用户名: 密码: 验证码:
营养盐加富、滤食性鱼类和浮游动物对水库浮游植物群落结构的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
营养盐和捕食者是影响浮游植物群落结构特征的关键因素。为了解南亚热带贫-中营养型水库水体中营养盐和捕食作用(鱼、浮游动物)对浮游植物群落结构的影响,本文于2008-2009年在流溪河水库进行围隔(85m3)实验,研究和分析了营养盐加富、鲢、鳙、透明薄皮溞对浮游植物群落结构的影响。
     于2008年4-6月进行围隔实验,设置营养盐加富(N、P)、营养盐加富+4g/m3鲢、对照处理组。其中营养盐以N/P(质量比)为10/1,分别按低(P为30μg/L)、中(P为60μg/L)、高(P为90μg/L)浓度形式添加。分析了营养盐加富和鲢对浮游植物群落结构的作用。结果表明营养盐加富和鲢都将导致透明度降低,且无鱼围隔组高于有鱼围隔组。有鱼围隔TN低于无鱼围隔组,TP则与此相反。营养盐加富和鲢使Chla浓度升高,且无鱼围隔组低于有鱼围隔组。营养盐加富使浮游植物种类多样性降低,鲢使浮游植物多样性增加。营养盐加富和鲢都使浮游植物总生物量明显升高,但其作用大小均受营养水平的影响。营养盐加富导致蓝藻、绿藻和隐藻生物量升高,而鲢则使蓝藻、绿藻、硅藻、隐藻生物量升高。蓝藻、硅藻、绿藻、隐藻生物量无鱼围隔组低于有鱼围隔组;金藻、甲藻生物量变化大小受营养水平的影响。实验期间出现了硅藻-绿藻-隐藻模式过渡期,但营养盐加富和鲢都均使浮游植物群落以甲藻-硅藻-绿藻型向绿藻-硅藻-蓝藻型模式演替,优势种向可食性差或具快速生长能力的种类演替。营养盐加富和鲢使浮游植物群落个体大小组成发生变化,其作用大小也均受营养水平影响。营养盐加富使组成浮游植物生物量的个体大型化,且使>30μm个体的相对生物量上升;鲢使组成浮游植物生物量的个体小型化,导致<10μm个体的相对生物量明显上升。这是由于无鱼围隔中主要受浮游动物(盔形溞)、有鱼围隔中主要受鲢的捕食压力,从而导致浮游植物产生不同的响应所致。营养盐和鱼的交互作用仅对浮游植物种类数和金藻丰度具有明显的作用,对衣藻数量变化也产生一定的影响。
     于2008年11-12月进行围隔实验,设置营养盐加富(N、P)、营养盐加富+3g/m3鳙、空白、3g/m3鳙对照处理组。其中营养盐以N/P(质量比)为10/1,分别按低(P为10μg/L)、中(P为30μg/L)、高(P为50μg/L)浓度形式添加。分析了营养盐加富和鳙对浮游植物群落结构的影响。结果表明营养盐加富和鳙导致透明度降低,但其作用大小与营养水平有关。有鱼围隔TN高于无鱼围隔组,TP与此相反。营养盐加富和鳙使Chla浓度升高,无鱼围隔低于有鱼围隔组。营养盐加富和鳙使浮游植物种类多样性升高,但有鱼围隔组较无鱼围隔组丰富。营养盐加富和鳙使浮游植物总生物量升高。营养盐加富导致甲藻、金藻生物量下降,而使绿藻、硅藻、蓝藻、隐藻生物量上升;鳙使绿藻、甲藻、金藻、隐藻生物量升高,而使硅藻、蓝藻生物量下降,但二者作用大小与营养水平有关。营养盐加富和鳙使浮游植物群落由硅藻-甲藻-金藻型向硅藻-绿藻-蓝藻型演替,优势种类向可食性差或生长速度快的种类演替。营养盐加富和鳙使组成浮游植物生物量个体大小变化,但作用大小均受营养水平影响。营养盐加富使组成浮游植物生物量的个体小型化;其中低营养水平条件下10-30μm个体相对生物量增加;中、高营养水平条件下<10μm和>30μm个体相对生物量上升。鳙在低营养水平条件下使组成浮游植物生物量的个体大型化,使>30μm个体相对生物量上升,而在中营养水平条件下使组成浮游植物生物量的个体小型化,使<30μm个体的相对生物量上升。这主要是由于无鱼围隔中浮游动物所受捕食压力较有鱼围隔中小,无鱼围隔中浮游植物主要受大型浮游动物(枝角类)和营养盐的影响,而有鱼围隔中浮游植物主要受小型浮游动物(轮虫)、营养盐和鳙影响所致。此外,营养盐和鱼的交互作用对浮游植物种类数,蓝藻、硅藻、甲藻、隐藻数量变化具有一定的作用。
     于2009年1-4月进行大型围隔实验,实验设置对照组、添加2.0 ind/m3透明薄皮溞组、添加1.1g/m3鳙组、添加2.0 ind/m3透明薄皮溞+1.1g/m3鳙组共四组处理。每个处理至少三个平行,共15个围隔。分析了透明薄皮溞和鳙对浮游植物群落结构的影响和作用。结果表明浮游植物种类多样性鳙+透明薄皮溞最高,有鱼围隔组高于无鱼围隔组,但透明薄皮涵和对照组相似。浮游植物总生物量鳙+透明薄皮溞最高,透明薄皮溞最低。鳙、透明薄皮溞+鳙将导致浮游植物生物量一定程度增加;透明薄皮溞的级联效应对蓝藻、硅藻、绿藻生物量具有一定的抑制作用,而对甲藻和金藻具有一定的促进作用。透明薄皮溞和鳙使浮游植物群落由硅藻-金藻-甲藻型向硅藻-绿藻-甲藻型演替,优势种类向可食性差或生长速度快的种类演替。透明薄皮溞和鳙使组成浮游植物生物量个体大型化。其中,鳙、透明薄皮溞+鳙导致>30μm个体相对生物量上升、<30μm个体的相对生物量下降;透明薄皮涵导致10-30μm个体相对生物量上升、>30μm和<10μm个体相对生物量下降。这可能因无鱼围隔主要受盔形溞的影响,而有鱼围隔主要受桡足类、轮虫和鳙级联效应的影响;透明薄皮溞对小型枝角类及轮虫进行捕食,导致对浮游植物的群落结构产生了不同的级联效应。
     上述结果表明,浮游植物群落结构受营养盐和捕食者双重效应的共同影响。营养盐和捕食者作用的大小受营养水平和捕食者种类、数量的影响。因此,充分了解和掌握不同捕食者在不同营养水平条件下的作用是进行水库水质改善和管理的关键。
It is now well recognized that nutrient and predation would play the key roles in phytoplankton structure and biomass, but most studies are conducted mainly in the temperate regions, less in the tropics and subtropics. In order to understand the trophic cascade effects of nutrient enrichment, filter-feeding fish and zooplankton on phytoplankton community in tropical and subtropical reservoirs, we performed three large enclousure experiments in Liuxihe Reservior, an oligo-mesotrophic reservoir, located in South China from 2008 to 2009. The enclosures were filled with about 85 m3 water from the reservoir. The trophic cascade effect of the nutrient enrichment, silver carp(Hypophthalmichthys molitrix,[val.]),bighead carp(Aristichthys nobilis) and Leptodora kindti on the phytoplankton community in the enclosure were examined and analysed.
