用户名: 密码: 验证码:
中国明对虾丝氨酸蛋白酶、活性氧的产生与消除及其半胱氨酸蛋白酶研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国明对虾是重要的经济水产养殖物种,主要分布于黄海和渤海。最近对虾的养殖受到各种微生物的干扰,包括白斑综合症病毒,黄头病毒和陶拉病毒在内的比较严重的对虾病毒。和许多无脊椎动物一样,中国明对虾没有获得性免疫系统,只有先天免疫系统。先天免疫包括细胞免疫和体液免疫。细胞免疫主要有包被,吞噬和结节的形成。体液免疫则包括血液凝集,抗菌肽的合成和酚氧化酶原的活化。酚氧化酶原的活化可以导致黑色素的生成。在黑色素生成的同时,还会产生副产物活性氧自由基。吞噬作用,作为一种细胞免疫,主要由血细胞完成,在抵御外界微生物中起到重要的作用。血细胞可以产生活性氧自由基,例如超氧阴离子,羟自由基和过氧化氢,这些活性分子在感染的组织中含量很高,具有杀灭细菌的作用。因为高水平的活性氧对宿主的细胞产生毒害作用,有机体在长期的进化中,发展出了不同的策略,以减少活性氧自由基对机体的负面影响。在本论文中,我们主要关注的是对虾的丝氨酸蛋白酶,和酚氧化酶原的活化有关。我们还关注了对虾的硫氧还蛋白,谷胱甘肽过氧化物酶和谷胱甘肽转移酶和脂肪酸结合蛋白,在活性氧自由基的清除中起到重要的作用。另外,我们还研究了两个半胱氨酸蛋白酶,可能参与了对虾的先天免疫。
     一.中国明对虾丝氨酸蛋白酶及其同系物对弧菌的感染的免疫应答
     发夹结构域的丝氨酸蛋白酶和同系物参与了无脊椎动物的先天免疫,包括血淋巴凝集,抗菌肽合成,细胞黏附和黑化反应。模式识别受体识别病原相关分子模式,启动丝氨酸蛋白酶级联反应。我们从中国明对虾中克隆到了一个丝氨酸蛋白酶和一个该蛋白酶的同系物基因。丝氨酸蛋白酶和同系物都含有一个位于N-端的发夹结构域和羧基端的丝氨酸蛋白酶或者丝氨酸蛋白酶样结构域。与丝氨酸蛋白酶不同,同系物缺少了一个催化残基,丧失了催化功能。我们研究了这两个基因的组织分布,并研究了其在血细胞,肝胰腺和肠中受到弧菌刺激表达模式的变化。原位杂交结果显示,丝氨酸蛋白酶在鳃和血细胞中可以检测到阳性信号,在鳃中的信号主要来自于血细胞。在正常对虾中,丝氨酸蛋白酶同系物在蛋白水平上主要分布于鳃和胃中。免疫印迹显示,在鳃和胃中可以检测到丝氨酸蛋白酶的两条带。丝氨酸蛋白酶在正常对虾组织中有部分被活化,同系物在正常对虾中处于非活化状态,只有在受到弧菌刺激后,才部分被活化。我们的研究结果表明,中国明对虾的丝氨酸蛋白酶和其同系物可能在中国明对虾的先天免疫中起到定的作用。
     二.中国明对虾硒依赖的谷胱甘肽过氧化物酶和两个谷胱甘肽转移酶
     谷胱甘肽S-转移酶(GSTs)和谷胱甘肽过氧化物酶(GPxs)是细胞解毒系统的必要组分,可以防御活性氧自由基(ROSs)对机体造成的损伤。在中国明对虾中克隆到了两个谷胱甘肽转移酶基因,一个命名为FcMuGST,另一个命名为FcThetaGS。在中国明对虾中,还克隆到了一个硒谷胱甘肽过氧化物酶(Se-GPx)。多重序列比对显示,来自不同物种的谷胱甘肽过氧化物酶或者谷胱甘肽转移酶,对酶活性必须的氨基酸残基是保守的。用RT-PCR的方法研究了这三个基因的组织分布,和受到病原刺激的变化。结果显示,FcMuGST和]FcGPx转录本在受到弧菌感染后上调,FcThetaGST在转录水平上受到弧菌刺激后变化不大。在鳃中,GPx活性在受到弧菌刺激6h后上调,从6到12h维持在相对高的水平。在肝胰腺和肠中,总的GST活性受到细菌刺激后6h上调,从12到24h逐渐恢复到正常水平。这三个基因在解毒防御中起到重要的作用。FcMuGST主要负责清除因细菌刺激产生的ROS,而FcThetaGST负责内源有毒物质的清除。三.中国明对虾硫氧还蛋白在白斑综合症病毒感染后的变化
     硫氧还蛋白(TRX)参与细胞的氧还原调控,维持细胞蛋白处于还原状态。我们从中国明对虾中鉴定了一个硫氧还蛋白基因,命名为FcTRX。该基因全长含有777 bp核苷酸,包括一个60 bp 5’非翻译区(UTR),一个318 bp开放阅读框(ORF),编码105个氨基酸的蛋白,一个399 bp 3’UTR。FcTRX含有一个TRX结构域,在该结构域内,有一个保守的基序(CGPC)。SMART分析显示,该蛋白不含有信号肽。FcTRX的分子量和等电点分别为12 kDa和4.62。FcTRX是一个广泛分布的基因,其nRNA在血细胞,心,肝胰腺,鳃,胃和肠中可以检测到,在肝胰腺中表达水平最高,受到白斑病毒刺激12h后,在肝胰腺中表达水平降到最低。在鳃中,受白斑病毒刺激后6h,达到最高水平。免疫印迹结果显示,在肝胰腺中,FcTRX蛋白在受到白斑病毒刺激2到12 h下调,然后恢复到正常水平。在鳃中,从6到24 h,该蛋白逐渐升高。中国明对虾的硫氧还蛋白在抗白斑病毒中起到一定的作用。四.中国明对虾脂肪酸结合蛋白
     脂肪酸结合蛋白(FABP)参与了脂肪酸代谢。FABPs,属于脂质结合蛋白超家族,在脂肪酸代谢中发挥重要的作用,同时参与了脊椎动物的先天免疫。从中国明对虾的肝胰腺中克隆到了脂肪酸结合蛋白基因,命名为FcFABP,大小715bp,编码一个14 kDa蛋白。FcFABP是一个碱性脂肪酸结合蛋白,等电点为9.16。和脊椎动物,无脊椎动物的脂肪酸结合蛋白都有相似性。进化树分析显示,中国明对虾的脂肪酸结合蛋白和凡纳对虾的脂肪酸结合蛋白属于一个分支。FcFABP在肝胰腺中表达,受到白斑病毒刺激上调表达。但是,在受到弧菌刺激后却下调表达。重组表达的蛋白还具有细菌结合活性。我们的研究显示,该脂肪酸代谢相关的蛋白可能参与了对虾的先天免疫。五.中国明对虾两个半胱氨酸蛋白酶
     组织蛋白酶L (CathL) and legumain/天冬酰胺内肽酶(AEP)是两种半胱氨酸蛋白酶(CPs).在中国明对虾中克隆到了两个半胱氨酸蛋白酶基因,命名为,FcCathL和FcLegu。FcCathL蛋白含有一个信号肽,一个Inhibitor_I29结构域和一个Pept_C1结构域。FcLegu蛋白含有一个信号肽和一个Peptidase_C13结构域。FcCathL和FcLegu mRNA在正常对虾中,主要表达于肝胰腺中。FcCathL在胃和肠中受到弧菌刺激24h后也可以检测到。在白斑病毒刺激后12h对虾的肝胰腺中,FcCathL受上调表达。在受到弧菌刺激的肝胰腺中,与对照没有统计学上的差异。FcLegu mRNA在肝胰腺中受弧菌刺激下调。受到白斑病毒刺激后,FcLegu从2到6h,首先下调,然后从12到24h逐渐恢复。FcCathL蛋白在血细胞,肝胰腺,鳃,胃和肠中都可以检测到。免疫印迹显示,在某些组织中,可以检测到三条带,分别代表组织蛋白酶L的前体形式,单链形式和成熟的双链形式。在鳃中,还可以检测到另一条带。在胃中,只有在受到白斑病毒刺激24h后,才可以检测到组织蛋白酶L成熟的双链形式。在肠中,受白斑病毒或者弧菌刺激24h后都可以检测到双链形式。在血细胞中,只能检测到前体的酶,受到弧菌或者病毒刺激后,有所上调。在肠和鳃中,单链形式受弧菌和病毒上调。在胃中,只有在受到白斑病毒刺激后,单链形式上调。在所有检测的组织中,FcLegu蛋白都可以检测到。在肝胰腺中,只能检测到FcLegu蛋白的前体形式。在其它检测的组织中,只能检测到活性形式。在胃和鳃中,该蛋白受到弧菌和病毒刺激后下调。我们首次报道了中国明对虾的两个半胱氨酸蛋白酶在中国明对虾中可能的免疫防御功能
In China, Chinese white shrimp(Fenneropenaeus chinensis) was an economically important cultivation and was mainly distributed in Yellow and Bo sea. Recently, the cultivation of F. chinensis has been beset with serious problems linked to the viral outbreak such as white spot syndrome virus (WSSV), yellow head virus (YHV), and Taura syndrome virus (TSV), which have been regarded as the most serious shrimp viruses. Like most arthropods, shrimp relies on innate immunity. Innate immunity includes cellular and humoral responses. Cellular responses includes encapsulation, phagocytosis, and nodule formation while humoral responses include clotting, synthesis of antimicrobial peptides, and activation of the prophenoloxidase (proPO) system. Activation of proPO can induce the production of melanin. During the process of melanin synthesis, reactive oxygen species (ROS) is also produced as byproducts. Phagocytosis, as one of the cellular immunity, primarily by hemocytes, have important role in combating infection. Hemocytes kill invading bacteria through the production of large amounts of ROS, such as superoxide anion (02·-), hydroxyl radical (OH·) and hydrogen peroxide (H2O2), which become abundant in inflamed tissues following respiratory bursts in response to bacterial challenge. Because high levels of ROS can cause cytotoxicity to host cells, organisms have evolved different strategies for coping with the negative reactions of ROS. In this paper, we mainly focused on the shrimp serine proteases related to the proPO activation and we are also interesting in shrimp thioredoxin, GPx, GST and FABP, which function in the clearance of ROS. In addition, we study another two cystein protease, which may participation of shrimp innate immunity.
