用户名: 密码: 验证码:
入侵种食蚊鱼与土著濒危物种唐鱼的种间关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物入侵是导致土著鱼类濒危的主要原因之一。食蚊鱼Gambusia affinis是世界百种恶性入侵物种之一,它的入侵导致了许多土著水生生物濒危。1927年,食蚊鱼被引入到中国,此后,大范围扩散至长江以南的淡水生境,然而,当前国内尚未对其入侵生态学开展系统研究。唐鱼Tanichthys albonubes是我国Ⅱ级重点保护水生野生动物,小型濒危鲤科鱼类,主要分布在华南丘陵地区森林Ⅰ级溪流及其附近的农田、沼泽等生境。
     本文研究了食蚊鱼与我国华南地区小型濒危鱼类唐鱼的种间关系,评估食蚊鱼入侵对唐鱼自然种群生存的危害性。主要研究结果如下:
     1.揭示了当前食蚊鱼对唐鱼栖息生境的入侵格局。对广东从化地区银林、岐田、鹿田和温泉等地的10条溪流和2个丘陵谷地农田生境的调查表明,在溪流生境,食蚊鱼已广泛入侵到唐鱼所栖息的Ⅰ级溪流的下游,并具有进一步入侵趋势;而在农田生境中,则形成与唐鱼交错分布的格局。调查同时表明,食蚊鱼很可能通过对唐鱼仔鱼的捕食而对唐鱼自然种群产生威胁。
     2.证实了食蚊鱼对唐鱼仔鱼具有捕食压力和对唐鱼的繁殖活动具有干扰作用。室内的捕食研究表明,食蚊鱼对唐鱼体全长在12mm以下的仔鱼均具有捕食压力,而唐鱼仔鱼未能特异性识别这一陌生捕食者。对唐鱼的繁殖行为学的研究表明,引入的食蚊鱼通过对唐鱼追咬而干扰了唐鱼的正常繁殖活动。繁殖试验则揭示了唐鱼所具有的连续产卵特点,连续产卵方式使得唐鱼在实验时间内获得最大的繁殖输出和高受精率。
     3.证实了食蚊鱼能显著压制唐鱼种群的增长。在微生态系统的研究显示,引入的食蚊鱼在静水生境中显著抑制了唐鱼种群的增长。而当引入的食蚊鱼被清除以后,唐鱼种群恢复正常的增长。同时证实,食蚊鱼不影响唐鱼幼鱼的性成熟,因此,在实验微生态系统中食蚊鱼对唐鱼种群的主要作用机制为对唐鱼仔鱼的捕食。
     4.通过周年调查,了解了唐鱼与食蚊鱼野外种群的生态学特点,并揭示了野外条件下唐鱼与食蚊鱼种间相互作用的某些特点。唐鱼和食蚊鱼种群均具有小型淡水鱼类的一般生态学特点:个体小、寿命短、性成熟时间短,种群结构复杂。两者具有近似的性腺指数变动周期,周年中的3月和8月为性腺指数的高峰期。两者野外寿命均可能不超过1年,越冬群体在春季繁殖,初夏消亡,而其后代在夏季成熟,形成新一世代的繁殖群体,并可能越冬至第二年春季再次繁殖并在初夏消亡,完成生活史周期。两者在一年中大部分时间均可繁殖。降水对两者的分布格局及相互作用有重要影响,逐月降水量与食蚊鱼入侵样点与非入侵样点唐鱼种群间的体全长的差值呈显著负相关。由于目前所了解的样地中均存在这两类样点,则水流的冲击作用很可能将未被食蚊鱼入侵样点中的唐鱼小型个体间断性的带入已被食蚊鱼入侵的样点,掩盖食蚊鱼入侵样点对唐鱼种群中仔幼鱼的危害性。
Biological invasions have long been recognized as a major cause of fish species population decline. The mosquito fish Gambusia affinis, a small fish which is native to North America, is one of the world's one hundred evil invasive species. Its invasions have led to great damages to the invaded wetland habitats. It was originally introduced to China in 1927, and dispersed rapidly since then. At present, it had occupied large scale freshwater habitats in south of Changjiang River in China. However, it was rare study concerned about its invasions ecology in China to date.
     Tanichthys albonubes, a native endangered small freshwater fish in South China, inhabits in headwater streams and the conjoined drainages of rice fields and marshes in small hill regions. It was suspected that its endangered would have some unconcerned relations with the invasions of G. affinis.
     The aim of this paper is to explore the interspecific interaction between T. albonubes and G. affinis, and to determine the invasion effects of G. affinis on Tanichthy albonubes. The results of this study may provide a new insight on the relationship of G. affinis to the native small freshwater fish species in South China, and will facilitate the theory developments of invasion ecology and conservation biology of freshwater fish species. Particularly, it will provide the critical theoretical direction to the practices of T. albonubes conservations.
     The main results are:
     1) In field conditions, it was revealed that the G. affinis had invaded into many of the habitats that T. albonubes naturally occupied in Conghua county, Guangdong province, China. Particularly, it had invaded into the lower parts of the headwater streams that are the main habitats of T. albonubes, and showed the trends to further spread in these habitats. In contrast, G. affinis had showed a co-occurring with the T. albonubes in the drainages of rice field. It suggested that G. affinis performed predation effects on the larval T. albonubes in those co-occurring sites, leading to lower ratio of total length between the T. albonubes populations in sites of invaded or un-invaded by G. affinis.
     2) In laboratory conditions, firstly, it was revealed that G.affinis predated on the larval T. albonubes that were smaller than 12mm (total length) heavily, however, the larval T. albonubes did not show any recognition on this strange predator. Secondly, it was revealed that the presence of G.affinis may disrupt the reproductive behaviors of the paring adult T. albonubes, and cause failures on their reproduction by its bites. Thirdly, it was revealed that T. albonubes is a successive spawner, and daily spawning made the T. albonubes obtain the highest total eggs production and high fertilization rates in laboratory conditions.
     3) In micro ecosystem conditions, it was revealed that G. affinis significantly suppressed the increasing of T. albonubes populations. In contrast, after the G. affinis were eliminated, the T. albonubes populations recovered to normal increasing. On the other hand, it was proven that the presence of G. affinis did not affect the mature of the juvenile of T. albonubes in micro ecosystem conditions. Thus, the main effects of G. affinis on T. albonubes in micro ecosystem conditions should be its predation on the larval T. albonubes, not the effects on the gonads development of T. albonubes.