     The first experiment was carried out with 21 large enclosures from April 24 to June 7,2008 (49 d,7weeks). It was designed with 7 treatments of nutrient enrichment and stocking silver carp. The experiment included 1)the nutrient additions of three different levels including low (P concentration 30μg/L) (LN), medium (P concentration 60μg/L)(MN) and high (P concentration 90μg/L)(HN)conditions, with a N/P(mass ratio) of 10/1 in all treatments;2)the above three levels of nutrient enrichment conditions with silver carp 4g/m3 stocked(LNF,MNF and HNF); 3)controls without nutrient enrichment and fish stocking(C). There were three replicates for each treatment. The response of phytoplankton to nutrient enrichment was analyzed through the nutrient added treatments and the controls. The trophic cascade effects of the filter-feeding fish on the phytoplankton were also investigated and analyzed between the only nutrient enriched treatments.The results showed that the Secchi disk depth in both nutrient enrichment treatments and silver carp+nutrient addition treatments descreased, and it was higher in the enclosures without fish than in the enclosures with fish. The total nitrogen(TN) in the water column decreased,while the total phosphorus(TP)increased with the presence of fish. Chlorophyll a concentration in nutrient enrichment with and without fish stocking increased, and it was higher in the enclosures stocked fish than the only nutrient addition. Nutrient enrichment resulted in a decrease in phytoplankton diversity, and fish stocking resulted in an increase. Nutrient enrichment and fish stocking both sustained high total phytoplankton biomass depending on nutrient concentrations. Responses of algal groups, such as Cyanobacteria, Chlorophyta and Cryptophyta, were similar in the nutrient enrichment enclosures with and without fish, but the biomass of diatoms (Bacillariophyta) increased solely in the nutrient enrichment with fish. Cyanobacteria, Bacillariophyta, Chlorophyta and Cryptophyta biomass was higher in the enclosures with fish than in the enclosures without fish, but Chrysophyta biomass and Dinophyta biomass were on the contrary. The structure of the phytoplankton community in the enclosures treatments with and without fish shifted from an initial dominance of Dinophyta-Bacillariophyta-Chlorophyta phytoplankton pattern to Bacillariophyta-Chlorophyta-Cryptophyta, and finally to Chlorophyta-Bacillariophyta-Cyanobacteria, while the dominant species shifted to inedible species or the species with rapid growth rate. The phytoplankton size structure and species composition in the enclosures of erichments with and without fish varied during the experiments, but the variability would depend on the nutrient concentrations. Nutrient enrichment only resulted in the dominance of large sized groups, especially increase in the relative biomass of>30μm fraction, while nutrient enrichment with fish reaulted in small size groups became dominant, especially increase in the relative biomass of<10μm fraction.These were because that the enclousure treatments only enrichment were mainly regulated by Daphnia geleata while the enclousure treatments enrichment with fish were regulated by silver carp and nutrient at the same time, so the trophic cascade would be different with the treatments.
     The second experiment was carried out in 21 large enclosures from December 26 to November 28,2008 (32d,5weeks). The experiment was designed with nutrient enrichment and bighead carp. The experiment included:1)the nutrient additions with three levels including low (P concentration 10μg/L)(LN), medium(P concentration 30μg/L)(MN) and high (P concentration 50μg/L)(HN)conditions, with a N/P(mass ratio) of 10/1 in all treatments; 2)the above nutrient enrichment conditions(LN and MN) with 3g/m3 bighead carp stocked(LNF and MNF); 3)controls without nutrient enrichment and fish stocked(C); 4) controls without nutrient enrichment but only with fish stocked(CF). There were three replicates for each treatment. The results showed that the Secchi disk depth in both nutrient enrichment treatments with and without fish stocking decreased, to the various extents regulated by the nutrient additon levels. Fish presence increased total nitrogen (TN) while decreased total phosphorus (TP). Chlorophyll a concentrations increased in nutrient enrichment treatments with and without fish, and it was higher in the enclosures with fish than in the only nutrient enrichments. Nutrient enrichment and stocking fish resulted in increase in phytoplankton diversity. And phytoplankton diversity was higher in the nutrient enrichment with stocking fish than in those with nutrient enrichment. Nutrient enrichment and stocking fish sustained high phytoplankton total biomass. Nutrient addition led to the increase of Chlorophyta,Bacillariophyta,Cyanobacteria and Cryptophyta,but the decrease of Dinophyta and Chrysophyta.On the other hand,addition of fish caused biomass increase of green algae, dinoflagellates,cryptophyta and chrysophytes,and decrease of diatoms and cyanobacteria,but the magnitude of the changes depended on the level of nutrients. The structure of the phytoplankton community in the treatment enclosures with and without fish stocking shifted from an initial pattern dominated by Bacillariophyta-Dinophyta-Chlorophyta to the final dominance of Bacillariophyta-Chlorophyta-Cyanobacteria, while the dominant species shifted to inedible species or the rapid-growing species. The phytoplankton size structure and community composition in the enrichments with and without fish stocking changed during the experiments, but the the extent depended on the nutrient concentration. Nutrient enrichment resulted in small size groups becoming dominant.Particulary,the low enrichments would increase the relative biomass of 10-30μm,while the medium and higher enrichments could increase the relative biomass in<10μm and >30μm fraction. Low enrichment with fish resulted in large size groups become dominant, especially increased the relative biomass in>30μm fraction, while in medium nutrient enrichments, smaller sized components become more dominant, especially cells of<30μm fraction. The predation pressure of zoophytoplankton to the phytoplankton was higher in the treatment enclosures without fish than the treatments enclosures with fish,sucn as the treatements without fish were mainly controlled by cladocear and nutrient,but the treatements with fish were mainly regulated by rotifera,bighead carp and nutrient,so theses would make the phytoplankton response different.
     The third experiment was carried out in 15 large enclosures from January 21 to April 17, 2009 (85 d). Leptodora kindti and bighead carp were used as predator treatments. The experiment included:1)the control (C).2) with 2.0 ind/m3 Leptodora kindti (L).3)with 1.1 g/m3 bighead carp (F).4) with 2.0 ind/m3 Leptodora kindti and 1.1 g/m3 bighead carp (LF). There are more than three replicates for each treatment. The response of phytoplankton to Leptodora kindti was analyzed through the Leptodora kindti added treatments and the other treatments. The trophic cascade effects of the filter-feeding fish on the phytoplankton were also investigated and analyzed between different treatments. Phytoplankton diversity in FL treatment was the hith3w5, and it was higher in the enclosures with fish than in the enclosures without fish, while the diversity in L and C treatments was similar. Total phytoplankton biomass was the most in FL, and was the least in the L treatment. Phytoplankton biomass increased in F and FL.Addition of Leptodora kindti would resulted in decrease in biomass of Cyanobacteria, Bacillariophyta, Chlorophyta, but improved Dionphyta and Chrysophyta biomass. The structure of the phytoplankton community in the enclosures treatments with Leptodora kindti and fish stocking shifted from an initial pattern with dominance of Bacillariophyta-Chrysophyta-Dinophyta to the final dominance of Bacillariophyta-Chlorophyta-Dinophyta, while the dominant species shifted to inedibile species or the species with fast-growing. The phytoplankton size structure and species composition in the enclosures with Leptodora kindti and bighead carp varied during the experiments, large sized groups became dominant. Fish stocking and Fish stocking+Leptodora kindti treatments would increase the relative biomass of>30μm fraction, and reduce the relative biomass of<30μm fraction. Leptodora kindti increased the relative biomass of 10-30μm fraction, but decreased the relative biomass of<10μm and>30μm fraction. Daphnia geleata in treatments without fish was more than treatments with fish,while copepods and rotifera were on the contrary. Leptodora kindti can prey rotifera and some small sized cladocera. So the different predation pressure would led to different trophic cascade to the phytoplankton.
     Our experiments indicated that phytoplankton community structures were regulated by both nutrients and predation. The interaction of nutrient and fish would also play a key role. However, the trophic cascade effects on phytoplankton community would mostly depend on the nutrient concentration, and the species and density of the predators. Consenquently, it is important to find out and understand the interaction between predators and nutrients.
引文
[1]Abrams P A and J D Roth. The effects of enrichment of three-species food chains with nonlinear functional responses[J]. Ecology,1994a,75:1118-1130.
    [2]Abrams P A and J D Roth. The responses of unstable food chains to enrichment[J]. Evolutionary Ecology, 1994b,8:150-171.
