification of springtails (Hexapoda, Collembola) from the Canadian Arctic, using mitochondrial DNA barcodes [J]. Can J Zool,2004,82:749-754.
    [3]Ward RD, Zemlak TS, Innes BH, Last PR, Hebert PDN. DNA barcoding Australia's fish species [J]. Philos Trans R Soc London SerB,2005,360:1847-1857.
    [4]Hajibabaei M, Janzen DH, Burns JM, Hallwachs W, Hebert PDN. DNA barcodes distinguish species of tropical Lepidoptera [J]. Proc Natl Acad Sci USA,2006,103: 968-971.
    [5]Evans KM, Wortley AH, Mann DG. An assessment of potential diatom "barcode" genes (coxl, rbcL,18S and ITS rDNA) and their effectiveness in determining relationships in Sellaphora (Bacillariophyta) [J]. Protist,2007,158:349-364.
    [6]Chase MW, Salamin N, Wilkinson M, Dunwell JM, Kesanakurthi RP. Land plants and DNA barcodes:short-term and long-term goals [J]. Philos Trans R Soc Lond B Biol Sci,2005,360:1889-1895.
    [7]Kress WJ, Wurdack KJ, Zimmer EA, Weigt LA, Janzen DH. Use of DNA barcodes to identify flowering plants [J]. Proc Natl Acad Sci USA,2005,102:8369-8374.
    [8]Chase MW, Cowan RS, Hollingsworth PM, van den Berg C, Madrinan S. A proposal for a standardised protocol to barcode all land plants [J]. Taxon,2007,56:295-299.
    [9]Kress WJ, Erickson DL. A Two-Locus Global DNA Barcode for Land Plants:The Coding rbcL Gene Complements the Non-Coding trnH-psbA Spacer Region [J]. PLoS ONE,2007,2:e508.
    [10]Fazekas AJ, Burgess KS, Kesanakurti PR, Graham SW, Newmaster SG Multiple Multilocus DNA Barcodes from the Plastid Genome Discriminate Plant Species Equally Well [J]. PLoS ONE,2008,3:e2802.
    [11]Kress WJ, Erickson DL.DNA barcodes:Genes, genomics, and bioinformatics [J]. Proc Natl Acad Sci USA,2008,105:2761-2762.
    [12]Lahaye R, van der Bank M, Bogarin D,Warner J, Pupulin F. DNA barcoding the floras of biodiversity hotspots [J]. Proc Natl Acad Sci USA,2008,105:2923-2928.
    [13]Newmaster SG, Fazekas AJ, Steeves RAD, Janovec J. Testing candidate plant barcode regions in the Myristicaceae [J]. Mol Ecol Res,2008,8:480-490.
    [14]Song JY, Yao H, Li Y, Li XW, Lin YL. Authentication of the family Polygonaceae in Chinese pharmacopoeia by DNA barcoding technique [J]. J Ethnopharm,2009,124: 434-439.
    [15]Yao H, Song JY, Ma XY, Liu C, Li Y. Identification of Dendrobium Species by a Candidate DNA Barcode Sequence:The Chloroplast psbA-trnH Intergenic Region [J]. Planta Med,2009,75:667-669.
    [16]CBOL Plant Working Group. A DNA barcode for land plants [J]. Proc Natl Acad Sci USA,2009,106:12794-12797.
    [17]Thomas C. Plant bar code soon to become reality [J]. Science,2009,325:526.
    [18]Chen SL, Yao H, Han JP, Liu C, Song JY, Shi LC, Zhu YJ, Ma XY, Gao T, Pang XH, Luo K, Li Y, Li XW, Jia XC, Lin YL, Leon C. Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species [J]. PLoS ONE,2010, 5:e8613.
    [19]Little DP, Stevenson DW. A comparison of algorithms for the identification of specimens using DNA barcodes, examples from gymnosperms [J]. Cladistics,2007, 23:1-21.
    [20]Sass C, Little DP, Stevenson DW, Specht CD. DNA Barcoding in the Cycadales: Testing the Potential of Proposed Barcoding Markers for Species Identification of Cycads [J]. PLoS ONE,2007,2:e1154.