     1. Clip domain serine protease and its homolog respond to Vibrio challenge in Chinese white shrimp, Fenneropenaeus chinensis
     Clip domain serine proteases and their homologs are involved in invertebrate innate immunity, including hemolymph coagulation, antimicrobial peptide synthesis, cell adhesion, and melanization. Recognition of pathogens by pattern recognition receptors can trigger activation of a serine protease cascade. We report here the cDNA cloning of a serine protease (FcSP) and a serine protease homolog (FcSPH) from Chinese white shrimp, Fenneropenaeus chinensis. Both FcSP and FcSPH possess a clip domain at the N-terminal and an SP or SP-like domain at the C-terminal. In contrast to FcSP, FcSPH lacks a catalytic residue and is catalytically inactive. Tissue distribution and time course qRT-PCR analysis indicates that FcSP and FcSPH can respond to Vibrio anguillarum challenge in hemocytes, hepatopancreas and intestine. In situ hybridization analysis shows that FcSP is distributed in hemocytes and gills, and originated mainly from the hemocytes. FcSPH protein is expressed in gills and stomach of non-challenged shrimp. Its expression in gill mainly originates from the hemocytes in it. Two immunoreactive bands of FcSP can be detected in gills and stomach of non-challenged shrimp. FcSP protein is partially cleaved in non-challenged shrimp, while FcSPH protein is unprocessed in unchallenged shrimp and is partially cleaved after V. anguillarum challenge. Our results suggest that this Clip domain serine protease and its homolog may be involved in the serine protease cascade and play an important role in innate immunity of the shrimp.
     2. A selenium-dependent glutathione peroxidase (Se-GPx) and two glutathione S-transferases (GSTs) from Chinese shrimp(Fenneropenaeus chinensis)
     Glutathione S-transferases (GSTs) and glutathione peroxidases (GPxs) are essential components of cellular detoxification systems that defend cells against reactive oxygen species (ROSs). Two GSTgenes have recently been cloned from Fenneropenaeus chinensis and BLAST P analysis shows that one GST, designated FcMuGST, is similar to members of MuGST while the other has similarities to ThetaGST (FcThetaGST). A selenium dependent glutathione peroxidase (Se-GPx) has also been cloned from F. chinensis. The alignment of the deduced GST and GPx amino acid sequences with those from other species showed that the residues essential for enzymatic function of these three proteins are highly conserved. Tissue distribution and response to pathogens for the three genes was investigated by RT-PCR analysis, which showed that the transcript of FcMuGST and FcGPx increased in response to Vibrio anguillarum infection, while FcThetaGST showed little change at the transcript level. GPx activity in gill tissues quickly increased at 6 h after V. anguillarum challenge and maintained at a relatively high level from 6 h to 24 h. Total GST activity in hepatopancreas and intestines of the bacterial challenged shrimp was increased at 6 h, and gradually recovered from 12 and 24 h to the normal level. These three genes were all predicted to play an important role in detoxification defense reactions. FcMuGST primarily scavenges excess ROS produced after bacterial infection, while clearance of endogenous hydrophobic electrophile molecules was mainly dependent on activities of FcThetaGST.
     3. A thioredoxin response to the WSSV challenge on the Chinese white shrimp, Fenneropenaeus chinensis
     Thioredoxin (TRX) is involved in cell redox homeostasis. In addition, it is responsible for maintaining proteins in their reduced state. In our study, a Fenneropenaeus chinensis thioredoxin (FcTRX) gene was identified from the Chinese white shrimp. The full length of FcTRX was 777 bp, including a 60 bp 5'untranslated region (UTR), a 318 bp open reading frame (ORF) encoding a 105amino acids protein, and a 399 bp 3'UTR. FcTRX contained a TRX domain with a conserved motif of Cys-Gly-Pro-Cys (CGPC). No signal peptide was predicted by SMART analysis. The molecular mass and pI of FcTRX were 12 kDa and 4.62, respectively. FcTRX is awidely distributed gene, and its mRNA is detected in hemocytes, hearts, hepatopancreas, gills, stomach, and intestine from an unchallenged shrimp. The expression level of FcTRX was the highest in hepatopancreas, where it was down-regulated to the lowest level at 12 h white spot syndrome virus (WSSV) challenge. In the gills, itwent up to the highest level at 6 h. Western blot showed that FcTRX protein in hepatopancreas challengedwithWSSV was down-regulated from2 h to 12 h and then restored to the level similar to that of unchallenged shrimp at 24 h. In the gills challenged with WSSV, the FcTRX protein was up-regulated from 6 h to 24 h. Our research indicated its possible role in the anti-WSSV innate immunity of shrimps.
     4. A fatty acid binding protein (FcFABP) respond to microbial infection in Chinese white shrimp, Fenneropenaeus chinensis
     Fatty acid-binding protein (FABP) are involved in lipid metabolism. FABPs, members of the lipid-binding protein superfamily, play an important role in lipid metabolism and also participate in vertebrate innate immunity. A cDNA of FABP (FcFABP) cloned from the hepatopancreas of the shrimp was 715 bp in size and encoded a 14 kDa protein. FcFABP appeared to be a basic fatty acid binding protein with a predicted isoelectric point of 9.16. It showed sequence similarity to both vertebrate and invertebrate FABPs. Phylogenetic analysis showed that FcFABP, together with LvFABP, were clustered into one group. FcFABP was detected mainly in the hepatopancreas and expression level increased after a challenge with WSSV. FcFABP was down-regulated by V. anguillarum challenge. The protein also had bacterial binding activity. This lipid metabolism related proteins may play important roles in shrimp innate immunity.
     5. Two Cysteine Proteinases respond to Bacterial and WSSV Challenge in Chinese white shrimp Fenneropenaeus chinensis
     Cathepsin L (CathL) and legumain/asparaginyl endopeptidase (AEP) are two kinds of cysteine proteases (CPs). The cDNAs encoding CathL and legumain from Chinese white shrimp Fenneropenaeus chinensis (FcCathL, FcLegu) were obtained. FcCathL protein includes a signal peptide, an Inhibitor_I29 domain and a Pept_C1 domain. FcLegu protein has a signal peptide and a Peptidase_C13 domain. Both FcCathL and FcLegu mRNA were expressed mainly in the hepatopancreas of unchallenged shrimp. FcCathL was also detected in the stomach and intestine post 24 h Vibrio anguillarum challenge. Time-course analysis of FcCathL showed that FcCathL was up-regulated in the hepatopancreas of shrimp challenged with white spot syndrome virus (WSSV) at 12 h. There was no significant difference in the statistical analysis post Vibrio challenge. FcLegu mRNA in hepatopancreas was down-regulated by Vibrio. FcLegu transcript first declined from 2 h to 6 h and then recovered from 12 h to 24 h in hepatopancreas challenged with WSSV. FcCathL protein was detected in the hemocytes, hepatopancreas, gill, stomach, and intestine of unchallenged shrimp. Three bands of FcCathL protein detected in some tissues may represent preproenzyme, single chain and mature double chain form respectively. An additional band could be detected only in gills. Mature double chain of FcCathL could be detected in stomach only in shrimp challenged with WSSV for 24 h and in intestine post 24 challenge with V. anguillarum or WSSV. In hemocytes, only preproenzyme of FcCathL could be detected and it was up-regulated by Vibrio or WSSV. In intestine and gills, single chain of FcCathL was upregulated by Vibrio or WSSV. In stomach, FcCathL single chain was upregulated only by WSSV. FcLegu protein was detected in all detected tissues. In hepatopancreas, FcLegu was detected in the proenzyme form. In other tissues, only active form could be detected. The protein of FcLegu was down-regulated by Vibrio or WSSV challenge in the stomach and gills. FcCathL and FcLegu were proposed to play a role in shrimp innate immunity for the first time.