    [3]Acuna P, I Vila and V H Marin. Short-term responses of phytoplankton to nutrient enrichment and planktivorous fish predation in a temperate South American mesotrophic reservoir[J]. Hydrobiologia, 2008,600:131-138.
    [4]Alves-de-Souza C, M Menezes, V Huszar. Phytoplankton species composition and morphological functional groups in a tropical humic coastal lagoon, Brazil[J]. Acta Bot. Bras.2006,20:701-708.
    [5]Attayde J L and L-A Hansson. Effects of nutrient recycling by zooplankton and fish on phytoplankton communities [J]. Oecologia,1999,121:47-54.
    [6]Attayde J L.& R F Menezes. Effects of fish biomass and planktivore type on plankton communities[J]. J.Plankton Res.,2008,30:885-892.
    [7]Attayde J.L., L-A Hansson.Fish-mediated nutrient recycling and the trophic cascade in lakes[J]. Can. J. Fish.Aquat.Sci.,2001,58(10):1924-1931.
    [8]Beard S J, P A Davis, D R Iglesias, O M Skulberg, and A E Walsby. Gas vesicle genes in Planktothrix spp. from Nordic lakes:strains with weak gas vesicles possess a longer variant of gvpC[J]. Microbiology,2000,146:2009-2018.
    [9]Beisner B E. Herbivory in variable environments:an experimental test of the effects of vertical mixing and Daphnia on phytoplankton community structure, Can. J. Fish. Aquat.Sci.,2001,58 (7):1371-1379.
    [10]Benndorf J, W Boing, J Koop and I Neubauer. Top-down control of phytoplankton:the role of time scale, lake depth and trophic state[J]. Freshwater Biol.,2002,47:2282-2295.
    [11]Blomqvist P, A Pettersson and P Hyenstrand. Ammonium-nitrogen:a key regulatory factor causing dominance of non-nitrogen-fixing cyanobacteria in aquatic systems[J]. Arch. Hydrobiol.,1994,132: 141-164.
    [12]Boveri M B, R Quiros.Cascading trophic effects in pampean shallow lakes:results of a mesocosm experiment using two coexisting fish species with different feeding strategies[J].Hydrobiologia,2007,584:215-222.
    [13]Brett M T& C R Goldman.Consumer versus resource control in freshwater pelagic food webs[J]. Science,
    1997,275:384-386.
    [14]Brooks J L& S I Dodson. Predation, body size, and composition of plankton[J]. Science,1965, 150:28-35.
    [15]Campbell C E and R Knoechel. Distribution of vertebrate and invertebrate planktivores in Newfoundland lakes with evidence of predator-prey and competitive interactions[J]. Can.J. Zool.,1990,68:1559-1567.
    [16]Carpenter S R and J F Kitchell. Trophic cascade and biomanipulation:interface of research and management[J]. Limnol. Oceanogr,1992,37:208-213.
    [17]Carpenter S R, D L Christensen, J J Cole, K L Cottingham, X He, J R Hodgson et al. Biological control of eutrophication[J]. Environmental Science and Technology,1995,29:784-786.
    [18]Carpenter S R, J F Kitchell, J R Hodgson, P A Cochran, J J Elser, M M Elser et al. Regulation of lake primary productivity by food web structure[J]. Ecology,1985,68:1863-1876.
    [19]Carpenter S R, J F Kitchell& J R Hodgson.Cascading trophic interactions and lake productivity[J].Bioscience,1985,634-639.
    [20]Carpenter S R, J F Kitchell, K L Cottingham, D E Schindler,Christensen D L, D M Post& N Voichick. Chlorophyll variability, nutrient input and grazing:evidence from whole-lake experiments[J]. Ecology, 1996,77:725-735.
    [21]Casas B, M B Varela. A.Seasonal succession of phytoplankton species on the coast of A Coruna (Galicia, northwest Spain)[J]. Bol. Inst. Esp. Oceanography,1999,15:413-429.
    [22]Connell J. Diversity in tropical rain forest and coral reefs[J].Science,1978,199:1304-1310.
    [23]Cottingham K L., S R Carpenter and A L.S Amand.Responses of epilimnetic phytoplankton to experimental nutrient enrichment in three small seepage lakes[J]. J.Plankton Res.,1998,20(10):1889-1914,
    [24]Crawford D W and C Lindholm, T Lindholm.Some observations on vertical distribution and migration of the phototrophic ciliate Mesodinium rubrum(Myrionecta rubra) in a stratified brackish inlet[J]. Aquat. Microb. Ecol.,1997,13:267-274.
    [25]Cremer M C and R O Smitherman. Food habits and growth of silver and bighead carp in cages and ponds[J].Aquaculture,1980,20:57-64.
    [26]Crisman T, E J Phlips and J R Beaver. Zooplankton seasonality and trophic state relationships in Lake Okeechobee, Florida[J]. Arch. Hydrobiol. (Adv. Limnol.),1995,45:213-232.
    [27]Crisman T and J R Beaver. Applicability of planktonic biomanipulation for managing eutrophication in the subtropics[J]. Hydrobiologia,1990,200/201:177-185.
    [28]Dantas E W, N M Ariadne, C B-O Maria, J D T A Neto, A de D C. Cavalcanti.Temporal variation of the phytoplankton community at short sampling intervals in the Mundau reservoir, Northeastern Brazil.Acta Botanica Brasilica. http://www.scielo.br/scielo.php?pid=S0102-33062008000400008&script=sci_arttext.
    [29]Dantas M C and J L Attayde. Nitrogen and phosphorus content of some temperate and tropical freshwater fishes[J]. J. Fish Biol.,2008,70:100-108.
    [30]Datta S& B B Jana.Control of bloom in a tropical lake:grazing efficiency of some herbivorous fishes[J]. J.Fish Biol.,1998,53:12-24.
    [31]Diaz M M, F L Pedrozo. Nutrient limitation in Andean-Patagonian lakes at latitude 40-41°S[J]. Arch Hydrobiol,1996,138:123-143.
    [32]Dokulil M, K Teubner.Cyanobacterial dominance in lakes[J].Hydrobiologia,2000,438:1-12.
    [33]Domaizon I and J Devaux. Experimental study of the impacts of silver carp on plankton communities of eutrophic Villerest reservoir (France)[J]. Aquat. Ecol.,1999,33:193-204.
    [34]Domaizon I and J Devaux.Impact of moderate silver carp biomass gradient on zooplankton communities in a eutrophic reservoir. Consequences for the use of silver carp in biomanipulation[J]. Ecology,1999,322:621-628
    [35]Drenner R W& K D Hambright. Piscivores, trophic cascades, and lake management[J]. The Scientific World Journal,2002,2:284-307.
    [36]Drenner R W, K L Gallo, R M Baca& S J Durward. Synergistic effects of nutrient loading and omnivorous fish on phytoplankton biomass[J]. Can. J. Fish. Aquat. Sci.,1998,55:2087-2096.
    [37]Drenner R W, J R Mummert, F DeNoyelles Jr& D Kettle. Selective particle ingestion by a filter-feeding fish and its impact on phytoplankton community structure[J].Limnol. Oceanogr.,1984,29:941-948.
    [38]Drenner R W, J D Smith, J R Mummert& H F Lancaster. Responses of a eutrophic pond community to separate and combined effects of N:P supply and planktivorous fish:a mesocosm experiment[J]. Hydrobiologia,1990,208:161-167.
    [39]Drenner R W, S T Threlkeld and M D Mccracken. Experimental analysis of the direct and indirect effects of an omnivorous filter-feeding clupeid on plankton community structure[J]. Can. J. Fish. Aquat. Sci.,1986,43:1935-1945.
    [40]Droop M R. The nutrient status of algal cells in continuous culture. J. Mar. Biol. Ass.
    UK,1974,54:825-855.