    [21]Meier R, Zhang GY, Ali F. The Use of Mean Instead of Smallest Interspecific Distances Exaggerates the Size of the "Barcoding Gap" and Leads to Misidentification [J]. Syst Biol,2008,57:809-813.
    [22]Meyer CP, Paulay G.DNA barcoding:Error rates based on comprehensive sampling [J]. PLoS Biol,2005,3:2229-2238.
    [23]Ross HA, Murugan S, Li WLS. Testing the reliability of genetic methods of species identification via simulation [J]. Syst Biol,2008,57:216-230.
    [24]Coleman AW. ITS2 is a double-edged tool for eukaryote evolutionary comparisons [J]. Trends in Genetics,2003,19:370-375.
    [25]Schultz J, Maisel S, Gerlach D, Muller T, Wolf M. A common core of secondary structure of the internal transcribed spacer 2 (ITS2) throughout the Eukaryota [J]. RNA,2005,11:361-364.
    [26]Coleman AW. Pan-eukaryote ITS2 homologies revealed by RNA secondary structure [J]. Nucl Acids Res,2007,35:3322-3329.
    [27]Muller T, Philippi N, Dandekar T, Schultz J, Wolf M. Distinguishing species [J]. RNA,2007,13:1469-1472.
    [28]Miao M, Warren A, Song WB, Wang S, Shang HM. Analysis of the Internal Transcribed Spacer 2 (ITS2) Region of Scuticociliates and Related Taxa (Ciliophora, Oligohymenophorea) to Infer their Evolution and Phylogeny [J]. Protist,2008,159: 519-533.
    [29]Prasad PK, Tandon V, Biswal DK, Goswami LM, Chatterjee A. Phylogenetic reconstruction using secondary structures and sequence motifs of ITS2 Rdna of Paragonimus westermani (Kerbert,1878) Bram,1899 (Digenea:Paragonimidae) and related species [J]. BMC Genomics,2009,10(Suppl 3):s25.
    [30]Wiemers M, Keller A, Wolf M. ITS2 secondary structure improves phylogeny estimation in a radiation of blue butterflies of the subgenus Agrodiaetus (Lepidoptera:Lycaenidae:Polyommatus) [J]. BMC Evol Biol,2009,9:300.
    [31]Tamura K, Dudley J, Nei M, Kumar S. MEGA4, Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0 [J]. Mol Biol Evol,2007,24:1596-1599.
    [1]Potter D, Eriksson T, Evans RC, Oh S, Smedmark JEE, Morgan DR, Kerr M, Robertson KR, Arsenault M, Dickinson TA, Campbell CS. Phylogeny and classification of Rosaceae [J]. PI Syst Evol,2007,266:5-43.
    [2]Gehrke B, Brauchler C, Romoleroux K, Lundberg M, Heubl G, Eriksson T. Molecular phylogenetics of Alchemilla, Aphanes and Lachemilla (Rosaceae) inferred from plastid and nuclear intron and spacer DNA sequences, with comments on generic classification [J]. Molecular Phylogenetics and Evolution,2008,47: 1030-1044.
    [3]Lee S, Wen J. A phylogenetic analysis of Prunus and the Amygdaloideae (Rosaceae) using ITS sequences of nuclear ribosomal DNA [J]. American Journal of Botany, 2001,88:150-160.
    [4]Morgan DR, Soltis DE, Robertson KR. Systematic and evolutionary implications of rbcL sequence variation in Rosaceae [J]. American Journal of Botany,1994,81: 890-903.
    [5]Potter D, Still SM, Grebenc T, Ballian D, Bozic G, Franjia J, Kraigher H. Phylogenetic relationships in tribe Spiraeeae (Rosaceae) inferred from nucleotide sequence data [J]. Pl. Syst. Evol.,2007,266:105-118.
    [6]Potter D. Molecular phylogenetic studies in Rosaceae [M]. In Plant genome: Biodiversity and evolution (Sharma, A.K. and Sharma, A., eds). New Hampshire: Science Publishers,2003:319-351.