引文
Abele D., Puntarulo S. (2004) Formation of reactive species and induction of antioxidant defense systems in polar and temperate marine invertebrates and fish. Comp. Biochem. Physiol. A 138:405-415.
    Agianian B., Tucker P.A., Schouten A., Leonard K., Bullard B., Gros P. (2003) Structure of a Drosophila Sigma class glutathione S-transferase reveals a novel active site topography suited for lipid peroxidation products. J. Mol. Biol.326:151-165.
    Ahrens J.E., Mahoney P.A. (1998) Isolation and cloning of Ser4, a gene encoding a trypsin-like serine protease in Drosophila melanogaster. Biochim. Biophys. Acta.1395:141-4.
    Ai H.S., Huang Y.C., Li S.D., Weng S.P., Yu X.Q., He J.G.(2008) Characterization of a prophenoloxidase from hemocytes of the shrimp Litopenaeus vannamei that is down-regulated by white spot syndrome virus. Fish Shellfish Immunol.25:28-39.
    Aispuro-Hernandez E., Garcia-Orozco K.D., Muhlia-Almazan A., Del-Toro-Sanchez L. Robles-Sanchez R.M., Hernandez J., Gonzalez-Aguilar G., Yepiz-Plascencia G., Sotelo-Mundo R.R. (2008) Shrimp thioredoxin is a potent antioxidant protein. Comp. Biochem. Physiol. C Toxicol. Pharmacol.148:94-99.
    Akerman S.E., Muller S. (2003) 2-Cys peroxiredoxin PfTrx-Pxl is involved in the antioxidant defence of Plasmodium falciparum. Mol. Biochem. Parasitol.130:75-81.
    Alday-Sanz V., Roque A., Turnbull J.F. (2002) Clearing mechanisms of Vibrio vulnificus biotype I in the black tiger shrimp Penaeus monodon. Dis. Aquat. Org.48:91-99.
    Alim M.A., Tsuji N.,Miyoshi T., Islam M.K., Huang X.,Hatta T., Fujisaki K. (2008) H1Lgm2, a member of asparaginyl endopeptidases/legumains in the midgut of the ixodid tick Haemaphysalis longicornis, is involved in blood-meal digestion. J. Insect Physiol. 54:573-585.
    Almar M., Otero L., Santos C., Gonzalez Gallego J. (1998) Liver glutathione content and glutathione-dependent enzymes of two species of freshwater fish as bioindicators of chemical pollution. J. Environ. Sci. Health B 33:769-783.
    Altincicek B., Vilcinskas A. (2006) Metamorphosis and collagen-IV-fragments stimulate innate immune response in the greater wax moth, Galleria mellonella. Dev. Comp. Immunol. 30:1108-1118.
    Amparyup P., Charoensapsri W., Tassanakajon A. (2009) Two prophenoloxidases are important for the survival of Vibrio harveyi challenged shrimp Penaeus monodon. Dev. Comp. Immunol.33:247-56.
    Amparyup P., Charoensapsri W., Wiriyaukaradecha K., Tassanakajon A. (2010) A clip domain serine proteinase plays a role in antibacterial defense but is not required for prophenoloxidase activation in shrimp. Dec. Comp. Immunol.34:168-76.
    Amparyup P., Jitvaropas R., Pulsook N., Tassanakajon A. (2007) Molecular cloning, characterization and expression of a masquerade-like serine proteinase homologue from black tiger shrimp Penaeus monodon. Fish Shellfish Immunol.22:535-546.
    An C, Ishibashi J., Ragan E.J., Jiang H., Kanost M.R. (2010) Functions of Manduca sexta Hemolymph Proteinases HP6 and HP8 in Two Innate Immune Pathways. J Biol Chem 284:19716-26.
    Andersen J.F., Sanders D.A., Gasdaska J.R., Weichsel A., Powis G., Montfort W.R. (1997) Human Thioredoxin Homodimers:Regulation by pH, Role of Aspartate 60, and Crystal Structure of the Aspartate 60→Asparagine Mutant. Biochemistry 36:13979-13988.
    Anderson K.V. (1998) Pinning down positional information:dorsal-ventral polarity in the Drosophila embryo. Cell 95:439-42.
    Anderson K.V., Bokla L., Nusslein-Volhard C. (1985a) Establishment of dorsal-ventral polarity in the Drosophila embryo:the induction of polarity by the Toll gene product. Cell 42:791-798.
    Anderson K.V., Jurgens G., Nusslein-Volhard C. (1985b) Establishment of dorsal-ventral polarity in the Drosophila embryo:genetic studies on the role of the Toll gene product. Cell 42:779-789.
    Anderson R.S., Oliver L.M., Brubacher L.L. (1992) Superoxide anion generation by Crassostrea virginica hemocytes as measured by nitrotetrazolium reduction. J. Invert. Pathol.59:303-307.
    Arakane Y., Muthukrishnan S., Beeman R. W., Kanost M. R., Kramer K. J. (2005) Laccase 2 is the phenoloxidase gene required for beetle cuticle tanning. Proc Natl Acad Sci USA 102:11337-11342.
    Arner E.S., Holmgren A. (2000) Physiological functions of thioredoxin and thioredoxin reductase. Eur. J. Biochem.267:6102-6109.
    Arnold K., Bordoli L., Kopp J., Schwede T. (2006) The SWISS-MODEL Workspace:A
    web-based environment for protein structure homology modelling. Bioinformatics 22:195-201.
    Arts J.A., Cornelissen F.H.J., Cijsouw T., Hermsen T., Savelkoul H.F.J, Stet R.J.M. (2006) Molecular cloning and expression of a Toll receptor in the giant tiger shrimp, Penaeus monodon. Fish Shellfish Immunol.23:504-13.
    Aruoma O.I. (1998) Free radicals, oxidative tress, and antioxidants in human health and disease. J. Amer. Oil Chem. Soc.75:199-212.
    Asgian J.L., James K.E., Li Z.Z., Carter W., Barrett A.J., Mikolajczyk J., Salvesen G.S., Powers J.C. (2002) Aza-peptide epoxides:a new class of inhibitors selective for clan CD cysteine proteases. J. Med. Chem.45:4958-4960.
    Ashida M., Brey P.T. (1998) Recent advances on the research of the insect prophenoloxidase cascade. In:Brey P.T., Hultmark D. (Eds.) Molecular Mechanisms of Immune Responses in Insects. Chapman and Hall, London, pp.135-172.
    Ashida M., Brey P.T. (1995) Role of the integument in insect defense:pro-phenol oxidase cascade in the cuticlular matrix. Proc. Natl. Acad.Sci. USA 92:10698-10702.
    Ashida M., Yamazaki H.I. (1990) Biochemistry of the prophenoloxidase in insects:with special reference to its activation. In Molting and Metamorphosis, E. Ohnishi, and I. Ishizaki, eds. (Tokyo:Japan Science Society Press), pp.239-265.
    Aso Y., Kramer K. J., Hopkins T. L., Lookhart G. L. (1985) Characterization of hemolymph protyrosinase and a cuticular activator from Manduca sexta (L.). Insect Biochem 15:9-17.
    Aspan A., Hall M., Soderhall K. (1990) The effect of endogenous proteinase inhibitors on the prophenoloxidase activating enzyme, a serine proteinase from crayfish hemocytes. Insect Biochem. Mol. Biol.20:485-92.
    Aspan A., Huang T. S., Cerenius L., Soderhall K. (1995) cDNA cloning of prophenoloxidase from the freshwater crayfish Pacifastacus leniusculus and its activation. Proc. Natl. Acad. Sci. USA 92:939-943.
    Aumann K.D., Bedorf N., Brigelius-Flohe R., Schomburg D., Flohe L. (1997) Glutathione peroxidase revisited—simulation of the catalytic cycle by computer-assisted molecular modelling. Biomed. Environ. Sci.10:136-155.
    Bacano Maningas M.B., Koyama T., Kondo H., Hirono I., Aoki T. (2008) A peroxiredoxin from kuruma shrimp, Marsupenaeus japonicus, inhibited by peptidoglycan. Dev. Comp. Immunol. 32:198-203.
    Bai J., Cederbaum A.I. (2003) Catalas e protects HepG2 cells from apoptosis induced by DNA-damaging agents by accelerating the degradation of p53. J. Biol. Chem.278:4660-7.
    Barrett A.J., Rawlings N.D. (2001) Evolutionary lines of cysteine peptidases. Biol. Chem. 382:727-733.
    Bernlohr D.A., Simpson M.A., Hertzel A.V., Banaszak L.J. (1997) Intracellular lipid binding proteins and their genes. Annu. Rev. Nutr.17:277-303.