     4) The commons of wild population ecology traits in these two species are:small size of individuals, short life span, short time to mature and high complex in population constructions. In addition, these two species shared many another common population ecology traits in local conditions in Conghua, Guangdong province, China, such as the similar annual dynamics of gonadosomatic index, both no more than one year in life span, both can reproduced in most of the time of a year. On the other hand, raining had dramatic effects on their interspecific interaction in field. It bring the T. albonubes from the un-invaded sites to the invaded sites which invaded by G. affinis by the strong flow in raining seasons. Thus, the real interaction effects between G. affinis and T. albonubes will be masked, and led to the misunderstanding, that is, T. albonubes can co-inhabit with G. affinis infield.
引文
[1]曹克驹,李明云.溪香鱼繁殖生物学的研究[J].水产学报,1982,6(2):107-188.
    [2]陈国柱,方展强,马广智.唐鱼胚胎发育观察[J].中国水产科学,2004,11(6):489-496.
    [3]陈国柱.唐鱼生物学特性及实验动物化研究[D].广州:华南师范大学,2005.
    [4]陈国柱,林小涛,陈佩.食蚊鱼(Gambusia spp.)入侵生态学研究进展[J].生态学报,2008a,28(9):4476-4485.
    [5]陈国柱,林小涛,陈佩.饥饿对食蚊鱼仔鱼摄食、生长和形态的影响[J].水生生物学报,2008b,314-321.
    [6]陈国柱,方展强.饥饿对唐鱼仔鱼摄食和生长的影响[J].动物学杂志,2007,42(5):49-61.
    [7]陈敏,白俊杰,何小平,等.转红色荧光蛋白基因唐鱼的遗传分析和生物学研究[J].上海海洋大学学报,2009,18(6):649-654.
    [8]程炜轩,林小涛,刘汉生,等.唐鱼自然群体栖息地水环境调查[J].生态科学,2006,25(2):143-146.
    [9]陈霆隽,曹春华.食蚊鱼卵胎生习性观察[J].生物学通报,2005,40(3):56-58.
    [10]陈银瑞,杨君兴,李再云.云南鱼类多样性和面临的危机[J].生物多样性,1998,6(4):272-277.
    [11]陈银瑞,宇和纮,褚新洛.云南青鳉鱼类分类和分布[J].动物分类学报,1989,14(2):239-246.
    [12]陈兆南,谭玲,董亚明.溶解氧和气泡对食蚊鱼生存的影响[J].上海师范大学学报:自然科学版,2007,36(2):61-65.
    [13]邓雄,杨期和,叶万辉,等.生物入侵的适应性进化及影响[J].中山大学学报,2003,42(增刊):204-210.
    [14]窦硕增.鱼类摄食生态研究的理论及方法[J].海洋与湖沼,1996,27(5):556-561.
    [15]方展强,陈国柱,马广智.唐鱼的胚后发育[J].中国水产科学,2006,13(6):869-877.
    [16]干晓静,李博,陈家宽,等.生物入侵对鸟类的生态影响[J].生物多样性,2007,15(5):548-557.
    [17]高书堂,刘灼见,邓青.食蚊鱼饲养、生长、生殖情况概述[J].淡水渔业,1995,25(6):
    17-19.
    [18]高书堂,刘灼见,邓青.食蚊鱼个体生长与性腺发育观察[J].湖北教育学院学报,1998,5:43-47.
    [19]高增祥,季荣,徐汝梅,等.外来种入侵的过程、机理和预测[J].生态学报,2003,23(3):559-569.
    [20]高云起,李泽江,于连凯,等.柳条鱼在天津塘沽区越冬驯化与运用[J].环境与健康杂志.1989,6(1):10-12.
    [21]黄菲,胡莹莹,焦艳,等.菲(PHE)短期暴露对斑马鱼(Branchy danio rerio)繁殖行为及产卵、受精、孵化和仔鱼死亡率的影响[J].北京师范大学学报:自然科学版,2010,46(1):63-67.
    [22]何舜平,陈宜瑜,T. Nakajima.东亚低等鲤科鱼类细胞色素b基因序列测定及系统发育[J].科学通报,2000,45(21):2297-2302.
    [23]李博,徐炳声,陈家宽.从上海外来杂草区系剖析植物入侵的一般特征[J].生物多样性,2001,9:446-457.
    [24]李博,陈家宽.生物入侵生态学:成就与挑战[J].世界科技研究与发展,2002,24(2):26-36.
    [25]胡安,唐诗生,龚兴生.青海湖裸鲤Gymnocypris przewalskii (Kessler)繁殖生物学的研究[A].青海湖地区鱼类区系和青海湖裸鲤的生物学[M].北京:科学出版社,1985,49-64.
    [26]林光华,翁世骢,张丰旺.性成熟草鱼卵巢发育的年周期变化.水生生物学报,1985,9(2):186-195.
    [27]刘汉生,易祖盛,林小涛.唐鱼的繁殖行为和胚胎发育研究[J].水生态学杂志,2008,1(2):22-27.
    [28]刘灼见,高书堂,邓青.食蚊鱼的性腺发育及性周期研究[J].武汉大学学报:自然科学版,1996,42(4):487-493.
    [29]李典谟,徐汝梅,马祖飞.物种濒危机制和保育原理[M].北京:科学出版社,2005,7-94.
    [30]楼允东.鱼类引种须慎重[J].中国水产,2003(1):62-63.
    [31]鲁庆彬,王小明,丁由中.集合种群理论在生态恢复中的应用[J].生态学杂志,2004,23(6):63-70.
    [32]李振宇,解焱.中国外来入侵种[M].北京:中国林业出版社,2002.
    [33]潘勇,曹文宣,徐立蒲,等.鱼类入侵的过程、机制及研究方法[J].应用生态学报,2007,18(3):687-692.
    [34]潘炯华,钟鳞,郑慈英,等.广东淡水鱼类志[M].广州:广东科技出版社,1991.
    [35]潘炯华,苏炳之,郑文彪.食蚊鱼的生物学特性及其灭蚊利用的展望[J].华南师范大学学报:自然科学版,1980,(1):118-138.
    [36]潘炯华,张剑英.大面积放养食蚊鱼灭蚊效果观察报告[J].华南师范大学学报:自然科学版,1981,(1):54-61.
    [37]潘炯华.珠江水系北江渔业资源[M].广州:广东科技出版社,1983,13-21.