    [7]Schulze-Menz GK. Rosaceae [M]. In Engler's Syllabus der Pflanzenfamilien Ⅱ (Melchior, H. eds). Berlin:Gebruder Borntraeger,1964:209-218.
    [8]Takhtajan A. Diversity and classification of flowering plants [J]. New York: Columbia University Press,1997.
    [9]Desalle R, Amato G. The expansion of conservation genetics [J]. Nat Rev Genet., 2004,5:702-712.
    [10]Hebert PDN, Cywinska A, Ball SL, de Waard JR. Biological identifications through DNA barcodes [J]. Proc. R. Soc. Lond. B,2003,270:313-321.
    [11]Savolainen V, Cowan RS, Vogler AP, Roderick GK, Lane R. Towards writing the encyclopedia of life:an introduction to DNA barcoding [J]. Phil Trans Roy Soc Lond Ser B Biol Sci.,2005,360:1811-1850.
    [12]Stoeckle M. Taxonomy, DNA and the bar code of life [J]. BioScience,2003,53: 2-3.
    [13]Ebach MC, Holdrege C. More taxonomy, not DNA barcoding [J]. BioScience,2005, 55:823-824.
    [14]Moritz C, Cicero C. DNA barcoding:promise and pitfalls [J]. Public Library of Science Biology,2004,2:279-354.
    [15]Will KW, Mishler B, Wheeler Q. The perils of DNA barcoding and the need for integrative taxonomy [J]. Systematic Biology,2005,54:844-851.
    [16]Will KW, Rubinoff D. Myth of the molecule:DNA barcodes for species cannot replace morphology for identification and classification [J]. Cladistics,2004,20: 47-55.
    [17]Hebert PDN, Stoeckle MY, Zemlak TS, Francis CM. Identification of birds through DNA barcodes [J]. Plos Biology,2004,2:e312.
    [18]Ward RD, Zemlak TS, Innes BH, Last PR, Hebert PDN. DNA barcoding Australia's fish species [J]. Philos Trans R Soc Lond B Biol Sci,2005,360:1847-1857.
    [19]Hajibabaei M, Janzen DH, Burns JM, Hallwachs W, Hebert PDN. DNA barcodes distinguish species of tropical Lepidoptera [J]. Proc Natl Acad Sci USA,2006,103:
    968-971.
    [20]Hajibabaei M, Singer GAC, Clare EL, Hebert PDN. Design and applicability of DNA arrays and DNA barcodes in biodiversith monitoring [J]. BMC Biol,2007,5: 24.
    [21]Kress WJ, Erickson DL. A Two-Locus global DNA barcode for land plants:The coding rbcL gene complements the non-coding trnH-psbA spacer region [J]. Plos One,2007,2:e508.
    [22]Lahaye R, van der Bank M, Bogarin D, Warner J, Pupulin F, Gigot G. DNA barcoding the floras of biodiversity hotspots [J]. Proc Natl Acad Sci USA,2008, 105:2923-2928.
    [23]Sass C, Little DP, Stevenson DW, Specht CD. DNA barcoding in the Cycadales: testing the potential of proposed barcoding markers for species identification of Cycads [J]. Plos One,2007,2:e1154.
    [24]Song JY, Yao H, Li Y, Li XW, Lin YL, Liu C, Han JP, Xie CX, Chen SL. Authentication of the family Polygonaceae in Chinese pharmacopoeia by DNA barcoding technique [J]. J Ethnopharmacol,2009,124:434-439.
    [25]CBOL Plant Working Group. A DNA barcode for land plants [J]. Proc Natl Acad Sci USA,2009,106:12794-12797.
    [26]Chen SL, Yao H, Han JP, Liu C, Song JY, Shi LC, Zhu YJ, Ma XY, Gao T, Pang XH, Luo K, Li Y, Li XW, Jia XC, Lin YL, Leon C. Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species [J]. Plos One,2010,5: e8613.
    [27]Wissemann V. Conventional taxonomy of wild roses [M]. In Encyclopedia of Rose Science (Roberts, A., Debener, T. and Gudin, S., eds). London:Elsevier Science, 2003:111-117.