    Bianchini A., Monserrat J.M. (2007) Effects of methyl parathion on Chasmagnathus granulatus hepatopancreas:protective role of sesamol. Ecotoxicol. Environ. Saf.67:100-108.
    Bidla G., Dushay M. S., Theopold U. (2007) Crystal cell rupture after injury in Drosophila requires the JNK pathway, small GTPases and the TNF homolog Eiger. J. Cell Sci. 120:1209-1215.
    Biedermann W. (1898) Beitrage zur vergleichenden Pysiologie der Verdauung. I. Die Verdauung der Larve von Tenebrio molitor. Pfluger's Arch 72:105-162.
    Bjornstedt M., Xue J., Huang W., Akesson B., Holmgren A. (1994) The thioredoxin and glutaredoxin systems are efficient electron donors to human plasma glutathione peroxidase. J. Biol. Chem.269:29382-29384.
    Board P., Baker R.T., Chelvanayagam G., Jermiin L.S. (1997) Zeta, a novel class of glutathione transferases in a range of species from plants to humans. Biochem. J.328:929-935. Bogdan C., Rollinghoff M., Diefenbach A. (2000) Reactive oxygen and reactive nitrogen intermediates in innate and specific immunity. Curr. Opin. Immunol.12:64-76.
    Bond J.S., Beynon R.J. (1995) The astacin family of metalloendopeptidases. Protein Sci. 4:1247-61.
    Bork P., Beckmann G. (1993) The CUB domain. A widespread module in developmentally regulated proteins. J. Mol. Biol.231:539-545.
    Botos I., Meyer E., Nguyen M., Swanson S.M., Koomen J.M., Russell D.H., Meyer E.F. (2000) The structure of an insect chymotrypsin. J. Mol. Biol.298:895-901.
    Bradford M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem.72:248-254.
    Brigelius-Flohe R., Aumann K.D., Blocker H., Gross G., Kiess M., Kloppel K.D., Maiorino M., Roveri A., Schuckelt R., Usani F. (1994) Phospholipid-hydroperoxide glutathione peroxidase. Genomic DNA, cDNA, and deduced amino acid sequence. J. Biol. Chem.269:7342-8.
    Britton C., Murray L. (2004) Cathepsin L protease (CPL-1) is essential for yolk processing during embryogenesis in Caenorhabditis elegans. J. Cell Sci.117:5133-5143.
    Bromme D., Kaleta J. (2002) Thiol-dependent cathepsins:pathophysiological implications and recent advances in inhibitor design. Curr. Pharm. Des.8:1639-1658.
    Brophy P.M., Pritchard D.I. (1992) Immunity to helminths:ready to tip the biochemical Balance? Parasitol. Today 8:419-22.
    Buda E.S., Shafer T.H. (2005) Expression of a serine proteinase homolog prophenoloxidase-activating factor from the blue crab, Callinectes sapidus. Comp. Biochem. Physiol. B Biochem. Mol. Biol.140:521-31.
    Burmester T. (2001) Molecular evolution of the arthropod hemocyanin superfamily. Mol. Biol. Evol.18,184-195.
    Burmester T. (2002) Origin and evolution of arthropod hemocyanins and related proteins. J. Comp.Physiol.[B] 172:95-107.
    Callahan H.L., Crouch R.K., James E.R. (1988) Helminth anti-oxidant enzymes:a protective mechanism against host oxidants? Parasitol. Today 4:218-25.
    Carmona E., Dufour E., Plouffe C., Takebe S., Mason P., Mort J.S., Menard R. (1996) Potency and selectivity of the cathepsin L propeptide as an inhibitor of cysteine proteases. Biochemistry 35:8149-8157.
    Ceciliani F., Monaco H.L., Ronchi S., Faotto L., Spadon P. (1994) The primary structure of a basic (pI 9.0) fatty acid-binding protein from liver of Gallus domesticus. Comp. Biochem. Physiol B Biochem. Mol. Biol.109:261-71.
    Cerenius L., Soderhall K. (2004) The prophenoloxidase-activating system in invertebrates. Immunol. Rev.198:116-126.
    Chae H.Z., Chung S.J., Rhee S.G. (1994) Thioredoxin-dependent peroxide reductase from yeast. J. Biol. Chem.269:27670-8.
    Chae H.Z., Robison K., Poole L.B., Church G., Storz G., Rhee S.G. (1994) Cloning and sequencing of thiol-specific antioxidant from mammalian brain:alkyl hydroperoxide reductase and thiol-specific antioxidant define a large family of antioxidant enzymes. Proc. Natl. Acad. Sci. USA 91:7017-21.
    Chambers I., Frampton J., Goldfarb P., Affara N., McBain W., Harrison P.R. (1986) The structure of the mouse glutathione peroxidase gene:the selenocysteine in the active site is encoded by the'termination' codon, TGA. EMBO J.5:1221-1227.
    Chandrashekar R., Tsuji N., Morales T.H., Carmody A.B., Ozols V.O., Welton J., Tang L. (2000) Removal of hydrogen peroxide by a 1-cysteine peroxiredoxin enzyme of the filarial parasite Dirofilaria immitis. Parasitol. Res.86:200-6.
    Charoensapsri W., Amparyup P., Hirono I., Aoki T., Tassanakajon A. (2009) Gene silencing of a prophenoloxidase activating enzyme in the shrimp, Penaeus monodon, increases susceptibility to Vibrio harveyi infection. Dev. Comp. Immunol.33:811-820.
    Chen C. C., Chen C. S. (1995) Brugia pahangi:Effects of melanization on the uptake of nutrients by microfilariae in vitro. Exp. Parasitol.81:72-78.
    Cheng W., Liu C.H., Kuo C.M., Chen J.C. (2005) Dietary administration of sodium alginate enhances the immune ability of white shrimp Litopenaeus vannamei and its resistance against Vibrio alginolyticus. Fish Shellfish Immunol.18:1-12.
    Chen J.M., Fortunato M., Barrett A.J. (2000) Activation of human prolegumain by cleavage at a C-terminal asparagine residue. Biochem. J.352:327-334.
    Chiou T.T., Lu J.K.,Wu J.L., Chen T.T., Ko C.F., Chen J.C. (2007) Expression and characterisation of tiger shrimp Penaeus monodon penaeidin (mo-penaeidin) in various tissues, during early embryonic development and moulting stages. Dev. Comp. Immunol.31:132-42.
    Christensen B. M., Li J., Chen C. C., Nappi A. J. (2005) Melanization immune responses in mosquito vectors. Trends Parasitol.21:192-199.
    Christophides G.K., Zdobnov E., Barillas-Mury C., Birney E., Blandin S., Blass C., et al. (2002) Immunity-related genes and gene families in Anopheles gambiae. Science 298:159-165.
    Contreras-Vergara C.A., Harris-Valle C., Sotelo-Mundo R.R., Yepiz-Plascencia G., (2004) A mu-class glutathione S-transferase from the marine shrimp Litopenaeus vannamei:molecular cloning and active-site structural modeling. J. Biochem. Mol. Toxicol.18:245-252.
    Cookson E., Blaxter M.L., Selkirk M.E. (1992) Identification of the major soluble cuticular glycoprotein of lymphatic filarial nematode parasites (gp29) as a secretory homolog of glutathione peroxidase. Proc. Natl. Acad. Sci. USA 89:5837-41.
    Cristofoletti P.T., Ribeiro A.F., Terra W.R. (2005) The cathepsin L-like proteinases from the midgut of Tenebrio molitor larvae:sequence, properties, immunocytochemical localization and function. Insect Biochem. Mol. Biol.35:883-901.
    Cross A.R., Jones O.T. (1991) Enzymic mechanisms of superoxide production. Biochim. Biophys.
    Acta.1057:281-98.
    Dandapat J., Chainy G.B., Rao K.J. (2000) Dietary vitamin-E modulates antioxidant defence system in giant freshwater prawn, Macrobrachium rosenbergii. Comp. Biochem. Physiol. C Toxicol. Pharmacol.127:101-115.
    Decker H., Rimke T.(1998) Tarantula hemocyanin shows phenoloxidase activity. J. Biol. Chem. 273:25889-25892.
    Decker H., Terwilliger N. (2000) Cops and robbers:Putative evolution of copper oxygen-binding proteins. J. Exp. Biol.203:1777-1782.
    De Gregorio E., Han S. J., Lee W. J., Baek M. J., Osaki T., Kawabata S., Lee B. L., Iwanaga S., Lemaitre B., Brey P. T. (2002) An immune-responsive serpin regulates the melanization cascade in Drosophila. Dev. Cell 3:581-592.
    de la Vega E., Degnan B.M., Hall M.R., Wilson K.J. (2007) Differential expression of immune-related genes and transposable elements in black tiger shrimp(Penaeus monodon) exposed to a range of environmental stressors. Fish Shellfish Immunol.23:1072-88.
    de la Vega E., O'Leary N.A., Shockey J.E., Robalino J., Payne C., Browdy C.L., et al. (2008) Anti-lipopolysaccharide factor in Litopenaeus vannamei (LvALF):a broad spectrum antimicrobial peptide essential for shrimp immunity against bacterial and fungal infection. Mol. Immunol. 45:1916-25.
    de Lorgeril J., Saulnier D., Janech M.G., Gueguen Y., Bachere E. (2005) Identification of genes that are differentially expressed in hemocytes of the Pacific blue shrimp(Litopenaeus stylirostris) surviving an infection with Vibrio penaeicida. Physiol. Genomics 21:174-83.