    [41]Duarte C M,S Agustiand D E Canfield. Size plasticity of freshwater phytoplankton:implications for community structure[J]. Limnol. Oceanogr.,1990,35:1846-1851.
    [42]Duarte C M, S Agusti, D E Canfeld. Patterns in phytoplankton community structure in Florida lakes[J]. Limnol Oceanogr,1992,37:155-161.
    [43]Dumont H J. On the diversity of the Cladocera in the tropics[J]. Hydrobiologia,1994,272:27-38.
    [44]Edmondson W T. Eutrophication effects on the food chains of lakes:long-term studies[J]. Memoire dell'Istituto Italiano di Idrobiologia,1993,52:113-132.
    [45]Elser J J, E R Marzolf,& C R Goldman. Phosphorus and nitrogen limitation of phytoplankton growth in the fresh waters of North America:A review and critique of experimental enrichments[J]. Can. J. Fish. Aquat. Sci.,1990,47:1468-1477.
    [46]Elser J J and C R Goldman. Zooplankton effects on phytoplankton in lakes of contrasting trophic status[J]. Limnol Oceanogr.,1991,36:64-90.
    [47]Elser J J, N Goff, N A MacKay, A L St Amand, M M Elser and S R Carpenter. Species-specific algal responses to zooplankton:experimental and field observations in three nutrient-limited lakes[J]. J.Plankton Res.,1987,9:699-717.
    [48]Fernando C.H. Zooplankton, fish and fisheries in tropical freshwaters[J]. Hydrobiologia, 1994,272:105-123.
    [49]Figueredo C C and A Giani. Ecological interactions between Nile tilapia (Oreochromis niloticus, L.) and the phytoplanktonic community of the Furnas Reservoir (Brazil)[J]. Freshwat. Biol.,2005,50:1391-1403.
    [50]Findlay D L, R E Hecky, L L Hendzel, S P Stainton and G W Regehr. Relationship between N2-fixation and heterocyst abundance and its relevance to the nitrogen budget of lake 227[J]. Can. J. Fish. Aquat. Sci.,1994,51:2267-2273.
    [51]Fukushima M, N Takamura, L Sun, M Makangawa, K Matsushige, P Xie. Changes in the plankton community following introduction of filter-feeding planktivorous fish[J]. Freshwater Biol.1999,42: 719-735.
    [52]Gilbert. J.J. Suppression of rotifer populations by Daphnia:A review of the evidence, the mechanisms, and the effects on zooplankton community structure[J]. Limnol Oceanogr.,1988a.,33:1286-1303.
    [53]Gilbert. J.J. Susceptibilities of ten rotifer species to interference from Daphnia pulex[J].Ecology, 1988b.,69:1826-1838.
    [54]Giraud J P, J Sevrin-Reyssac and R Billart.La carpe argentee, Hypophthalmichthys molitrix[J]. La pisciculture Francaise d'eauvive et d'etang saumdtre et marine,1996,126:15-26.
    [55]Gligora M, P A Moraj,K K Andelka, G Istvan, P-P Danijela. The relationship between phytoplankton species dominance and environmental variables in a shallow lake (Lake Vrana, Croatia)[J]. Hydrobiologia,2007,584:337-346.
    [56]Gragnani A, M Scheffer and S Rinaldi. Top-down control of Cyanobacteria:a theoretical analysis. Am. Nat.,1999,153:59-72.
    [57]Griffiths D. The direct contribution of fish to lake phosphorus cycles[J]. Ecol. Freshwat. Fish,2006,15, 86-95.
    [58]Hairston N G, F E Smith& L B Slobodkin. Community structure, population control, and competition[J]. The American Naturalist,1960,94:421-425.
    [59]Hampl A, J Jirasek& D Sirotek. Growth morphology of the filtering apparatus of silver carp (Hypophthalmichthys molitrix Val.) II. microscopic anatomy. Aquaculture,1983,31:153-158.
    [60]Hansson L A, H Annadoter, E Bergman, S F Hamrin, E Jeppesen, T Kairesalo, et al. Biomanipulation as an application of food chain theory:Constraints, synthesis and recommendations for temperate lakes[J]. Ecosystems,1998,1:558-574.
    [61]Hansson L A, M Gyllstrom, A Stahl-Delbanco,M Svensson. Responses to fish predation and nutrients by plankton at different levels of taxonomic resolution[J]. Freshwater Biol.,2004,49:1538-1550.
    [62]Harris G P& A M Trimbee.Phytoplankton population dynamics of a small reservoir:physical/biological coupling and time scales of community change[J].J.Plankton Res.,1986,8:1011-1025.
    [63]Harris G. P. Temporal and spatial scales in phytoplankton ecology. Mechanisms, methods, models and management[J]. Can. J. Fish. Aquat. Sci.,1980,37:877-900.
    [64]Havens K E, A C Elia, M I Taticchi, R S FultonⅢ. Zooplankton-phytoplankton relationships in shallow subtropical versus temperate lakes Apopka (Florida,USA) and Trasimeno (Umbria,Italy). Hydrobiologia, DOI 10.1007/s10750-009-9754-4.
    [65]Hecky R E, P Kilham. Nutrient limitation of phytoplankton in freshwater and marine environments:A review of recent evidence on the effects of enrichment[J].Limnol. Oceanogr.,1988,33:196-822.
    [66]Hendrixson H A, R W Sterner and A D Kay. Elemental stoichiometry of freshwater fishes in relation to phylogeny, allometry and ecology [J]. J. Fish Biol.,2007,70:121-140.
    [67]Holmgren S K. Experimental lake fertilization in the Kuokkel area, northern Sweden; Phytoplankton
    biomass and algal composition in natural and fertilized subarctic lakes[J]. Int. Revue ges. Hydrobiol.,1984,69:781-817.
    [68]Hunt R& V F Matveev. The effects of nutrients and zooplankton community structure on phytoplankton growth in a subtropical Australian reservoir:An enclosure study[J]. Limnologica,2005,35:90-101.
    [69]Huszar V, L H S Silva, M Marinho, P Domingos,C L Sant'Anna. Cyanoprokaryote assemblages in eight productive tropical Brazilian waters[J]. Hydrobiologia,2000,424:67-77.
    [70]Hutchinson G E.The paradox of the plankton, Am. Nat,.1961,95:137-145.
    [71]Iglesias C, N Mazzeo, G Goyenola, C Fosalba, F T De Mello, S Garcia and E Jeppesen. Field and experimental evidence of the effect of Jenynsia multidentata, a small omnivorous-planktivorous fish, on the size distribution of zooplankton in subtropical lakes[J]. Freshw.Biol.,2008,53:1797-1807.
    [72]Jensen J P, E Jeppesen, K Olrik, P Kristensen. Impact of nutrients and physical factors on the shift from cyanobacterial to chlorophyte dominance in shallow Danish lakes[J]. Can. J. Fish. Aquat. Sci.,1994, 51:1692-1699.
    [73]Jeppesen E, J P Jensen, C Jensen, B Faafeng, P Brettum, D Hessen, et al. The impact of nutrient state and lake depth on top-down control in the pelagic zone of lakes:study of 466 lakes from the temperate zone to the Arctic[J]. Ecosystems,2003,6:313-325.
    [74]Jeppesen E, M Sondergaard, E Mortensen, P Kristensen, B Riemann, H J Jensen, et al. Fish manipulation as a lake restoration tool in shallow, eutrophic, temperate lakes.1. Cross-analysis of three Danish case studies[J]. Hydrobiologia,2000,200/201:205-218.
    [75]Jeppesen E, M S(?)ndergaard, J P Jensen,K Havens,O Anneville, L Carvalho, et al. Lake responses to reduced nutrient loading-an analysis of comtemporany data from 35 European and North American long term studies[J]. Freshw. Biol.,2005,50:1747-1771.
    [76]Jeppesen E, M Sondergaard, M Meerhoff, T L Lauridsen& J P Jensen. Shallow lake restoration by nutrient loading reduction-some recent findings and challenges ahead[J]. Hydrobiologia, 2007,584:239-252.