    [38]潘炯华,刘成汉,郑文彪.广东北江鱼类区系研究[J].华南师范大学学报:自然科学版,1984,(2):105-108.
    [39]齐相贞,林振山.外来种入侵的不确定性动态模拟[J].生态学报,2005,25(9):2434-2439.
    [40]史方,孙军,林小涛,等.唐鱼仔鱼耳石的形态发育及日轮[J].动物学杂志,2006,41(4):10-16.
    [41]史方,林小涛,孙军,等.自然种群唐鱼的耳石、日龄与生长[J].生态学杂志,2008,27(12):2195-2166.
    [42]桑卫国,朱丽,马克平.外来种入侵现象、问题及研究重点[J].地球科学,2006,21(3):305-312.
    [43]孙帼英.大银鱼卵巢的成熟期和产卵类型.水产学报,1985,9(4):363-368.
    [44]沈建忠.中华鳑皮Rhodeus sinensis繁殖习性的初步观察.华中农业大学学报,2000,19(5):494-496.
    [45]尚玉昌.行为生态学[M].北京:北京大学出版社,1998,189-225.
    [46]王吉桥,史建国,姜玉声,等.鸭绿沙塘鳢繁殖习性的观察及性腺发育周期的组织学研究[J].水产科学,2008,27(8):379-385.
    [47]王剑伟.稀有鮈鲫的繁殖生物学[J].水生生物学报,1992,16(2):165-175.
    [48]王剑伟.稀有鮈鲫产卵频次和卵子发育的研究[J].水生生物学报,1999,23(2):161-166.
    [49]王海英,叶星,白俊杰,等.唐鱼β-肌动蛋白基因启动子的分离及其驱动活性的检测[J].中国水产科学,2008,15(1):47-54.
    [50]王瑞龙,方展强,马广智,等.5种常用水产药物的对唐鱼的急性毒性实验[J].水利渔业,2008,28(1):96-98.
    [51]吴佩秋.小黄鱼不同产卵类型卵巢成熟期的组织学观察.水产学报,1981,5(2):161-169.
    [52]武正军,蔡凤金,贾运锋,等.桂林地区克氏原螯虾对泽蛙蝌蚪的捕食[J].生物多样性,2008,16(2):150-155.
    [53]温茹淑,方展强,陈伟庭.17β-雌二醇对雄性唐鱼卵黄蛋白原的诱导及性腺发育的影响[J].动物学研究,2008,29(1):43-48.
    [54]谢增兰,胡锦矗,郭延蜀,等.叉尾斗鱼繁殖行为的观察[J].动物学杂志,2006,41(5):7-12.
    [55]熊全沫.不同生态条件下食蚊鱼Gambusia同工酶的变异[A].鱼类学论文集第四辑[M].北京:科学出版社,1985,93-105.
    [56]徐海根,强胜,韩正敏,等.中国外来物种的分布于传入路径分析[J].生物多样性,2004,12(6):626-638.
    [57]姚静,方展强,徐杰.唐鱼卵黄蛋白原的诱导、纯化与鉴定[J].生态毒理学报,2008,3(2):155-161.
    [58]易祖盛,陈湘粼,巫锦雄,等.野生唐鱼在广东的再发现[J].动物学研究,2004,25(6):551-555.
    [59]殷名称.鱼类早期生活史与其进展[J].水产学报,1991,15(4):348-358.
    [60]殷名称.鱼类生态学[M].北京:中国农业出版社,1995,129-131.
    [61]乐佩琦,陈宜瑜,张春光,等.中国动物濒危红皮书:鱼类[M].北京:科学出版社,1998.
    [62]曾伯平,廖翔华,聂品,等.食蚊鱼鳃上台湾棘带吸虫囊蚴内种群的月变化[J].水生生物学报,2005,29(6):704-707.
    [63]曾伯平,廖翔华.台湾棘带吸虫的终末宿主[J].水生生物学报,1999,23(2):190-191.
    [64]张辉,危起伟,杜浩,沈丽.中华鲟自然繁殖行为发生与气象状况的关系[J].科技导报,2008,26(17):42-48.
    [65]张润志.“外来物种的入侵生态学效应”取得重要进展[J].中国科学院院刊,2007,22(6):508-510.
    [66]张国华,曹文宣,陈宜瑜.湖泊放养渔业对我国湖泊生态系统的影响[J].水生生物学报,1997,21(3):271-280.
    [67]张林艳,许凯扬,黄红娟,等.群落的可入侵性[A].见:徐汝梅,叶万辉.生物入侵—理论与实践[M].北京:科学出版社,2003,47-75.
    [68]张林艳,叶万辉.群落可侵入性及其影响因素[J].植物生态学报,2002,26(1):109-114.
    [69]郑文彪,潘炯华.食蚊鱼生殖特性的研究[J].动物学研究,1985,6(3):227-231.
    [70]Adams S. B., Frissell C. A., Rieman, B. E. Geography of Invasion in Mountain Streams: Consequences of Headwater Lake Fish Introductions [J]. Ecosystems,2001,4(4):296-307.
    [71]Alemadi S. D.& Jenkins D. G. Behavioral constraints for the spread of the eastern mosquitofish, Gambusia holbrooki (Poeciliidae) [J]. Biological Invasions,2008,10:59-66.
    [72]Ayala J. R., Rader R. B., Belk M. C., et al. Ground-truthing the impact of invasive species: spatio-temporal overlap between native least chub and introduced western mosquitofish [J]. Biological Invasions,2007,9:857-869.
    [72]Basking Y. Winner and losers in a changing world:Global changes may promote invasions and alter the fate of invasive species [J]. Biological Science,1998,48(10):788-792.
    [73]Becker A., Laurenson L. J. B., Jones P. L., et al. Competitive interactions between the Australian native fish Galaxias maculatus and the exotic mosquitofish Gambusia holbrooki, in a series of laboratory experiments [J]. Hydrobiologia,2005,549:187-196.
    [74]Belk M. C., Lydeard C. Effect of Gambusia holbrooki on a similar-sized, syntopic poeciliid, Hetereandria Formosa:competitor of predator? [J]. Copeia,1994,2:296-302.
    [75]Benoit H. P., Post J. R., Barbet A. D. Recruitment Dynamics and Size Structure in Experimental Populations of the Mosquitofish, Gambusia affinis [J]. Copeia,2000, (1):216-221.