    DeLotto Y., DeLotto R. (1998) Proteolytic processing of the Drosophila Spatzle protein by easter generates a dimeric NGF-like molecule with ventralising activity. Mech. Dev.72:141-148.
    Dhar A.K., Dettori A., Roux M.M., Klimpel K.R., Read B.(2003) Identification of differentially expressed genes in shrimp(Penaeus stylirostris) infected with white spot syndrome virus by cDNA microarrays. Arch. Virol.148:2381-96.
    Di Mascio P., Murphy M.E., Sies H. (1991) Antioxidant defense systems:the role of carotenoids, tocopherols, and thiols. Am. J. Clin. Nutr.53:194S-200S.
    Ding Y., Ortelli F., Rossiter L.C., Hemingway J., Ranson H. (2003) The Anopheles gambiae glutathione transferase supergene family:annotation, phylogeny and expression profiles. BMC Genomics 4:35.
    Di Pietro S.M., Dell'Angelica E.C., Schleicher C.H., Santome J.A. (1996) Purification and structural characterization of a fatty acid-binding protein from the liver of the catfish Rhamdia sapo. Comp. Biochem. Physiol. B Biochem. Mol. Biol.113:503-9.
    Di Pietro S.M.,Dell'Angelica E.C., Veerkamp J.H., Sterin-Spiziale N., Santome J.A. (1997) Amino acid sequence, binding properties and evolutionary relationships of the basic liver fatty-acid-binding protein from the catfish Rhamdia sapo. Eur. J. Biochem.249:510-7.
    Di Pietro S.M., Veerkamp J.H., Santome J.A. (1999) Isolation, amino acid sequence determination and binding properties of two fatty-acid binding proteins from axolotl(Ambistoma mexicanum) liver. Eur. J. Biochem.259:127-34.
    Dittmer N. T., Suderman R. J., Jiang H., Zhu Y. C., Gorman M. J., Kramer K. J., Kanost M. R. (2004) Characterization of cDNAs encoding putative laccase-like multicopper oxidases and developmental expression in the tobacco hornworm, Manduca sexta, and the malaria mosquito, Anopheles gambiae. Insect Biochem. Mol. Biol.34:29-41.
    Donpudsa S., Tassanakajon A., Rimphanitchayakit V. (2009) Domain inhibitory and bacteriostatic activities of the five-domain Kazal-type serine proteinase inhibitor from black tiger shrimp Penaeus monodon. Dev. Comp. Immunol.33:481-488.
    Doyen P., Bigot A., Vasseur P., Rodius F. (2008) Molecular cloning and expression study of pi-class glutathione S-transferase (pi-GST) and selenium-dependent glutathione peroxidase (Se-GPx) transcripts in the freshwater bivalve Dreissena polymorpha. Comp. Biochem. Physiol. C Toxicol. Pharmacol.147:69-77.
    Du X.J., Zhao X.F., Wang J.X. (2007) Molecular cloning and characterization of a
    lipopolysaccharide and beta-1,3-glucan binding protein from fleshy prawn(Fenneropenaeus
    chinensis). Mol. Immunol.44:1085-1094.
    Du Z.Q., Ren Q., Zhao X.F., Wang J.X. (2009) A double WAP domain (DWD)-containing protein with proteinase inhibitory activity in Chinese white shrimp, Fenneropenaeus chinensis. Comp. Biochem. Physiol. B Biochem. Mol. Biol.154:203-10.
    Eckelt V.H., Liebau E., Walter R.D., Henkle-Duhrsen K. (1998) Primary sequence and activity analyses of a catalase from Ascaris suum. Mol. Biochem. Parasitol.95:203-14.
    Ek B.A.,Cistola D.P., Hamilton J.A., Kaduce T.L., Spector A.A. (1997) Fatty acid binding
    proteins reduce 15-lipoxygenase-induced oxygenation of linoleic acid and arachidonic acid. Biochim. Biophys. Acta.1346:75-85.
    Elliott B.M., Elcombe C.R. (1987) Lack of DNA damage or lipid peroxidation measured in vivo
    in the rat liver following treatment with peroxisomal proliferators. Carcinogenesis 8:1213-1218.
    Elwing H., Nilsson L.A., Ouchterlony O. (1977) A precipitate adsorption on surface technique:a combination of immunodiffusion and thin-layer immunoassay. Int. Arch. Allergy Appl. Immunol.55:82-5.
    Esteves A., Ehrlich R. (2006) Invertebrate intracellular fatty acid binding proteins. Comp. Biochem. Physiol. C Toxicol. Pharmacol.2:262-74.
    Esworthy R.S., Baker M.A., Chu F.F. (1995) Expression of selenium-dependent glutathione peroxidase in human breast tumor cell lines. Cancer Res.55:957-962.
    Fagutao F.F., Koyama T., Kaizu A., Saito-Taki T., Kondo H., Aoki T., Hirono I. (2009) Increased bacterial load in shrimp hemolymph in the absence of prophenoloxidase. FEBS J.276: 5298-306.
    Fernandes A.P., Holmgren A. (2004) Glutaredoxins:glutathione-dependent redox enzymes with functions far beyond a simple thioredoxin backup system. Antioxid. Redox Signal 6:63-74.
    Fournier D., Bride J.M., Poirie M., Berge J.B., Plabb F.W. (1992) Insect glutathione S-transferases. Biochemical characteristics of the major forms from houseflies susceptible and resistant to insecticides. J. Biol. Chem.267:1840-1845.
    Fridovich I. (1995) Superoxide radical and superoxide dismutases. Annu. Rev. Biochem.64: 97-112.
    Friling R.S., Bergelson S., Daniel V. (1992) Two adjacent AP-1-like binding sites form the electrophile-responsive element of the murine glutathione S-transferase Ya subunit gene. Proc. Natl. Acad. Sci. U. S. A.89:668-672.
    Fujimoto K., Okino N., Kawabata S., Iwanaga S., Ohnishi E. (1995) Nucleotide sequence of the cDNA encoding the proenzyme of phenol oxidase Al of Drosophila melanogaster. Proc. Natl. Acad. Sci.USA 92:7769-7773.
    Gao H., Li F., Dong B., Zhang Q., Xiang J. (2009) Molecular cloning and characterisation of prophenoloxidase (ProPO) cDNA from Fenneropenaeus chinensis and its transcription injected by Vibrio anguillarum. Mol. Biol. Rep.36:1159-66.
    Gao K., Zhang S. (2009) Ovochymase in amphioxus Branchiostoma belcheri is an ovary-specific trypsin-serine protease with an antibacterial activity. Dev. Comp. Immunol.33:1219-28.
    Gettins P. G. (2002) Serpin structure, mechanism, and function. Chem. Rev.102:4751-4804.
    Ghosh A., Edwards M. J., Jacobs-Lorena M. (2000) The journey of the malaria parasite in the mosquito:hopes for the new century. Parasitol. Today 16:196-201.
    Gilberger T.W., Bergmann B., Walter R.D., Muller S.(1998) The role of the C-terminus for catalysis of the large thioredoxin reductase from Plasmodium falciparum. FEBS Lett.425: 407-410.
    Gladyshev V.N., Krause M., Xu X.M., Korotkov K.V., Kryukov G.V., Sun Q.A. et al. (1999) Selenocysteine-containing thioredoxin reductase in C. elegans. Biochem. Biophys. Res. Commun.259:244-249.
    Gobert V., Gottar M., Matskevich A.A., Rutschmann S., Royet J., Belvin M., Hoffmann J.A., Ferrandon D. (2003) Dual activation of the Drosophila toll pathway by two pattern recognition receptors. Science 302:2126-2130.
    Gomez-Anduro G.A., Barillas-Mury C.V., Peregrino-Uriarte A.B., Gupta L., Gollas-Galvan T., Hernandez-Lopez J., Yepiz-Plascencia G. (2006) The cytosolic manganese superoxide dismutase from the shrimp Litopenaeus vannamei:molecular cloning and expression. Dev. Como. Immunol 30:893-900.
    Goodall C.P., Bender R.C., Broderick E.J., Bayne C.J. (2004) Constitutive differences in Cu/Zn superoxide dismutase mRNA levels and activity in hemocytes of Biomphalaria glabrata (Mollusca) that are either susceptible or resistant to Schistosoma mansoni (Trematoda). Mol. Biochem. Parasitol.137:321-8.
    Gorman M.J., Paskewitz S.M. (2001) Serine proteases as mediators of mosquito immune responses. Insect Biochem. Mol. Biol.31:257-62.