    [77]Jeppesen E, J P Jensen, and T L Lauridsen. Trophic dynamics in turbid and clearwater lakes with special emphasis on the role of zooplankton for water clarity [J]. Hydrobiologia,1999,408/409:217-231.
    [78]Kajak Z, J I Rybak, I Spodniewska and W A Godlewska-Lipowa. Influence of the planktivorous fish Hypophthalmichthys molitrixon (Val.) on the plankton and benthos of the eutrophic lake[J]. Pol. Arch. Hydrobiol.,1975,22:301-310.
    [79]Kalff J. Phosphorus limitation in some tropical African lakes[J]. Hybrobiologia,1983,100:101-112.
    [80]Ke Z X, P Xie, L G Guo. Impacts of two biomanipulation fishes stocked in a large pen on the plankton abundance and water quality during a period of phytoplankton seasonal succession[J]. Ecological Engineering,2009,35:1610-1618.
    [81]Ke Z X, Xie P and L G Guo. In situ study on effect of food competition on diet shifts and growth of silver and bighead carps in large biomanipulation fish pens in Meiliang Bay, Lake Taihu[J]. J. Appl. Ichthyol. 2008,24:263-268.
    [82]Kim H-S, S-J Hwang, J-K Shin, K-G An& C-G Yoon. Effects of limiting nutrients and N:P ratios on the phytoplankton growth in a shallow hypertrophic reservoir[J]. Hydrobiologia,2007,581:255-267.
    [83]Komarkova J and R Tavera, Steady state of phytoplankton assemblage in the tropical Lake Catemaco (Mexico)[J].Hydrobiologia,2003,502:187-196.
    [84]Komarkova J. Fish stock as a variable modifying trophic pattern of phytoplankton[J]. Hydrobiologia,1998, 369/370:139-152.
    [85]Kwang-Guk An, Lee Jae-Yon, K K Hema& S-J Lee, S-J Hwang, B-H Kim,et al.Control of Algal Scum Using Top-Down Biomanipulation Approaches and Ecosystem Health Assessments for Efficient Reservoir Management[J]. Water Air Soil Pollut,2010,205:3-24.
    [86]Laws E A and R S J Weisburd. Use of silver carp to control algal biomass in aquaculture ponds[J]. Prog. Fish Cult.1990,52:1-8.
    [87]Lazzaro X.Planktivores and plankton dynamics:effects of fish biomass and planktivore type[J]. Can J Fish Aquat Sci,1992,49:1466-1473,
    [88]Lazzaro X, M Bouvy, A Ribeiro-Filho, V S Oliviera, L T Sales, A R M Vasconcelos and M R Mata. Do fish regulate phytoplankton in shallow eutrophic Northeast Brazilian reservoirs[J]? Freshwat. Biol.,2003, 48:649-668.
    [89]Lazzaro X. Do the trophic cascade hypothesis and classical biomanipulation approaches apply to tropical lakes and reservoirs[J]? Verh. Int. Ver. Theor. Angew. Limnol.,1997,26:719-730.
    [90]Lazzaro X. A review of planktivorous fishes:their evolution, feeding behaviors, selectivities, and impacts[J].Hydrobiologia,1987,146,97-167.
    [91]Levine M A& S C Whalen. Nutrient limitation of phytoplankton production in Alaskan Arctic foothill lakes[J]. Hydrobiologia,2001,455:189-201.
    [92]W M Lewis. Surface/volume ratio:implications for phytoplankton morphology [J]. Science,1976,
    192:885-887.
    [93]Lieberman M D.Use of silver carp (Hypophthalmivhthys molitrix) and bighead carp(Aristichthys nobilis) for algae control in a small pond:changes in water quality[J]. J Fresh Ecol,1996,11:391-397.
    [94]Liu Z and A Herzig. Food and feeding behaviour of a zooplanktivorous cyprinid, Pelecus cultratus (L.), in a shallow eutrophic lake, Neusiedler See[J]. Hydrobiologia,1996,333:71-77.
    [95]Lunte C C&C Luecke.Trophic interactions of Leptodora in Lake Mendota[J].Limnol. Oceanogr.,1990, 35:1091-1100.
    [96]Lynch M and J Shapiro. Predation, enrichment,and phytoplankton community structure[J].Limnol. Oceanogr.,1981,26:86-102.
    [97]Ma H, F Y Cui, Z Q Liu, Z Q Fan, W J He, P J Yin. Effect of filter-feeding fish silver carp on phytoplankton species and size distribution in surface water:A field study in water works[J]. JEnviro Sci., 2010,22(2):161-167
    [98]Malone T C. Algal Size[M]. In:Morris I (eds.) The Physiological Ecology of Phytoplankton.Blackwell, 1980.
    [99]Manca M and D Ruggiu. Consequences of pelagic food-web changes during a long-term lake oligotrophication process[J]. Limnol. Oceanogr.,1998,43:1368-1373.
    [100]Margalef R. Life-forms of phytoplankton as survival alternatives in an unstable environment. Oceanol. Acta,1978,1:493-509.
    [101]Matveev V, L Matveeva& G J Jones.Relative impacts of Daphnia grazing and direct stimulation by fish on phytoplankton abundance in mesocosm communities[J]. Freshwat. Biol.,2000,44:375-385.
    [102]Mazumder A, D J McQueen, W D Taylor and D R S Lean. Effects of fertilisation and planktivirous fish (yellow perch) predation on size distribution of particulate phosphorus and assimilated phosphate:large enclosure experiments [J]. Limnol Oceanogr,1988,33,421-430.
    [103]Mazumder A. Patterns of algal biomass in dominant odd versus even-link food web[J]. Ecology, 1994,75:1141-1149.
    [104]McQueen D J, J R Post and E L Mills.Trophic relationships in freshwater pelagic ecosystems[J]. Can. J. Fish. Aquat.Sci.1986,43:1571-1581.
    [105]McQueen D J and D R S Lean. Influence of water temperature and nitrogen to phosphorus ratios on the dominance of blue-green algae in Lake St. George, Ontario[J].Can J Fish Aquat Sci.1987,44:598-604.
    [106]McQueen D.Manipulating lake community structure:where do we go from here[J]? Freshwater Biol.,1990,23:613-620.
    [107]Mehner T, J Benndorf, P Kasprzak and R Koschel.Biomanipulation of lake ecosystems:successful applications and expanding complexity in the underlying science[J]. Freshwater BioL,2002, 47:2453-2465.
    [108]Mehner T, M Diekmann, T Gonsiorczyk, P Kasprzak, R Koschel, L Krienitz,et al. Rapid recovery from eutrophication of a stratified lake by disruption of internal nutrient load[J]. Ecosystems,2008,11:1142-1156.
    [109]Menezes R F, J L Attayde and F F R Vasconcelos. Effects of omnivorous filter-feeding fish and nutrient enrichment on the plankton community and water transparency of a tropical reservoir[J]. Freshwat. Biol.,2010,55:767-779.
    [110]Danger M, L Gerard, K E Samba, E H Ndour, C Daniel and X Lazzar. Food-web structure and functioning of temperate and tropical lakes:A stoichiometric viewpoint[J]. Ann. Limnol.-Int. J. Lim.,2009,45:11-21.
    [111]Pace M L,& E Funke. Regulation of planktonic microbial communities by nutrient and herbivores[J].Ecology,1991,72:904-914.
    [112]Miura T.The effects of planktivorous fishes on the plankton community in a eutrophic lake[J]. Hydrobiologia,1990,200/201:567-579.
    [113]Morris D P& W M Lewis. Phytoplankton nutrient limitation in Colorado mountain lakes[J]. Freshwat. Biol.,1988,20(3):315-327.