    [76]Bence J. R., Murdon W. W. Prey size selection by the mosquitofish:relation to optimal diet theory [J]. Ecology,1986,67:324-336.
    [77]Bence J. R. Indirect effects and biological control of mosquitos by mosquitofish [J]. Journal of Applied Ecology,1988,25,505-521.
    [78]Blaustein L.& Karban R. Indirect Effect of the Mosquito fish Gambusia affinis on the Mosquito Culex tarsalis [J]. Limnology and Oceanography,1990,35(3):767-771.
    [79]Bohn T., Amundsen P. A. The competitive edge of an invading specialist [J]. Ecology,2001,82: 2150-2163.
    [80]Brown K. L. Colonization by mosquitofish (Gambusia affinis) of a great plains river basin [J]. Copeia,1987,336-351.
    [81]Cabral J.A.& Margues J. C. Life history, population dynamics and production of eastern
    mosquitofish, Gambusia holbrooki (Pisces, Poeciliidae), in rice fields of the lower Mondego River Valley, western Portugal [J]. Acta Oecologica,1999,20(6),607-620.
    [82]Cabral J. A., Mieiro C. L, Marques J. C. Environmental and biological factors influence the relationship between a predator fish, Gambusia holbrooki, and its main prey in rice fields of the Lower Mondego River Valley (Portugal) [J]. Hydrobiologia,1998,382:41-51.
    [83]Caiola N., Sostoade A. Possible reason for the decline of two native tooth carps in the Iberian Peninsula:evidence of competition with the introduced Eastern mosquito fish [J]. Journal Apply Ichthyology,2005,21:358-363.
    [84]Castro B. B., Consciencia S., Goncalves F.Life history responses of Daphnia longispina to mosquitofish (Gambusia holbrooki) and pumpkinseed (Lepomis gibbosus) kairomones[J]. Hydrobiologia,2007,594:165-174.
    [85]Cataudella S.& Sola L. Sex Chromosmes of the mosquitofish (Gambusa affinis):an interesting problem for American ichthyologists [J]. Copeia,1977,2:382-384.
    [86]Chan B. P.L.& Chen X. L. Discovery of Tanichthys albonubes Lin 1932 (Cyprinidae) on Hainan Island, and notes on its ecology. Zoological Research,2009,30(2):209-214.
    [87]Chen R. T., Ebeling A. W. Karyological evidence of female heterogamety in mosquitofish Gambusia affinis [J]. Copeia,1968,70-75.
    [88]Chen T. P. Some aquarium fishes of China [J].The HongKong Naturalist,1938,43-47.
    [89]Chesser R. K., Smith M. W., Smith M. H. Biochemical genetics of mosquitofish. III. Incidence and significance of multiple insemination [J].Genetica:1984,64:77-81.
    [90]Cheverie J. C.& Lynn W. G. High temperature tolerance and thyroid activity in the teleost fish, Tanichthys albonubes [J]. Biological bulletin,1963,124(2):153-162.
    [91]Cohen A. N.& Carlton J. T. Accelerating invasion rate in highly invade estuary [J]. Science, 1998,279(23):555-557.
    [92]Corfield J., Diggles B., Jubb C., McDowall R. M., Moore A., Richards A., Rowe D. K. Review of the Impacts of Introduced Ornamental Fish Species That Have Established Wild Populations in Australia [M]. Prepared for the Australian Government Department of the Environment, Water, Heritage and the Arts,2008.
    [93]Castro B. B., Consciencia S., Goncalves F. Life history responses of Daphnia longispina to mosquitofish (Gambusia holbrooki) and pumpkinseed (Lepomis gibbosus) kairomones [J]. Hydrobiologia,2007,594:165-174.
    [94]Dadda M., Pilastro A., Bisazza A. Male sexual harassment and female schooling behaviour in the eastern mosquitofish [J]. Animal behaviour,2005,70:463-471.
    [95]DeRouen S. M., Frank, D. E., Morisson, D. G, Wyatt W.E., Coombs D. F., White T. W., Humes P. E.& Greene B. B. Prepartum body condition and weight influences on reproductive performance of first-calf beef cows. Journal of Animal Science,1994,72:1119-1125.
    [96]Dionne M. Cannibalism, food availability, and reproduction in the mosquitofish Gambusia affinis:a laboratory experiment [J]. The American Naturalist,1985,126(1):16-23.
    [97]Douglas M. E., Marsh P. C., Minckley W. L. Indigenous fishes of western NorthAmerica and the hypothesisof competitive displacement:Meda fulgida (Teleoste, Cyprinidae) as a case study [J]. Copeia,1994, (1):9-19.
    [98]Douglas M. E., Matthews W. J. Does morphology predict ecology?:Hypothesis testing in a freshwater stream fish community [J]. Oikos,1992,65(2):213-224.
    [99]Echelle A. A, Echelle A. F. Genetic introgression of endemic taxa by non-natives:A case study with Leon springs pupfish and sheepshead minnow [J]. Conservation Biology,1997,11: 153-161.
    [100]Emlen S.T.& Oring L.W. Ecology sexual selection and the evolution of mating system [J]. Science,1977,197(4300):215-223.
    [101]Engstrom-Ost J.& Lehtiniemi M. Threat-sensitive predator avoidance by pike larvae [J]. Journal of Fish Biology,2004,65:251-261.
    [102]Feder J. L., Smith M. H., Chesser R. K., et al. Biochemical genetics of mosquitofish. Ⅱ. Demographic differentiation of population in a thermally altered reservoir [J]. Copia,1984,4: 108-109.
    [103]Fernandez-Delgado C.& Rossomanno S. Reproductive biology of the mosquito fish in a permanent natural lagoon in south-west Spain:two tactics for one species [J]. Journal of Fish Biology,1997,51:80-92.
    [104]Fellowes, J. R., Wong, C. L.C., Lau, M. W.N., et al. Report of a rapid biodiversity assessment at Wutongshan National Forest Park, Shenzhen Special Economic Zone, China,16 to 17 May
    2001 [M].2002.
    [105]Fleming I. A., Gross M. R. Reproductive behavior of hatchery and wild coho salmon (Oncorhynchus kisutch):doses it differ? [J]. Aquaculture,1992,103:101-121.
    [106]Fleming I. A., Jonsson B., Gross M. R., et al. An experimental study of the reproductive behavior and success of farmed and wild Atlantic salmon [J]. Journal Applied Ecology,1996,33: 893-905.