    Gorman M. J., Wang Y., Jiang H., Kanost M. R. (2007) Manduca sexta hemolymph proteinase 21 activates prophenoloxidase-activating proteinase 3 in an insect innate immune response proteinase cascade. J. Biol. Chem.282:11742-11749.
    Griesch J., Wedde M., Vilcinskas A. (2000) Recognition and regulation of metalloproteinase activity in the haemolymph of Galleria mellonella:a new pathway mediating induction of humoral immune responses. Insect Biochem. Mol. Biol.30:461-72.
    Gross P.S., Bartlett C.L., Browdy C.L., Chapman R.W., Warr G.W. (2001) Immune gene discovery by expressed sequence tag analysis of hemocytes and hepatopancreas in the Pacitic White Shrimp, Litopenaeus vannamei, and the Atlantic White Shrimp, L. setiferus. Dev. Comp. Immunol.25:565-77.
    Guex N., Peitsch M.C. (1997) SWISS-MODEL and the Swiss-PdbViewer:An environment for
    comparative protein modelling. Electrophoresis 18:2714-2723.
    Guiliano D.B., Hong X., McKerrow J.H., Blaxter M.L., Oksov Y., Liu J., Ghedin E., Lustigman S. (2004) A gene family of cathepsin L-like proteases of filarial nematodes are associated with larval molting and cuticle and eggshell remodeling. Mol. Biochem. Parasitol.136:227-242.
    Gutteridge J.M., Halliwell B. (2000) Free radicals and antioxidants in the year 2000. A historical look to the future. Ann. N. Y. Acad. Sci.899:136-147.
    Habig W.H., Pabst M.J., Jackoby W.B.C. (1974) Glutathione-S-transferases:the first enzymatic step in mercapturic acid formation. J. Biol. Chem.249:7130-7139.
    Ha E.M., Oh C.T.,Bae Y.S., Lee W.J. (2005a) A direct role for dual oxidase in Drosophila gut immunity. Science 310:847-850.
    Ha E.M., Oh C.T., Ryu J.H., Bae Y.S., Kang S.W., Jang I.H., Brey P.T., Lee W.J. (2005b) An antioxidant system required for host protection against gut infection in Drosophila. Dev. Cell 8:125-132.
    Hahn U.K., Bender R.C., Bayne C.J. (2001) Killing of Schistosoma mansoni sporocysts by hemocytes from resistant Biomphalaria glabrata:role of reactive oxygen species. J. Parasitol. 87:292-9.
    Hall M., Scott T., Sugumaran M., Soderhall K., Law J. H. (1995) Proenzyme of Manduca sexta phenol oxidase:Purification, activation, substrate specificity of the active enzyme, and molecular cloning. Proc. Natl. Acad. Sci. USA 92:7764-7768.
    Han-Ching Wang K.,Tseng C.W., Lin H.Y., Chen I.T., Chen Y.H., Chen Y.M., Chen T.Y., Yang H.L. (2010) RNAi knock-down of the Litopenaeus vannamei Toll gene (LvToll) significantly increases mortality and reduces bacterial clearance after challenge with Vibrio harveyi. Dev. Comp. Immunol.34:49-58.
    Han F., Zhang X. (2007) Characterization of a ras-related nuclear protein (Ran protein) up-regulated in shrimp antiviral immunity. Fish Shellfish Immunol.23:937-44.
    Hara-Nishimura I., Inoue K., Nishimura M. (1991) A unique vacuolar processing enzyme responsible for conversion of several proprotein precursors into the mature forms. FEBS Lett.294:89-93.
    Hartley B.S. (1964) Amino acid sequence of bovine chymotrypsinogen. Nature 201:1284-7.
    Hashimoto C., Hudson K.L., Anderson K.V. (1988) The Toll gene of Drosophila, required for dorsal-ventral embryonic polarity, appears to encode a transmembrane protein. Cell 52:269-279.
    Hazelton G.A., Laing C.A. (1983) Glutathione S-transferase activities in the yellow-fever mosquito [Aedes aegypti (Loisville)] during growth and aging. Biochem. J.210:281-287.
    He N., Liu H., Xu X. (2004) Identification of genes involved in the response of haemocytes of Penaeus japonicus by suppression subtractive hybridization (SSH) following microbial challenge. Fish Shellfish Immunol.17:121-8.
    He N., Qin Q., Xu X. (2005) Differential profile of genes expressed in hemocytes of White Spot Syndrome Virus-resistant shrimp(Penaeus japonicus) by combining suppression subtractive hybridization and differential hybridization. Antiviral Res.66:39-45.
    Hertu C., Hoffmann D., Bulet P. (1998) Antimicrobial peptides from insects. In Molecular Mechanisms of Immune Responses in Insects, Brey PT, Hultmark D (eds) pp 40-66. London: Chapman & Hall
    Hirota K., Matsui M., Iwata S., Nishiyama A., Mori K., Yodoi J. (1997) AP-ltranscriptional activity is regulated by a direct association between thioredoxin and Ref-1. Proc. Natl. Acad. Sci. U. S. A.94:3633-3638.
    Hirota K., Nakamura H., Masutani H., Yodoi J. (2002) Thioredoxin superfamily and thioredoxin-inducing agents. Ann. N. Y. Acad. Sci.957:189-199.
    Hoffmann A., Subramaniam S., David M., Rosenfeld M.G. et al. (2005) Molecular determinants of crosstalk between nuclear receptors and Toll-like receptors. Cell 122:707-721.
    Hofmann B., Hecht H.J., Flohe L. (2002) Peroxiredoxins. Bil.Chem.383:347-364.
    Holmblad T., Soderhall K. (1999) Cell adhesion molecules and antioxidative enzymes in a crustacean, possible role in immunity. Aquaculture 172:111-123.
    Holmgren A. (1985) Thioredoxin. Annu. Rev.Biochem.54:237-271.
    Holmgren A. (2000) Antioxidant function of thioredoxin and glutaredoxin. Antioxid. Redox Signal 2:811-820.
    Holmgren A., Johansson C., Berndt C., Lonn M.E., Hudemann C., Lillig C.H. (2005) Thiol redox control via thioredoxin and glutaredoxin systems. Biochem. Soc. Trans.33:1375-1377.
    Holt R.A., Subramanian G.M., Halpern A., Sutton G.G., Charlab R., Nusskern D.R., et al. (2002) The genome sequence of the malaria mosquito Anopheles gambiae. Science 298:129-149.
    Huang T.S.,Wang H., Lee S.Y., Johansson M.W., Soderhall K., Cerenius L. (2000) A cell adhesion protein from the crayfish Pacifastacus leniusculus, a serine proteinase homologue similar to Drosophila masquerade. J. Biol. Chem.275:9996-10001.
    Huang X.D., Yin Z.X., Jia X.T., Liang J.P.,Ai U.S., Yang L.S., Liu X., Wang P.H., Li S.D., Weng S.P., Yu X.Q., He J.G. (2010) Identification and functional study of a shrimp Dorsal homologue. Dev. Comp. Immunol.34:107-13.
    Hu K.J., Leung P.C. (2007) Food digestion by cathepsin L and digestion-related rapid cell differentiation in shrimp hepatopancreas. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 146:69-80.
    Hultmark D. (2003) Drosophila immunity:paths and patterns. Curr. Opin. Immunol.15:12-19.
    Imlay J.A. (2003) Pathways of oxidative damage. Annu. Rev. Microbial.57:395-418.
    Iwanaga S., Kawabata S., Muta T. (1992) New types of clotting factors and defense molecules found in horseshoe crab hemolymph:their structures and functions. J. Biochem.123:1-15.
    Iwanaga S., Lee B.L. (2005) Recent advances in the innate immunity of invertebrate animals. J. Biochem. Mol. Biol.38:128-150.
    James E.R. (1994) Superoxide dismutase. Parasitol. Today 10:481-4.
    Jang I.H., Nam H.J., Lee W.J. (2008) CLIP-domain serine proteases in Drosophila innate immunity. BMB Rep.41:102-7.
    Jiang H.B., Kanost M.R. (2000) The clip-domain family of serine protease in arthropods. Insect Biochem. Mol. Biol.30:95-105.
    Jiang H., Wang Y., Gu Y., Guo X., Zou Z., Scholz E., Trenczek T.E., Kanost M.R. (2005) Molecular identification of a bevy of serine proteinases in Manduca sexta hemolymph. Insect Biochem. Mol. Biol.35:931-43.
    Jiang H., Wang Y., Yu X. Q., Zhu Y., Kanost M. (2003b) Prophenoloxidase-activating proteinase-3 (PAP-3) from Manduca sexta hemolymph:A clip-domain serine proteinase regulated by serpin-1J and serine proteinase homologs. Insect Biochem. Mol. Biol.33: 1049-1060.
    Jiang N., Tan N.S., Ho B., Ding J.L. (2007) Respiratory protein-generated reactive oxygen species as an antimicrobial strategy. Nat. Immunol.8:1114-22.