    [114]Moss B, D Stephen, D M Balayla, E Becares, S E Collings, C Fernandez-Alaez,et al. Continental-scale patterns of nutrient and fish effects on shallow lakes:synthesis of a pan-European mesocosm experiment[J]. Freshw. Biol.,2004,49:1633-1649.
    [115]Mueller Christopher R, A G Eversole, H Turker, B E David. Effect of Silver Carp Hypophthalmichthys molitrix and Freshwater Mussel Elliptio complanata Filtration on the Phytoplankton Community of Partitioned Aquaculture System Units[J].Journal of the world aquaculture society,2004,35(3):372-382
    [116]Naselli-Flores L. Phytoplankton assemblages in twenty-one Sicilian reservoirs:relationships between species composition and environmental factors[J].Hydrobiologia,2000,424:1-11.
    [117]Negro A I, C D Hoyos, J C Vega. PhytoPlankton structure and dynamics in Lake Sanabria and Valparaiso reservoir (NW SPain) [J]. Hydrobiologia,2000,424:25-37.
    [118]Njuguna S.Nutrient-phytoplankton relationships in a tropical meromictic soda lak[J]. Hydrobiologia,1988,
    158:15-28.
    [119]Northcote T G. The role of fish in the structure and function of freshwater ecosystems:a'top-down' view[J]. Can. J. Fish. aquat.Sci.,1988,45:361-379.
    [120]ODonohue M H, W C Dennison. Phytoplankton productivity response to nutrient concentrations, light availability and temperature along an Australian estuarine gradient[J]. Estuaries,1997,20:521-533.
    [121]Okun N, J Brasil, Attayde J L and Costa I A S. Omnivory does not prevent trophic cascades in pelagic food webs[J]. Freshwat. Biol.,2008,53:129-138.
    [122]Olin M, M Rask, J Ruuhijarvi, J Keskitalo, J Horppila, P Tallberg, T Taponen, A Lehtovaara and I Sammalkorpi. Effects of biomanipulation on fish and plankton communities in ten eutrophic lakes of southern Finland[J]. Hydrobiologia,2006,553:67-88.
    [123]Opuszynski K and Shireman J V. Food habits, feeding behavior and impact of triploid bighead carp, Hypophthalmichthys nobilis, in experimental ponds[J]. J. Fish Biol.,1993,42:517-530.
    [124]Opuszynski K. Comparison of the usefulness of the silver carp and the bighead carp as additional fish in carp ponds[J]. Aquaculture,1981,25:223-233.
    [125]Pace M L, J J Cole, S R Carpenter, and J F Kitchell.Trophic cascades revealed in diverse ecosystems [J]. Trends Ecol. Evol.,1999,14:483-488.
    [126]Padisak J, E Soroczki-Pinter& Z Rezner. Sinking properties of some phytoplankton shapes and the relation of form resistance to morphological diversity of plankton-an experimental study [J]. Hydrobiologia,2003,500:243-25.
    [127]Padisak J and C S Reynolds. Selection of phytoplankton associations in Lake Balaton, Hungary, in response to eutrophication and restoration measures, with special reference to the cyanoprokaryotes[J]. Hydrobiologia,1998,384,41-53.
    [128]Padisak J, G Borics, I Grigorszky, E Soroczki-Pinter.Use of phytoplankton assemblages for monitoring ecological status of lakes within the Water Framework Directive:the assemblage index[J].Hydrobiologia,2006,553:1-14.
    [129]Paine R T. A note on trophic complexity and community stability[J]. Am. Nat.,1969,103:91-93.
    [130]Pechar L. Long-term changes in fish pond management as an unplanned ecosystem experiment: importance of zooplankton structure, nutrients and light for species composition of cyanobacterial blooms[J]. Wat. Sci. Technol.,1995,32:187-196.
    [131]Persson Anders, L A Hansson, C Bronmark, P Lundberg, L B Pettersson, L Greenberg, et al.Effects of Enrichment on Simple Aquatic Food Webs[J]. Am. Nat.,2001,157(6):654-669.
    [132]Pianka E R. On r and K selection[J]. Am. Nat.,1970,104:592-597.
    [134]Pollingher U,B Kaplan and D Scharf.Lake Kinneret phytoplankton:Response to N and P enrichments in experiments and in nature[J]. Hydrobiologia,1988,166:65-75.
    [135]Power M E and W J Matthews. Algae-grazing minnows (Campostoma anomalum), piscivorous bass (Micropterus spp.) and the distribution of attached algae in a prairie-margin stream, Oecologial983, 60:328-332.
    [136]Proulx M, F R Pick, A Mazumder, P B Hamilton and D R S Lean. Effects of nutrients and planktivorous fish on the phytoplankton of shallow and deep aquatic ecosystems[J]. Can. J. Fish. aquat.Sci.,1996,77:1556-1572.
    [137]Proulx M, F R Pick, Mazumder A,P B Hamilton and D R S Lean. Experimental evidence for interactive impacts of human activities on lake algal species richness[J]. Oikos,1996,76:191-195.
    [138]Proulx M and A Mazumder. Reversal of grazing impact on plant species richness in nutrient-poor versus nutrient-rich ecosystems [J]. Ecology,1998,79:2581-2592.
    [139]Queimalinos C P, B E Modenutti& E G Balseiro. Phytoplankton responses to experimental enhancement of grazing pressure and nutrient recycling in a small Andean lake[J].Freshwat. Biol.,1998,40:41-49.
    [140]Radke R J and U Kahl. Effects of a filter-feeding fish [silver carp, Hypophthalmichthys molitrixon (Val.)] on phyto-and zooplankton in a mesotrophic reservoir:results from an enclosure experiment[J]. Freshwater Biol.,2002,47:2337-2344.
    [141]Reynolds C S, Ecology of Phytoplankton[M].Cambridge University Press, Cambridge.2006.
    [142]Reynolds C S, Huszar V, Kruk C, Naselli-Flores L, Melo S. Towards a functional classification of the freshwater phytoplankton [J]. J Plankton Res,2002,24:417-428.
    [143]Reynolds C S, M T Dokulil& J Padisak.The trophic spectrum revisited[J].Hydrobiologia,2000, 424:1-152.
    [144]Reynolds C S. Functional morphology and the adaptive strategies of freshwater phytoplankton[M].In:Growth and Reproductive Strategies of Freshwater Phytoplankton-Sandgren C D, ed. Cambridge University Press,1988,pp388-433.
    [145]Reynolds C S. Phytoplankton periodicity:the interactions of form, function and environmental variability[J]. Freshwat. Biol.,1984,14(2):111-142
    [146]Rhee G Y. Continuous culture in phytoplankton ecology[M]. In:Droop MR, Jannaseh HW (eds) Adv Aq
    Microbiol 2 Acad Press NY,1980,pp150-203.
    [147]Romo S, R Miracle, M J Villena, J Rueda,C Ferriol and E Vicente. Mesocosm experiments on nutrient and fish effects on shallow lake food webs in a Mediterranean climate[J]. Freshw. Biol., 2004,49:1593-1607.
    [148]Romo S and V Maria-Jose. Phytoplankton strategies and diversity under different nutrient levels and planktivorous fish densities in a shallow Mediterranean lake[J]. J Plankton Res,2005,27(12):1273-1286.
    [149]Rondel C, R Arfi, C Daniel, Le B E H N Frederic Hadji and X Lazzaro.A cyanobacterial bloom prevents fish trophic cascades[J]. Freshwat. Biol.,2008,53:637-651.
    [150]Roozen F C J M, M Lurling, H Vlek, E A J V P Kraan, B W Ibelings and M Scheffer. Resuspension of algal cells by benthivorous fish boosts phytoplankton biomass and alters community structure in shallow lakes[J]. Freshwat. Biol.,2007,52:977-987.
    [151]Rudstam L G, R C Lathrop and S R Carpenter.The rise and fall of a dominant planktivore-direct and indirect effects on zooplankton[J]. Ecology,1993,74:303-319.