    [107]Fowler H.W. Gambusia in New Jersey [J]. Science, New Series,1907,26(671):639.
    [108]Fuiman L. A., Magurran A. E. Development of predator defences in fishes [J]. Review in Fish Biology and Fisheries,1994,4:145-183.
    [109]Freyhof J.& Herder F. Tanichthys micagemrhae, a new miniature cyprinid fish from Central Vietnam (Cypriniformes:Cyprinidae) [J]. Ichthyol Explor Freshwaters,2001,12(3):215-220.
    [110]Fraile B., Saez F. J., Vicentini C. A., et al. Effects of temperature and photoperiod on the Gambusia affinis holbrooki testis during the spermatogenesis period [J]. Copeia,1994,216-221.
    [111]Garcia-Berthou E. Food of introduced mosquitofish:ontogenetic diet shift and prey selection [J]. Journal of Fish Biology,1999,55:135-147.
    [112]Gale W. F.& Buynak L. Fecundity and spawning frequency of the fathead minnow-a fractional spawner [J]. Transactions of the American Fisheries Society,1983,111:35-40.
    [113]Galat D. L.& Robertson B. Response of endangered Poeciliopsis occidentalis sonoriensis in the Ro Yaqui drainage, Arizona, to introduced Gambusia affinis [J]. Environmental Biology of Fishes,1992,33:249-264.
    [114]Gamradt S. C., Kats L. B., Anzalone C. B. Aggression by non-native crayfish deters breeding in California newts [J]. Conservation Biology,1997,11:793-796.
    [1115]Gamradt S.C.& Kats L.B. Effect of Introduced Crayfish and Mosquitofish on California Newts [J]. Conservation Biology,1996,10(4):1155-1162.
    [116]Gerhard P., Moraes R., Molander S. Stream fish communities and their associations to habitat variables in a rain forest reserve in southeastern Brazil [J]. Environmental Biology of Fishes, 2004,71:321-340.
    [117]Golani D. Tropic adaptation of red sea fish to the eastern mediterranean environment review and new data [J]. Israel Journal of Zoology,1993,39:391-402.
    [118]Gomez S. Unusual morphopathological features in a case of fish tuberculosis [J]. Journal of Fish Diseases,1998,21:237-239
    [119]Goodsell J.A.& Kats L.B. Effect of Introduced Mosquito Fish on Pacific Treefrogs and the Role of Alternative Prey [J]. Conservation Biology,1999,13(3):921-924.
    [120]Goodyear C. P., Boyd C. E., Beyers R. J. Relationship between primary productivity and mosquito fish (Gambusia affinis) production in large microcosms [J]. Limnology and Oceanography,1972,17(3):445-450.
    [121]Grubb J. C. Differential predation by Gambusia affinis on the eggs of seven species of anuran amphibians [J]. American Midland Naturalist,1972,88(1):102-108.
    [123]Gulis V.& Suberkropp K. Leaf litter decomposition and microbial activity in nutrient-enriched and unaltered reaches of a headwater stream. Freshwater Biology,2003,48:123-134.
    [124]Hamer A. J., Lane S. J., Mahony M. J. Management of freshwater wetlands for the endangered green and golden bell frog (Litoria aurea):roles of habitat determinants and space [J]. Biological Conservation,2002a,106,413-424.
    [125]Hamer A. J., Lane S. J., Mahony M. J. The role of introduced mosquitofish (Gambusia holbrooki) in excluding the native green and golden bell frog (Litoria aurea) from original habitats in south-eastern Australia [J]. Oecologia,2002b,132:445-452.
    [126]Harrell H. L. Response of Devils River (Texas) fish community to flooding [J]. Copeia,1978, 1:60-68.
    [127]Haynes J.L. Annual reestablishment of mosquitofish population in Nebraska [J]. Copeia,1993, 1:232-235.
    [129]Hernandez-Martich J. D., Smith M. H. Patterns of Genetic Variation in Eastern Mosquitofish (Gambusia holbrooki Girard) from the Piedmont and Coastal Plain of Three Drainages [J]. Copeia,1990,3:619-630.
    [130]Heulett S. T., Weeks S. C., Meffe G K. Lipid Dynamics and growth relative to resource level in juvenile eastern mosquitofish(Gambusia holbrooki:Poeciliidae) [J]. Copeia,1995,1:97-104.
    [131]Haynes J. L.& Cashner R C. Life history and population dynamics of western mosquito fish:a comparison of natural and introduced populations [J]. Journal of Fish Biology,1995,46: 1026-1041.
    [132]Holle B. V. Simberloff D. Ecological Resistance to Biological Invasion Overwhelmed by Propagule Pressure. Ecology,2005,86(12):3212-3218.
    [133]Hughes A. L. Seasonal change in fecundity and size at first reproduction in an Indiana population of the mosquitofish Gambusia affinis [J]. The American Midland Naturalist,1985, 114(1):30-36.
    [134]Hurlbert S. H., Zedler J., Fairbanks D. Ecosystem alteration by mosquitofish(Gambusia affinis) predation [J]. Science, New Series,1972,175(4022):639-641.
    [135]Igarashi T., Aritake S., Yasumoto T. Mechanisms underlying the hemolytic and ichthyotoxic activities of maitotoxin. Natural Toxins,1999,7:71-79.
    [136]Itzkowitz M. The Effects of other fish on the reproductive behavior of the male Cyprinodon variegates (Pisces:Cyprinodontidae) [J]. Behaviour,1974,48(1/2):1-22.
    [137]Kennedy P. K., Kennedy M. L., Zimmerman E. G. Biochemical genetics of mosquitofish. V. Perturbation effects on genetic organization of populations [J]. Copeia,1986,4:937-945.
    [138]Karen E. L., Sharon P. L., Terry S. Effect of an alien fish, Gambusia affinis, on an endemic Califonia fairy shrimp, Linderiella occidentalis:implications for conservation of diversity in fishless waters [J]. Biological conservation,2004,118:57-65.
    [139]Kats L. B.& Ferrer R. P. Alien predators and amphibiam declines:review of two decades of science and the transition to conservation [J]. Diversity and Distribution,2003,9:99-110.
    [140]Kolar C. S., Lodge D. M. Ecological predictions and risk assessment for alien fishes in North America [J]. Science,2002,298:1233-1236.