    Jiang R., Kim E.H., Gong J.H., Kwon H.M., Kim C.H., Ryu K.H., Park J.W., Kurokawa K., Zhang J., Gubb D.,Lee B.L. (2009) Three Pairs of Protease-Serpin Complexes Cooperatively Regulate the Insect Innate Immune Responses. J. Biol. Chem.284:35652-8.
    Jia Y.P.,Sun Y.D., Wang Z.H., Wang Q., Wang X.W., Zhao X.F., Wang J.X. (2008) A single whey acidic protein domain (SWD)-containing peptide from fleshy prawn with antimicrobial and proteinase inhibitory activities. Aquaculture 284:246-259.
    Ji C.Y., Wang Y., Guo X.P., Hartson S., Jiang H.B. (2004) A pattern recognition serine proteinase triggers the prophenoloxidase activation cascade in the tobacco hornworm, Manduca sexta. J. Biol Chem.279:34101-34106.
    Jimenez-Vega F., Vargas-Albores F., Soderhall K. (2005) Characterisation of a serine proteinase from Penaeus vannamei haemocytes. Fish Shellfish Immunol.18:101-8.
    Jiravanichpaisal P., Bangyeekhun E., Soderhall K., Soderhall I. (2001) Experimental infection of white spot syndrome virus in freshwater crayfish Pacifastacus leniusculus. Dis. Aquat. Org. 47:151-7.
    Jiravanichpaisal P., Lee B.L., Soderhall K. (2006) Cell-mediated immunity in arthropods: hematopoiesis, coagulation, melanization and opsonization. Immunobiology 211:213-36.
    Jitvaropas R., Amparyup P., Gross P.S., Tassanakajon A. (2009) Functional characterization of a masquerade-like serine proteinase homologue from the black tiger shrimp Penaeus monodon. Comp. Biochem. Physiol. B Biochem. Mol. Biol.153:236-43.
    Johnson G.D., Jiang W. (2005) Characterization of cathepsin L secreted by Sf21 insect cells. Arch. Biochem. Biophys.444:7-14.
    Jung R., Scott M.P., Nam Y.W., Beaman T.W., Bassuner R., Saalbach I., Muntz K., Nielsen N.C. (1998) The role of proteolysis in the processing and assembly of 11S seed globulins. Plant Cell 10:343-357.
    Kang C.J., Wang J.X., Zhao X.F., Yang X.M., Shao H.L., Xiang J.H. (2004) Molecular cloning and expression analysis of Ch-penaeidin, an antimicrobial peptide from Chinese shrimp, Fenneropenaeus chinensis. Fish Shellfish Immunol.16:513-525.
    Kang C.J., Xue J.F., Liu N., Zhao X.F., Wang J.X. (2007) Characterization and expression of a new subfamily member of penaeidin antimicrobial peptides (penaeidin 5) from Fenneropenaeus chinensis. Mol. Immunol.44:1535-43.
    Kang S.W.,Chae H.Z., Seo M.S., Kim K., Baines I.C., Rhee S.G. (1998) Mammalian peroxiredoxin isoforms can reduce hydrogen peroxide generated in response to growth factors and tumor necrosis factor-a. J. Biol. Chem.273:6297-302.
    Kan H., Kim C.H., Kwon H.M., Park J.W., Roh K.B., Lee H., et al. (2008) Molecular control of phenoloxidase-induced melanin synthesis in an insect. J. Biol. Chem.283:25316-23.
    Kanost M. R. (1999) Serine proteinase inhibitors in arthropod immunity. Dev. Comp. Immunol. 23:291-301.
    Kanzok S.M., Fechner A., Bauer H., Ulschmid J.K., Muller H.M., Botella-Munoz J., Schneuwly S., Schirmer R., Becker K. (2001) Substitution of the thioredoxin system for glutathione reductase in Drosophila melanogaster. Science 291:643-646.
    Karrer K.M., Peiffer S.L., DiTomas M.E. (1993) Two distinct gene subfamilies within the family of cysteine protease genes. Proc. Natl. Acad. Sci. USA 90:3063-3067.
    Kawabata T., Yasuhara Y., Ochiai M., Matsuura S., Ashida M. (1995) Molecular cloning of insect pro-phenol oxidase:A copper-containing protein homologous to arthropod hemocyanin. Proc. Natl. Acad. Sci. USA 92:7774-7778.
    Ketterer B. (2001) A bird's eye view of the glutathione transferase field. Chem. Biol. Interact. 138:27-42.
    Kilpatrick D.C. (2007) Clinical significance of mannan-binding lectin and L-ficolin. In:Kilpatrick, D. (Ed.), Collagen-related Lectins in Innate Immunity. Research Signpost, Trivandrum, pp. 57-84.
    Kim C.H., Kim S.J., Kan H., Kwon H.M., Roh K.B., Jiang R., Yang Y., Park J.W., Lee H.H., Ha N.C., Kang H.J., Nonaka M., Soderhall, K., Lee, B.L. (2008) A Three-step Proteolytic Cascade Mediates the Activation of the Peptidoglycan-induced Toll Pathway in an Insect. J. Biol. Chem.283:7599-7607.
    Kim M.S., Baek M.J., Lee M.H., Park J.W., Lee S.Y., Soderhall K., et al. (2002) A new easter-type serine protease cleaves a masquerade-like protein during prophenoloxidase activation in Holotrichia diomphalia larvae. J.Biol. Chem.277:39999-40004.
    Kohn K.W., Ewig R.A.G. (1976) Eftect of pH on the bleomycin-induced DNA single-strand scission in L1210 cells and the relation to cell survival. Cancer Res.36:3839-3841.
    Koizumi N., Imai Y., Morozumi A., Imamura M., Kadotani T., Yaoi K., Iwahana H., Sato R. (1999) Lipopolysaccharide-binding protein of Bombyx mori participates in a hemocytemediated defense reaction against gram-negative bacteria. J. Insect Physiol. 45:853-859.
    Komaki-Yasuda K., Kawazu S., Kano S. (2003) Disruption of the Plasmodium falciparum 2-Cys peroxiredoxin gene renders parasites hypersensitive to reactive oxygen and nitrogen species. FEBS Lett.547:140-144.
    Kondo N., Ishii Y., Son A., Sakakura-Nishiyama J., Kwon Y.W., Tanito M., Nishinaka Y., Matsuo Y., Nakayama T., Taniguchi M., Yodoi J. (2004) Cysteine-dependent immune regulation by TRX and MIF/GIF family proteins. Immunol. Lett.29:143-147.
    Kong C.W., Tsai K., Chin J.H., Chan W.L., Hong C.Y. (2000) Magnolol attenuates peroxidative damage and improves survival of rats with sepsis. Shock 13:24-28.
    Krarup A.,Wallis R., Presanis J.S., Gal P., Sim R.B. (2007) Simultaneous activation of complement and coagulation by MBL-associated serine protease 2. PLoS One 2:e623.
    Krem M.M., Di Cera E. (2002) Evolution of enzyme cascades from embryonic development to blood coagulation. Trends Biochem. Sci.21:67-74.
    Krishnan N., Chattopadhya S., Kundu J.K., Chaudhuri A. (2002) Superoxide dismutase activity in haemocytes and haemolymph of Bombyx mori following bacterial infection. Curr. Sci. 83:321-325.
    Krnajski Z., Gilberger T.W., Walter R.D., Muller S. (2001) The malaria parasite Plasmodium falciparum possesses a functional thioredoxin system. Mol. Biochem. Parasitol. 112:219-228.
    Krnajski Z., Gilberger T.W., Walter R.D., Cowman A.F., Muller S. (2002) Thioredoxin reductase is essential for the survival of Plasmodium falciparum erythrocytic stages. J. Biol. Chem. 277:25970-25975.
    Kuhelj R., Dolinar M., Pungercar J., Turk V. (1995) The preparation of catalytical active human cathepsin B from its precursor expression in Escherichia coli in the form of inclusion bodies. Eur. J. Biochem.229:533-539.
    Kumar S., Christophides G.K., Cantera R., Charles B., Han Y.S., Meister S., Dimopoulos G., Kafatos F.C., Barillas-Mury C. (2003) The role of reactive oxygen species on Plasmodium melanotic encapsulation in Anopheles gambiae. Proc.Natl. Acad. Sci. USA 100:14139-14144.
    Kumar S., Gupta L., Han Y. S., Barillas-Mury C. (2004) Inducible peroxidases mediate nitration of anopheles midgut cells undergoing apoptosis in response to Plasmodium invasion J. Biol. Chem.279:53475-53482.
    Kumar S., Nei M., Dudley J., Tamura K. (2008) MEGA:a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinformatics 9:299-306.
    Kumar S., Tamura K., Nei M. (2004) MEGA3:integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief. Bioinform.5:150-163.
    Kwatia M.A., Botkin D.J., Williams D.L. (2000) Molecular and enzymatic characterization of Schistosoma mansoni thioredoxin peroxidase. J. Parasitol.86:908-15.