    [28]Wissemann V, Ritz CM. The genus Rosa (Rosoideae, Rosaceae) revisited: molecular analysis of nrITS-1 and atpB-rbcL intergenic spacer (IGS) versus conventional taxonomy [J]. Bot J Linn Soc,2005,147:275-290.
    [29]Matsumoto S, Kouchi M, Yabuki J, Kusunoki M, Ueda Y, Fukui H. Phylogenetic analyses of the genus Rosa using the matK sequence:molecular evidence for the narrow genetic background of modern roses [J]. Scientia Horticulturae,1998,77: 73-82.
    [30]Starr J, Bruneau A. Phylogeny of Rosa L. (Rosaceae) based on trnL-F intron and spacer sequences. Abstract Botany 2002,1. ASPT Colloquium:Rosaceae phylogeny: current knowledge, problems, and prospects [J].2002, [http://www.2002.botanyconference.org/cgi-bin/new-view02.p1].
    [31]Newmaster SG, Fazekas AJ, Ragupathy S. DNA barcoding in the land plants: evaluation of rbcL in a multigene tiered approach [J]. Canadian Journal of Botany, 2006,84:335-341.
    [32]Coleman AW. Pan-eukaryote ITS2 homologies revealed by RNA secondary structure [J]. Nucleic Acids Res,2007,35:3322-3329.
    [33]Miao M, Warren A, Song W, Wang S, Shang H, Chen Z. Analysis of the Internal Transcribed Spacer 2 (ITS2) Region of Scuticociliates and Related Taxa (Ciliophora, Oligohymenophorea) to Infer their Evolution and Phylogeny [J]. Protist,2008,159: 519-533.
    [34]Schultz J, Maisel S, Gerlach D, Miiller T, Wolf M. A common core of secondary structure of the internal transcribed spacer 2 (ITS2) throughout the Eukaryota [J]. RNA,2005,11:361-364.
    [35]Alvarez I, Wendel JF. Ribosomal ITS sequences and plant phylogenetic inference [J]. Mol Phylogenet Evol,2003,29:417-434.
    [36]Feliner GN, Rossello JA. Better the devil you know? Guidelines for insightful utilization of nrDNA ITS in species-level evolutionary studies in plants [J]. Mol Phylogenet Evol,2007,44:911-919.
    [37]Chiou SJ, Yen JH, Fang CL, Chen HL, Lin TY. Authentication of medicinal herbs using PCR-amplified ITS2 with specific primers [J]. Planta Med,2007,73: 1421-1426.
    [38]Tamura K, Dudley J, Nei M, Kumar S. MEGA4:Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0 [J]. Mol Biol Evol,2007,24:1596-1599.
    [39]Meyer CP, Paulay G. DNA barcoding:error rates based on comprehensive sampling [J]. Plos Biology,2005,3:2229-2238.
    [40]Meier R, Zhang GY, Ali F. The use of mean instead of smallest interspecific distances exaggerates the size of the "barcoding gap" and leads to misidentification [J]. Syst Biol,2008,57:809-813.
    [41]Ross HA, Murugan S, Li WLS. Testing the reliability of genetic methods of species identification via simulation [J]. Syst Biol,2008,57:216-230.
    [1]Heinrich M. The identification of medicinal plants [J]. Journal of Ethnopharmacology, 2007,111:440.
    [2]Hebert PDN, Cywinska A, Ball SL, de Waard JR. Biological identifications through DNA barcodes [J]. Proc Biol Sci,2003,270:313-321.
    [3]Moritz C, Cicero C. DNA barcoding:Promises and pitfalls [J]. PLoS Biol,2004,2: 1529-1534.
    [4]Hebert PDN, Gregory TR. The promise barcoding for taxonomy [J]. Syst Biol,2005, 54:852-859.
    [5]Evans KM, Wortley AH, Mann, DG. An assessment of potential diatom "barcode" genes (coxl, rbcL,18S and ITS rDNA) and their effectiveness in determining relationships in Sellaphora (Bacillariophyta) [J]. Protist,2007,158:349-364.
    [6]Lahaye R, van der Bank M, Bogarin D, Warner J, Pupulin F, Gigot G. DNA barcoding the floras of biodiversity hotspots [J]. Proc Natl Acad Sci USA,2008,105: 2923-2928
    [7]CBOL Plant Working Group. A DNA barcode for land plants [J]. Proc Natl Acad Sci USA,2009,106:12794-12797.