    [152]Sandgren C D. The ecology of chrysophyte flagellates:their growth and perennation strategies as freshwater phytoplankton[M].In:C. D. Sandgren (ed.), Growth and reproductive strategies of freshwater phytoplankton. Cambridge University Press,1988.pp9-104.
    [153]Sarnelle O and R A Knapp. Nutrient recycling by fish versus zooplankton grazing as drivers of the trophic cascade in alpine lakes[J]. Limnol. Oceanogr.,2005,50(6):2032-2042.
    [154]Sarnelle O. Nutrient enrichment and grazer effects on phytoplankton in lakes[J]. Ecology,1992,73:551-560.
    [155]Sarnelle O. Herbivore effects on phytoplankton succession in a eutrophic lake[J]. Ecol. Monogr.,1993, 63:129-149.
    [156]Schindler D E, J F Kitchell, X He, S R Carpenter, J R Hodgson and K L Cottingham.Food web structure and phosphorus cycling in lakes food-web structure and phosphorus cycling in lakes[J]. Trans. Am. Fish. Soc.,1993,122:756-772.
    [157]Schindler D E, S R Carpenter, K L Cottingham, X He, J R Hodgson, J F Kitchell,et al.Food web structure and littoral zone coupling to pelagic trophic cascades[M]. In:Polis GA, Winemiller KO (eds) Food webs:integration of patterns and dynamics. Chapman& Hall, New York,1996,96-105
    [158]Schindler D E. Factors regulating phytoplankton production and standing crop in the world's freshwaters[J]. Limnol. Oceanogr.,1978,23:478-486.
    [159]Schindler D W. Eutrophication and recovery in experimental lakes:Implications for lake management[J]. Science,1974,184:897-899.
    [160]Schindler D W. Evolution of phosphorus limitation in lakes[J]. Science,1977,195:260-262.
    [161]Schindler D W. Experimental studies of chemical stressors on whole lake ecosystems[M]. Verh. int. Ver. Limnol.,1988,23:11-41.
    [162]Sereda J M, J J Hudson, W D Taylor and E Demers. Fish as sources and sinks of nutrients in lakes[J]. Freshwat.Biol.,2008,53:278-289.
    [163]Shapiro J and D I Wright. Lake restoration by biomanipulation,Round Lake,Minnesota:the first two years[J].Fresh. Biol.,1984,14:371-383.
    [164]Smayda T J, C S Reynolds. Community assembly in marine phytoplankton; application of recent models to harmful dinoflagellate blooms[J]. J. Plankton Res.,2001,23:447-461.
    [165]Smith D W.The feeding selectivity of silver carp, Hypophthalmichthys molitrix[J]. J Fish Biol.,1989, 34:819-828.
    [166]Smith S M& Lee K D.Responses of periphyton to artificial nutrient enrichment in freshwater kettle ponds of Cape Cod National Seashore[J]. Hydrobiologia,2006,571:201-211.
    [167]Smith V H. Low nitrogen to phosphorus ratios favor dominance by blue-green algae in lake phytoplankton[J]. Science,1983,221:669-671.
    [168]Smith V H. The nitrogen and phosphorus dependence of algal biomass in lakes:An empirical and theoretical analysis[J].Limnol. Oceanogr.,1982,27:1101-1112.
    [169]Sommer U, J Padisak, C S Reynolds& P Juhasz-Nagy. Hutchinson's heritageA:the diversity-disturbance relationship in phytoplankton[J]. Hydrobiologia,1993,249:1-8.
    [170]Sommer U. Factors controlling the seasonal variation in phytoplankton species composition-A case study for a deep nutrient-rich lake[J]. Prog. Phycol. Res.,1987,5:124-178.
    [171]Sommer U. Phytoplankton succession in microcosm experiments under simultaneous grazing pressure and resource limitation[J]. Limnol. Gceanogr.,1988,33:1037-1054.
    [172]Sommer U. The role of r-and K-selection in the succession of phytoplankon in lake Constance[J]. Acta Oecol,1981,4:327-342.
    [173]Sosnovsky A, R Quiros. Effects of fish manipulation on the plankton community in small hypertrophic lakes from the Pampa Plain (Argentina)[J]. Limnologica,2009,39:219-229.
    [174]Sournia A. Form and function in marine phytoplankton[J].Biol Rev.,1982,57:347-394.
    [175]Spataru P, G W Wohlfarth and G Hulata. Studies on the natural food of different fish species in intensively manured polyculture ponds[J].Aquaculture,1983,35:283-398.
    [176]Spataru P and M Gophen.Feeding behaviour of silver carp Hypophthalmichthys molitrix Val. And its impact on the food web in lake Kinneret, Israel[J]. Hydrobiologia,1985,120:53-61.
    [177]Spataru P. Gut contents of silver car, Hypophthalmichthys molitrix (Val.) and some trophic relations to other fish species in a polyculture system[J]. Aquaculture,1977,11:137-146.
    [178]Starling F and A J A Rocha. Experimental study of the impacts of planktivorous fishes on plankton community and eutrophication of a tropical Brazilian reservoir[J].Hydrobiologia,1990,200/201:581-591.
    [179]Starling F, M Beveridge, X Lazzaro& D Baird. Silver carp biomass effects on the plankton community in Paranoa reservoir (Brazil) and an assessment of its potential for improving water quality in lacustrine environments[J]. Inte Rev Hydrobio.,1998,83:499-507
    [180]Starling F. Control of eutrophication by silver carp (Hypophthalmichthys molitrix) in the tropical Paranoa reservoir (Brasilia, Brazil):a mesocosm experiment[J].Hydrobiologia,1993,257:143-152.
    [181]Stephen D, D M Balayla, E Becares, S E Collings, C Fernandez-Alaez M Fernandez-Alaez et al..Continental-scale patterns of nutrient and fish effects on shallow lakes:introduction to a pan-European mesocosm experiment[J]. Fresh. Biol.,2004,49:1517-1524.
    [182]Sterner R W, J J Elser, D O Hessen.Stoichiometric relation-ships among producers, consumers and nutrient cycling in pelagic ecosystems [J]. Biogeochemistry,1992,17:49-67.
    [183]Sterner R W.The ratio of nitrogen to phosphorus resupplied by herbivores:zooplankton and the algal competitive arena[J]. Am Nat,1990,136:209-229.
    [184]Thompson P-A& G-Y Rhee. Phytoplankton responses to eutrophication.Arch Hydrobiol Beih.,Ergebn[J].Limnology.,1994,42:126-166.
    [185]Thornton K W,Kimmel B L and Payne F E.Reservoir Limnology,Ecological Perspectives[M].John Wiley & Sons, New York,1990.
    [186]Tilman D. Resource Competition and Community Structure[M]. Princeton University Press, New Jersey,1982.
    [187]Tilman D. Ecological competition between algae:Experimentalconfirmation of resource-based competition theory[J].Science,1976,192:463-465.
    [188]Tilman D. Resource competition between planktonic algae:an experimental and theoretical approach[J]. Ecology,1977,58:338-348.
    [189]Trifonova I S. Changes in community structure and productivity of phytoplankton as indicators of lake and reservoir eutrophication[J]. Arch. Hydrobiol. Beih.,1989:33,363-371.
    [190]Tucker C S. Low-density silver carp Hypophthalmichthys molitrix (Valenciennes) polyculture does not prevent cyanobacterial off-flavours in channel catfish Ictalurus punctatus (Rafinesque)[J]. Aquac. Res.,2006,37:209-214.
    [191]Van de Bund, W J, S Romo, M J Villena, M Valentin, E Vandonk, E Vicente et al. Responses of phytoplankton to fish predation and nutrient loading in shallow lakes:a pan-European mesocosm experiment[J]. Freshw. Biol.,2004,49:1608-1618.
    [192]Van Donk E, R D Gulati& M P Grimm.Food-web manipulation in Lake Zwemlust:positive and negative effects during the first two years[J].Hydrobiol.Bull.,1989,23:19-34.