    [141]Komak, S., Crossland, M. R. An assessment of the introduced mosquitofish (Gambusia affinis holbrooki) as a predator of eggs, hatchlings and tadpoles of native and non-native anurans [J]. Wildlife Research,2000,27:185-189.
    [142]Kottelat M. Freshwater fishes of northern Vietnam [A]. A preliminary check-list of the fishes known or expected to occur in northern Vietnam with comments on systematics and nomenclature [M]. Washington:World Bank,2001.
    [143]Koya Y., Kamiya E. Environmental regulation of annual reproductive cycle in the mosquitofish, Gambusia affinis [J]. Journal of Experimental Zoology,2000,286:204-211.
    [144]Koya Y., Sawaguchi S., Shimizu K., et al. Endocrine changes during the onset of vitellogenesis in spring in the mosquitofish [J]. Fish Physiology and Biochemistry,2003,28: 349-350.
    [145]Koya Y., Itazu T., Inoue M. Annual reproductive cycle based on histological changes in the ovary of the female mosquitofish, Gambusia affinis, in central Japan [J]. Ichthyological Research, 1998,45:241-248.
    [146]Krieger M. J. B., Ross K. G. Identification of a major gene regulating complex social behavior [J]. Science,2000,295:328-332.
    [147]Krumholz A. L. Reproduction in the western mosquitofish, Gambusia affinis affinis (Baird and Girard), and its use in mosquito control [J]. Ecological Monographs,1948,18(1):1-43.
    [148]Lach L., Britton D. K., Rundell R. J., et al. Food preference and reproductive plasticity in an invasive freshwater snail [J]. Biological Invasions,2000,2:279-288.
    [149]Laha M., Mattingly H. T. Identifying environmental conditions to promote species coexistence: an example with the native Barrens topminnow and invasive western mosquitofish [J]. Biological Invasions,2006,8:719-725.
    [150]Lande, R. Risks of population extinction from demographic and environmental stochasticity and random catastrophes [J]. The American Naturalist,1993,142 (6):911-927.
    [151]Lane S. J. and Mahony M. J. Larval anurans with synchronous and asynchronous development periods:contrasting responses to water reduction and predator presence Journal of Animal [J]. Journal of Animal Ecology,2002,71:780-792.
    [152]Lawler S. P., Dritz D., Strange T. Effect of introduced mosquito fish and bullfrogs on the threatened California red-legged frog [J]. Conservation Biology,1999,13(3):613-622.
    [153]Lariagder C. R.& Scholl A. Genetic introgression between native and introduced brown trout Salmo trutta L. populations in the Rhone River Basin [J]. Molecular Ecology,1996,5:417-426.
    [154]Lee V.L. F.. Rediscovery of white cloud mountain minnow(Tanichthys albonubes) in the wild [J]. Hong Kong Diversity,2006,12:12-13.
    [155]Liang X.F., Chen G. Z., Chen X.L., et al. Threatened fishes of the world:Tanichthys albonubes Lin 1932 (Cyprinidae) [J]. Environmental fish biology,2008,82:177-178.
    [156]Lockwood J. L., Cassey P, Blackburn T. The role of propagule pressure in explaining species invasions [J]. Trends in Ecology and Evolution,2005,20(5):223-228.
    [157]Lynch J. D. Introduction, establishment, and dispersal of western mosquitofish in Nebraska (Actinopterygii:Poeciliidae) [J]. Prairie Nature,1988,20:203-216.
    [158]Mack R. N., Simberloff D., Lonsdale W. M., et al. Biotic invasions:Causes, epidemiology global consequences and control [J]. Ecological Applications,2000,10:689-710.
    [159]Madsen T., Shine R. The adjustment of reproductive threshold to prey abundance in a capital breeder. Journal of Animal Ecology,1999,68:571-580.
    [160]Magurran A. E., Bendelow. Conflict and co-operation in white cloud mountain minnow schools [J]. Journal of fish Biology,1990,37:77-83.
    [161]Marchetti M.P., Moyle P. B., Levine R.. Invasive species profiling? Exploring the characteristics of non-native fishes across invasion stages in California [J]. Freshwater Biology, 2004,49:646-661.
    [162]McKaye K. R., Louda S. M., Stauffer Jr. J. R. Bower size and male reproductive success in a Cichlid fish Lek [J]. The American Naturalist,1990,135(5):597-613.
    [163]McClenaghan Jr.L. R., Smith M. H., Smith M. W.. Biochemical genetics of mosquitofish. IV. changes of allele frequencies through time and space [J]. Evolution,1985,39(2):451-460.
    [164]Meffe G. K. Predation and species replacement in American southwestern fishes:A case study [J]. The Southwestern Naturalist,1985,30(2):173-187.
    [165]Meffe G K, Crump M L. Possible growth and reproductive benefits of cannibalism in the mosquitofish [J]. The American Naturalist,1987,129(3):203-211.
    [166]Meffe G K. Embryo size variation in mosquitofish:optimality vs. plasticity in propagule size [J]. Copeia,1987,762-768.
    [167]Meffe G.K. Offspring size variation in eastern mosquitofish (Gambusia holbrooki:Poeciliidae) from thermal environments [J].1991, Copeia,10-18.
    [168]Meffe G. K., Snelson F. F. Annual lipid cycle in eastern mosquitofish(Gambusia holbrooki: Poecilidae) from South Carolina [J]. Copeia,1993,596-604.
    [169]Miller, T. J., Crowder, L. B., Rice, J. A., et al. Larval size and recruitment mechanisms in fishes:toward a conceptual framework [J]. Canadian Journal of Fisheries and Aquatic Science, 1988,45:1657-1670.
    [170]Mills M,. Rader R. B., Belk M. C. Complex interactions between native and invasive fish:the simultaneous effects of multiple negative interactions [J]. Oecologia,2004,141:713-721.
    [171]Morton R. M., Beumer J. P., Pollock B. R. Fish of subtropical Australian saltmarsh and their predation upon mosquitoes [J]. Environmental Biology of fishes,1988,21:185-194.
    [172]Modzelewski E.& Cullery Jr. D. D. Occurrence of the nematode Fustrongylides wenrichi in laboratory reared Rana catesbeiana [J]. Copeia,1974,4:1000-1001.
    [173]Mulvey M., Keller G. P., Meffe G. K. Single and multiple-locus genotypes and life-history responses of Gambusia holbrooki reared at two temperature [J]. Evolution,1994, 48(6):1810-1819.