    [8]Chen SL, Yao H, Han JP, Liu C, Song JY, Shi LC, Zhu YJ, Ma XY, Gao T, Pang XH, Luo K, Li Y, Li XW, Jia XC, Lin YL, Leon C. Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species [J]. PLoS ONE, advance online publication 7 January 2010, doi:10.1371/journal.pone.0008613
    [9]Wilson SR, Neubert LA, Huffman JC. The chemistry of the Euphorbiaceae. A new diterpene from Croton californicus [J]. J Am Chem Soc,1979,98:3669-3674.
    [10]Agra MF, Fran(?)a PF, Barbosa-Filho, JM. Synopsis of the plants known as medicinal and poisonous in Northeast of Brazil [J]. Rev Bras Farmacogn,2007,17:114-140.
    [11]Yadav RP, Singh D, Singh SK, Singh A. Metabolic changes in freshwater fish Channa punctatus due to stem-bark extract of Croton tiglium [J]. Pakistan Journal of Biological Sciences,2003,6:1223-1228.
    [12]Rodriguez JA, Hiruma-Lima CA. Antiulcer activity and subacute toxicity of trans-dehydrocrotonin from Croton cajucara [J]. Hum Exp Toxicol,2004,23:455-461.
    [13]Antonio S, Maria L, Faria S, Giuseppina N. Traditional uses, Chemistry and Pharmacology of Croton species (Euphorbiaceae). J Braz Chem Soc,2007,18: 11-33.
    [14]Tagwireyi D, Ball DE, Loga PJ, Moyo S. Cantharidin poisoning due to "Blister beetle" ingestion [J]. Toxicon,2000,12:1865-1869.
    [15]Meyer CP, Paulay G. DNA barcoding:Error rates based on comprehensive sampling [J]. PLoS Biol,2005,3:2229-2238.
    [16]Alvarez I, Wendel JF. Ribosomal ITS sequences and plant phylogenetic inference [J]. Mol Phylogenet Evol,2003,29:417-434.
    [17]Feliner GN, Rossello JA. Better the devil you know? Guidelines for insightful utilization of nrDNA ITS in species-level evolutionary studies in plants [J]. Mol Phylogenet Evol,2007,44:911-919.
    [18]Chase MW, Cowan RS, Hollingsworth PM, van den Berg C, Madrinan S, Petersen G, Seberg O, Jorgsensen T, Cameron KM, Carine M. A proposal for a standardised protocol to barcode all land plants [J]. Taxon,2007,56:295-299.
    [19]Kress WJ, Erickson DL. A Two-Locus Global DNA Barcode for Land Plants:The coding rbcL gene complements the non-coding trnH-psbA spacer region [J]. PLoS ONE,2007,2:e508.
    [20]Coleman AW. Pan-eukaryote ITS2 homologies revealed by RNA secondary structure [J]. Nucleic Acids Res,2007,35:3322-3329.
    [21]Miao M, Warren A, Song W, Wang S, Shang H, Chen Z. Analysis of the internal transcribed spacer 2 (ITS2) region of scuticociliates and related taxa (Ciliophora, Oligohymenophorea) to infer their evolution and phylogeny [J]. Protist,2008,159: 519-533.
    [22]Schultz J, Maisel S, Gerlach D, Muller T, Wolf M. A common core of secondary structure of the internal transcribed spacer 2 (ITS2) throughout the Eukaryota [J]. RNA,2005,11:361-364.
    [23]Tamura K, Dudley J, Nei M, Kumar S. MEGA4:Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0 [J]. Mol Biol Evol,2007,24:1596-1599.
    [24]Meier R, Zhang GY, Ali F. The use of mean instead of smallest interspecific distances exaggerates the size of the "Barcoding Gap" and leads to misidentification [J]. Syst Biol,2008,57:809-813.
    [25]Ross H A, Murugan S, Li WLS. Testing the reliability of genetic methods of species identification via simulation [J]. Syst Biol,2008,57:216-230.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700