    [193]Vanni M J, K K Arend, M T Bremigan, D B Brunnell, J E Garvey, M J Gonzalez, et al.Linking landscapes and food webs:effects of omnivorous fish and watersheds on reservoir ecosystems[J]. BioScience,2005,55:155-167.
    [194]Vanni M J, C Luecke, J F Kitchell, Y Allen, J Temte&J J Magnuson. Effects on lower trophic levels of massive fish mortality[J]. Nature,1990,344:333-335.
    [195]Vanni M J and D L Findlay.Trophic cascades and phytoplankton community structure[J]. Ecology,1990, 71,927-937.
    [196]Vanni M J and C D Layne. Nutrient recycling and herbivory as mechanisms in the "top-down" effect of fish on algae in lakes[J]. Ecology,1997,78:21-40.
    [197]Vanni M J, A M Bowling, E M Dickman, R S Hale, K A Higgins, M J Horgan, et al.Nutrient cycling by fish supports relatively more lake primary production as ecosystem productivity increase[J].Ecology,2006,87:1696-1709.
    [198]Vanni M J. Effects of food availability and fish predation on a zooplankton community [J]. Ecol. Monogr., 1987b,57:61-88.
    [199]Vanni M J. Effects of nutrients and zooplankton size on the structure of a phytoplankton community [J]. Ecology,1987a,68:624-635.
    [200]Vanni M J. Nutrient cycling by animals in fresh water ecosystems[J]. Annual Review of Ecology and Systematics,2002,33:341-370.
    [201]Vollenweider R A. Input-out put models with special reference to the phosphorus loading concept in limnology [J]. Schweiz. Z. Hydrol.,1975,37:53-84.
    [202]Voros L, I Oldal, M Presing, and K V-Balogh. Size-selective filtration and taxon-specific digestion of plankton algae by silver carp (Hypophthalmichthys molitrix Val)[J]. Hydrobiologia,1997,342/343: 223-228.
    [203]Walsby A E and C S Reynolds. Sinking and floating.In I.Morris[ed.],The physiological ecology of phytoplankton[M].Blackwell,1980.
    [204]Wang H J, X M Liang, P H Jiang, J Wang, S K Wu and H Z Wang.TN:TP ratio and planktivorous fish do not affect nutrient-chlorophyll relationships in shallow lakes[J]. Freshwater Biology,2008,53:935-944.
    [205]Wang X D, B Q Qin, G Gao and P W Hans. Nutrient enrichment and selective predation by zooplankton promote Microcystis (Cyanobacteria) bloom formation[J].Journal of Plankton Research,2010, 32(4):457-470
    [206]Watson S, E McCauley& J A Downing. Sigmoid relationships between Phophorus, Algal Biomass, and Algal Community Structure[J]. Can. J. Fish. Aquat. Sci.,1992,49:2605-2610.
    [207]Wehr J D& R G Sheath. Freshwater Algae of North America,Ecology and Classification[M]. Academic Press, New York,2003.
    [208]Wen Y H, R H Peters.Empirical models of phosphorus and nitrogen excretion rates by zooplankton[J]. Limnol Oceanogr,1994,39:1669-1679.
    [209]Wetzel R G. Limnology[M]. Academic Press, California,2001.
    [210]Xie P and J K Liu. Practical success of biomanipulation using filter-feeding fish to control cyanobacteria blooms:a synthesis of decades of research and application in a subtropical hypereutrophic lake[J].Sci. World,2001,1:337-356.
    [211]Xie P. Experimental studies on the role of planktivorous fishes in the elimination of Microcystis bloom from Donghu Lake using enclosure method[J]. Chin. J. Oceanol. Limnol.,1996,14:193-204.
    [212]Xie P. Gut contents of bighead carp(Aristichthys nobilis) and the processing and digestion of algal cells in the alimentary canal[J]Aquaculture,2001,195:149-161.
    [213]Xie Q L, P Xie, H J Tang. Enhancement of dissolved phosphorus release from sediment to lake water by Microcystis blooms-an enclosure experiment in a hyper-eutrophic, subtropical Chinese lake[J]. Environmental Pollution,2003,122:391-399.
    [214]Zhang X, P Xie, and X-P Huang. A Review of Nontraditional Biomanipulation[J]. The Journal ScientificWorld,2008,8:1184-1196.
    [215]Zhou Q, P Xie, J Xu, Z-X Ke, L-G Guo.Growth and food availability of silver and bighead carps: evidence from stable isotope and gut content analysis[J]. Aquaculture Research,2009,40:1616-1625.
    [216]陈少莲.东湖放养鲢、鳙鱼种的食性分析[J].水库渔业,1982,3:21-26.
    [217]郭玉洁,杨则禹.初级生产力见:刘瑞玉主编.胶州湾生态学和生物资源[M].北京:科学出版社,1992:110-125.
    [218]韩博平,李铁,林旭钿.广东省大中型水库富营养化现状与防治对策研究[M].北京:科技出版社,2003.
    [219]胡鸿钧,魏印心编著.《中国淡水藻类-系统、分类与生态》[M].北京:科学出版社.2006.
    [220]胡韧,雷腊梅,韩博平.南亚热带大型贫营养水库浮游植物群落结构与季节变化—以新丰江水库为例[J].生态学报,2008,28(10):4652-4664.
    [223]胡韧,林秋奇,王朝晖,韩博平.广东省典型水库浮游植物组成与分布特征[J].生态学报,2002,22(11):1939-1944
    [224]金相灿,屠清瑛.湖泊富营养化调查规范[M].北京:中国环境科学出版社.1990:138-239.
    [225]林国恩.流溪河水库氮磷营养盐动态与收支分析[D].暨南大学硕士论文.2009.
    [226]林秋奇,胡韧,段舜山,韩博平.广东省大中型供水水库浮游生物对水库营养状态的指示[J].生态学报,2003.23(6):1101-1108.
    [227]林秋奇.流溪河水库后生浮游动物多样性与群落结构的时空异质性[D].暨南大学博士论文.2007.
    [228]林少君,贺立静,黄沛生,韩博平.浮游植物中叶绿素a提取方法的比较与分析[J].生态科学,2005:24,9-11.
    [229]刘建康,谢平.用鲢鳙直接控制微囊藻水华的围隔实验和湖泊实践[J].生态科学,2003,22(3):193-196.
    [230]刘蕾,雷腊梅,韩博平.珠海地区小型抽水型与非抽水型水库的浮游植物群落结构变化.热带亚热带植物学报,2009,17(1):54-61.
    [231]欧阳昊.白鲢和尼罗罗非鱼混养养殖对热带水库富营养化及浮游植物群落结构的影响—大型围隔实验研究.暨南大学硕士学位论文[D].2007.
    [232]孙金辉.鲢、鳙对云龙湖水库水质影响的原位围隔实验及合理放养探讨.华中农业大学硕士学位论文[D].2006.
    [233]孙军,刘东艳,钱树本.浮游植物生物量研究:I.从浮游植物体积测定生物量[J].海洋学报,1999,21:75-85
    [235]王晓辉.以鱼类和浮床植物为核心的水质改善措施对热带水库浮游动物群落结构的影响:大型围隔实验研究[D].暨南大学博士论文.2009.
    [236]谢平.鲢、鳙与水华控制[M].北京:科学出版社,2003.
    [237]章宗涉,黄祥飞.淡水浮游植物研究方法[M].北京:科学出版社,1991.
    [238]张钰,谷孝鸿,何俊.太湖长刺溞对浮游植物摄食的生态学研究[J].湖泊科学,2008,20(1):100-104.
    [239]赵帅营.营养盐加富和鲢对南亚热带贫—中营养型水库浮游生物群落的影响:大型围隔实验[D].暨南大学博士学位论文.2009.
    [240]望甜,肖丽娟,韩博平.大型枝角类蚤状溞对小型热带湖泊浮游植物群落影响的研究[J].生态科学,2007,26(2):103-106.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700