    [174]Nakayama K., Oshima Y. J., Yamaguchi T., et al. Fertilization success and sexual behavior in male medaka, Oryzias latipes, exposed to tributyltin [J]. Chemosphere,2004,55:1331-1137
    [175]Naulleau, G., Bonnet, X. Body condition threshold for breeding in a viviparous snake [J]. Oecologia,1996,107:301-306.
    [176]Nesbit D. H. Cannibalism frequencies in wild population of the eastern mosquitofish (Gambusia Holbrooki:Poeciliidae) in South Carolina [J]. Copeia,1993,3:867-870.
    [177]Nordlie F. G.& Mirandi A. Salinity relationships in a freshwater population of eastern mosquito fish [J]. Journal of Fish Biology,1996,49:1226-1232.
    [178]Ohta N., Aizu M., Kaneko T., et al. Damage to the gills, skin and other tissues by lysenin and thecoelomic fluid of the earthworm Eisenia foetida in two teleosts, Tanichthys albonubes and Oreochromis mossambicus [J]. Journal of Experimental Zoology,2003,295(2):117-126.
    [179]Olson L. J., Roy S. The economics of controlling a stochastic biological invasion [J]. American Journal of Agricultural Economics,2002,84(5):1311-1316.
    [180]Pimentel D., Lach L., Zuniga R. Environmental and economic costs of nonindigenous species in the United States [J]. Bioscience,2000,50(1):53-65.
    [181]Pires, A. M., Cowx, I. G., Coelho, M. M. Seasonal changes in fish community structure of intermittent streams in the middle reaches of the Guadiana basin, Portugal [J]. Journal of Fish Biology,1999,54(2):235-249.
    [182]Plaut I. Does pregnancy affect swimming performance of female mosquitofish, Gambusia affinis? [J]. Functional Ecology,2002,16(3):290-295.
    [183]Porter S. D.& Savignano. Invasion of polygyne fire ants decimates native ants and disrupts
    arthropod community [J]. Ecology,1990, (71):2095-2106.
    [184]Pyke G. H. A review of the biology of Gambusia affinis and G. holbrooki [J]. Review in Fish Biology and Fisheries,2005,15(4):339-365.
    [185]Race M. S. Competitive displacement and predation between introduced and native mud snail [J]. Oecologia,1982,54:337-347.
    [186]Rees D.M. Supplemental notes on mosquito fish in Utah, Gambusia affinis (Baird and Girard)[J]. Copeia,1945,4:236.
    [187]Rehage J. S., Sih A. Dispersal behavior, boldness, and the link to invasiveness:a comparison of four Gambusia species [J]. Biological Invasions,2004,6(3):379-391.
    [188]Rehage J. S., Barnett B. K., Sih A. Foraging behavior and invasiveness:do invasive Gambusia exhibit higher feeding rates and broader diets than their noninvasive relatives? [J]. Ecology of Freshwater Fish,2005,14:352-360.
    [189]Rehage J. S., Sih A. Dispersal behavior, boldness, and the link to invasiveness:a comparison of four Gambusia species [J]. Biological Invasions,2004,6:379-391.
    [190]Reznick D.'Grandfather effects':The genetics of interpopulation differences in offspring size in the mosquito fish [J]. Ecolution,1981,35(5):941-953.
    [191]Reznick D., Schultz E., Morey S., et al.. On the virtue of being the first born:the influent of date of birth on fitness the mosquitofish, Gambusia affinis[J]. OIKOS,2006,114:135-147.
    [192]Ricciardi, A.& Rasmussen, J. B. Extinction rates of North American freshwater fauna [J]. Conservation biology,1999,13(5):1220-1222.
    [193]Rice, J, A., Crowde, L. B., Binkowski, F. B. Evaluating potential source of mortality for larval bloater (Corengonus hoyi):starvation and vulnerability to predation. Canadaian Journal of Fisheries and Aquatic Science,1987,44:467-472.
    [194]Richards, S.J., Bull, C.M. Size-limited predation on tadpoles of three Australian frogs [J]. Copeia,1990, (4):1041-1046.
    [195]Rincon P. A., Correas A. M, Morcillo F., et al. Interaction between the introduced eastern mosquito fish and two autochthonous Spanish toothcarps [J]. Journal of Fish Biology,2002,61: 1560-1585.
    [196]Rixon C. A. M., Duggan I. C., Bergeron N. M. N., et al. Invasion risks posed by the aquarium trade and live fish markets on the Laurentian Great Lakes [J]. Biodiversity and Conservation, 2005,14:1365-1381.
    [197]Roark S. A., Andrews J. F., Guttman S. I. Population genetic structure of the western mosquitofish, Gambusia affinis, in a highly channelized portion of the San Antonio River in San Antonio, TX [J]. Ecotoxicology,2001,10:223-227.
    [198]Robbins L. W., Hartman G. D., Smith M. H. Dispersal, reproductive strategies, and the maintenance of genetic variability in mosquitofish (Gambusia affinis) [J]. Copeia,1987,1: 156-164.
    [195]Ross S. T. Mechanisms structuring stream fish assemblages:are there lessons from introduced species? [J]. Environmental Biology of fishes,1991,30:359-368.
    [196]Rose S. M. Population control in guppies [J]. American Midland Naturalist,1959,62(2): 474-481.
    [197]Sala O. E., Chapin F. S., Armesto J. J., et al. Global biodiversity scenarios for the year 2100 [J]. Science,2000,287:1770-1774.
    [198]Santi De A., Sovrano V. A., Bisazza A., et al. Mosquitofish display differential left-and right-eye use during mirror image scrutiny and predator inspection responses [J]. Animal behaviour,2001,61:305-310.
    [195]Schleier J. J., Sing S. E., Peterson R. K. D. Regional ecological risk assessment for the introduction of Gambusia affinis (western mosquitofish) into Montana watersheds [J]. Biological Invasions,2008,10(8):1277-1287.
    [196]Scribner K. T., Wooten M. C., Smith M.H., et al. Variation in life history and genetic traits of Hawaiian mosquitofish population [J]. Evolution,1992,47:632-646.
    [197]Segev O., Mangel M., Blaustein L. Deleterious effects by mosquitofish(Gambusia affinis) on the endangered fire salamander (Salamandra infraimmaculata) [J]. Animal Conservation,2008, 12:29-37.
    [198]Singh A. K. Impact of unauthorized exotic fish introduction on conservation and aquacultural development of the north east region [J]. Fish biodiversity of North-east India,2000, (2):155-156.
    [199]Smith C. C.& Sargent R. C. Female fitness declines with increasing female density but not male harassment in the western mosquitofish, Gambusia affinis [J]. Animal Behaviour,2006,71: 401-407.
    [200]Smith C. C. Independent effects of male and female density on sexual harassment, female fitness, and male competition for mates in the western mosquitofish Gambusia affinis [J]. Behavioral Ecology and Sociobiology,2007,61:1349-1358.
    [201]Smith G. R., Boyd A., Dayer C. B. Behavioral responses of American toad and bullfrog tadpoles to the presence of cues from the invasive fish, Gambusia affinis [J]. Biologcial invasion, 2008,10(5):182-193.
    [202]Smith M. W., Smith M H, Chesser R. K. Biochemical genetics of mosquitofish. I. environmental correlates, and temporal and spatial heterogeneity of allele frequencies within a river drainage [J]. Copeia,1983,1:182-193.
    [203]Smith M. E.& Belk M. C. Risk assessment in western mosquitofish(Gambusia affinis):do multiple cues have additive effects? [J]. Behavioral Ecology and Sociobiology,2001, 51:101-107.
    [204]Sokolov N. P.& Chvallva M. A. Nutrition of Gambusia affinis on the rice fields of Turkestan [J]. The Journal of Animal Ecology,1936,5(2):390-395.
    [205]Spencer C. C., Neigel J. E., Leberg P. L. Experimental evaluation of the usefulness of microsatellite DNA for detecting demographic bottlenecks [J]. Molecular Ecology,2000,9: 1517-1528.
    [206]Specziar A. Life history pattern and feeding ecology of the introduced eastern mosquitofish, Gambusia holbrooki, in a thermal spa under temperate climate, of Lake Heviz, Hungary [J]. Hydrobiologia,2004,522:249-260.
    [207]Stiassny M. L. J.& Raminosoa N. The fishes of the inland waters of Madagascar [A]. In: Teugels G. G., Guegan J. F., Albaret J. J. Biological Diversity of African Fresh and Brackish Water Fishes [C]. Geographical overviews, Symposium PARADI. Ann. Mus. R. Afr. Centr., Sci. Zool.,1994,275:133-149.
    [208]Staub B. P., Hopkins W. A., Novak J., et al. Respiratory and Reproductive Characteristics of Eastern Mosquitofish(Gambusia holbrooki) Inhabiting a Coal Ash Settling Basin [J]. Archves of Environmental Contamination and Toxicololgy,2004,46:96-101.
    [209]Stochwell C. A., Week S. C. Translocation and rapid evolutionary response in recently established population of western mosquitofish (Gambusia affinis) [J]. Animal Conservation, 1999,2:103-110.
    [210]Taniguchi Y., Fausch K. D., Nakano S. Size-structured interactions between native and introduced species:Can intraguild predation facilitate invasion by stream salmonids? [J]. Biological Invasions,2002,4:223-233.
    [211]Tew K. S., Han C. C., Chou W. R., et al. Habitat and fish fauna structure in a subtropical mountain stream in Taiwan before and after a catastrophic typhoon [J]. Environmental Biology of Fishes,2002,65(4):457-462.
    [212]Townsend C. R. Invasion biology and ecological impacts of brown trout (Salmo trutta) in New Zealand [J]. Biological Conservations,1996,78:13-22.
    [213]Tyler C. R.& Sumpter J. P. Oocyte growth and development in teleosts [J]. Review in Fish Biology and Fisheries,1996,6:287-318.
    [214]Vander Zanden M. J., Casselman J. M., Rasmussen J.B. Stable isotope evidence for the food web consequences of species invasions in lakes [J]. Nature,1999,401(6752):464-467.
    [215]Vitousek P. M., D'Antonio C. M., Loope L. L. Biological invasions as global environmental change [J]. American Scientists,1996,84:468-478.
    [216]Waples R. S. Sperm storage, multiple insemination, and genetic variability in mosquitofish:a reassessment [J]. Copeia,1987,4:1068-1071.
    [217]Ward D. L., Schultz A. A., Matson P. G. Differences in swimming ability and behavior in response to high water velocities among native and nonnative fishes [J]. Environmental Biology of Fishes,2003,68:87-92.
    [218]Webster M. M., Adams E. L., Laland K. N. Diet-specific chemical cues influence association preferences and prey patch use in a shoaling fish [J]. Animal Behavior,2008,76,17-23.
    [219]Weitzman S. H.& Chan L. L. Identification and relationships of Tanichthys albonubes and Aphyocypris poon, two Cyprinid fishes from China and Hong Kong [J]. Copeia,1966, (2): 285-296.
    [220]Welcomme R. L. International introductions of inland aquatic species [J]. FAO Fisheries Technical Paper,1988, (294):318.
    [221]Williamson M.& Fitter A. The varying success of invaders [J]. Ecology,1996,77:1661-1666.
    [222]Williamson M. Environmental risks from the release of genetically modified organisms (GMOs) the need for molecular ecology [J]. Molecular Ecology,1992,1:3-8.
    [223]Winemiller K. O.& Rose K. A. Why do most fish produce so many tiny offspring? The American Naturalist,1993,142(4):585-603.
    [224]Witte F., Goldschmidt T., Goudswaard P. C., et al. Species extinction and concomitant ecological changes in Lake Victoria [J]. Netherlands Journal of Zoology,1992,42:214-232.
    [225]Wooten M. C., Scribner K. T., Smith M. H. Genetic variability and systematics of Gambusia in the southeastern United States [J]. Copeia,1988, (2):283-289.
    [226]Wootton R. J. Effect of size of food ration on egg production in the female three-spined stickleback, Gasterosteus aculeatus L [J]. Journal of fish biology,1973,5:683-688.
    [227]Wootton R. J. Energy costs of egg production and environmental determinants of fecundity in teleost fishes. Symp. Zool. Soc. Lond.,1979,44:133-159.
    [228]Xie Y., Li Z. Y., Gregg W.P., et al. Invasive species in China-an overview [J]. Biodiversity and Conservation,2001,10:1317-1341.
    [229]Zane L., Nelson W. S., Jones A. G., et al. Microsatellite assessment of multiple paternity in natural population of a live-bearing fish, Gambusia holbrooki [J]. Journal of Evolution Biology, 1999,12:61-69.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700