    Kwon T.H., Kim M.S., Choi H.W.,Joo C.H., Cho M.Y.,Lee B.L. (2000) A masquerade-like serine proteinase homologue is necessary for phenoloxidase activity in the coleopteran insect, Holotrichia diomphalia larvae. Eur. J. Biochem.267:6188-96.
    Labreuche Y., O'Leary N.A., de la Vega E., Veloso A., Gross P.S., Chapman R.W., Browdy C.L., Warr G.W. (2009) Lack of evidence for Litopenaeus vannamei Toll receptor (1Toll) involvement in activation of sequence-independent antiviral immunity in shrimp. Dev. Comp. Immunol.33:806-10.
    Laemmli U.K. (1970) Cleavage of structural proteins during the assembly of head of bacteriophage T4. Nature 227:680-685.
    Lander J.E., Parsons J.F., Rife C.L., Gilliland G.L., Armstrong R.N. (2004) Parallel evolutionary pathways for glutathione transferases:structure and mechanims of the mitochondrial class Kappa enzyme rGSTKl-1. Biochemistry 43:352-261.
    Lavric M., Maughan M.N., Bliss T.W., Dohms J.E., Bencina D., Keeler C.L., Jr, Narat M. (2008) Gene expression modulation in chicken macrophages exposed to Mycoplasma synoviae or Escherichia coli. Vet. Microbial.126:111-21.
    Le Boulay C., Van Wormhoudt A., Sellos D. (1996) Cloning and expression of cathepsin L-like proteinases in the hepatopancreas of the shrimp Penaeus vannamei during the intermolt cycle. J. Comp. Physiol. B 166:310-318.
    Leclerc V., Pelte N., El Chamy L., Martinelli C., Ligoxygakis P., Hoffmann J.A., Reichhart J.M. (2006) Prophenoloxidase activation is not required for survival to microbial infections in Drosophila. EMBO Rep.7:231-235.
    Lee K.Y., Zhang R., Kim M.S., Park J.W., Park H.Y., Kawabata S., Lee B.L. (2002) A zymogen form of masquerade-like serine proteinase homologue is cleaved during pro-phenoloxidase activation by Ca2+ in coleopteran and Tenebrio molitor larvae. Eur. J. Biochem. 269:4375-4383.
    Lee M.H., Osaki T., Lee J.Y., Baek M.J., Zhang R., Park J.W., Kawabata S., Soderhall K., Lee B.L. (2004) Peptidoglycan recognition proteins involved in 1,3-beta-D-glucan-dependent prophenoloxidase activation system of insect. J. Biol. Chem.279:3218-3227.
    Lee S.Y., Kwon T.H., Hyun J.H., Choi J.S., Kawabata S., Iwanaga S., Lee B.L. (1998b) In vitro activation of pro-phenol-oxidase by two kinds of pro-phenol-oxidase-activating factors isolated from hemolymph of coleopteran, Holotrichia diomphalia larvae. Eur. J. Biochem. 254:50-57.
    Lee S.Y., Lee L.B., Soderhall K.(2004) Processing of crayfish subunits into phenoloxidase, Biochem. Biophys. Res. Comm.322-490-496.
    Lee S.Y., Soderhall K. (2001) Characterization of a pattern recognition protein, a masquerade-like protein, in the freshwater crayfish Pacifastacus leniusculus. J Immunol.166:7319-26.
    Lee S.Y., Wang R., Soderhall K. (2000) A lipopolysaccharide- and beta-1,3-glucan-binding protein from hemocytes of the freshwater crayfish Pacifastacus leniusculus. Purification, characterization, and cDNA cloning. J. Biol. Chem.275:1337-43.
    Lehnert S.A., Johnson S:E. (2002) Expression of hemocyanin and digestive enzyme messenger RNAs in the hepatopancreas of the Black Tiger Shrimp Penaeus monodon. Comp. Biochem. Physiol. B 133:163-71.
    Lei K., Li F., Zhang M., Yang H., Luo T., Xu X. (2009) Difference between hemocyanin subunits from shrimp Penaeus japonicus in anti-WSSV defense. Dev. Comp. Immunol.32:808-13. Lemaitre B., Nicolas E., Michaut L., Reichhart J.M., Hoffmann J.A., (1996) The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86:973-983.
    LeMosy E.K., Hong C.C., Hashimoto C. (1999) Signal transduction by a protease cascade. Trends Cell Biol.9:102-7.
    Le Moullac G., Haffner P. (2000) Environmental factors affecting immune responses in Crustacea. Aquaculture 191:121-31.
    Leon-Felix J., Ortega-Lopez J., Orozco-Solis R., Arroyo R. (2004) Two novel asparaginyl endopeptidase-like cysteine proteinases from the protist Trichomonas vaginalis:their evolutionary relationship within the clan CD cysteine proteinases. Gene 335:25-35.
    Levine M.Z., Harrison P.J.H., Walthall W.W., Tai P.C., Derby C.D. (2001) A CUB-serine protease in the olfactory organ of the spiny lobster Panulirus argus. J. Neurobiol. 49:277-302.
    Liang Z., Sottrup-Jensen L., Aspan A., Hall M., Soderhall K. (1997) Pacifastin, a novel 155-kDa
    heterodimeric proteinase inhibitor containing a unique transferrin chain. Proc. Natl. Acad. Sci. USA 94:6682-6687.
    Liao W.Q., Liang X.F., Wang L., Lei L.M., Han B.P. (2006) Molecular cloning and characterization of alpha-class glutathione S-transferase gene from the liver of silver carp, bighead carp, and other major Chinese freshwater fishes. J. Biochem. Mol. Toxicol.20:
    114-126.
    Li D.X., Du X.J., Zhao X.F., Wang J.X. (2006) Cloning and expression analysis of an omethyltransferase (OMT) gene from Chinese shrimp, Fenneropenaeus chinensis. Fish Shellfish Immunol.21:284-292.
    Li F., Yan H., Wang D., Priya T.A., Li S.,Wang B., Zhang J., Xiang J. (2009) Identification of a novel relish homolog in Chinese shrimp Fenneropenaeus chinensis and its function in regulating the transcription of antimicrobial peptides. Dev. Comp. Immunol.33:1093-101.
    Ligoxygakis P., Pelte N., Hoffmann J.A., Reichhart J.M. (2002a) Activation of Drosophila Toll during fungal infection by a blood serine protease. Science 297:114-116.
    Ligoxygakis P., Pelte N., Ji C., Leclerc V., Duvic B., Belvin M., Jiang H., Hoffmann J.A., Reichhart J.M. (2002) A serpin mutant links Toll activation to melanization in the host defence of Drosophila. EMBO J.21:6330-6337.
    Li L.J., Zhang F., Liu X.M., Guo Y.P., Ma E.B. (2005) Oxidative stress related enzymes in response to chromium (VI) toxicity in Oxya chinensis (Orthoptera:Acridoidae). J. Environ. Sci. (China).17:823-826.
    Lillig C.H., Holmgren A. (2007) Thioredoxin and related molecules—from biology to health and disease. Antioxid. Redox Signal 9:25-47.
    Lin C.Y., Hu K.Y., Ho S.H., Song Y.L. (2006) Cloning and characterization of a shrimp clip domain serine protease homolog (c-SPH) as a cell adhesion molecule. Dev. Comp. Immunol 30:1132-44.
    Lin Y.C., Vaseeharan B., Chen J.C. (2008) Identification and phylogenetic analysis on lipopolysaccharide and β-1,3-glucan binding protein (LGBP) of kuruma shrimp Marsupenaeus japonicus. Dev. Comp. Immunol.32:1260-9.
    Liu C.H., Cheng W., Hsu J.P., Chen J.C. (2004) Vibrio alginolyticus in the white shrimp Litopenaeus vannamei confirmed by polymerase chain reaction and 16S rDNA sequencing. Dis. Aquat. Organ 61:169-74.
    Liu C.H., Tseng M.C., Cheng W. (2007) Identification and cloning of the antioxidant enzyme, glutathione peroxidase, of white shrimp, Litopenaeus vannamei, and its expression following Vibrio alginolyticus infection. Fish Shellfish Immunol.23:34-45.
    Liu F., Li F., Dong B., Wang X., Xiang J. (2009) Molecular cloning and characterization of a pattern recognition protein, lipopolysaccharide and β-1,3-glucan binding protein (LGBP) from Chinese shrimp Fenneropenaeus chinensis. Mol. Biol. Rep.36:471-477.
    Liu P.C., Lee K.K., Yi K.C., Kou G.H., Chen S.N. (1996) Isolation of Vibrio harveyi from diseased prawn Penaeus japonicus. Curr. Microbiol.33:129-32.
    Liu S., Zhang P., Ji X., Johnson W.W., Gilliland G.L., Armst rong R.N. (1992)Contribution of tyrosine 6 to the catalytic mechanism of isoenzyme 3-3 of glutathione S-transferase. J. Biol. Chem.267:4296-4299.
    Liu W., Han F., Zhang X.J. (2009) Ran GTPase Regulates Hemocytic Phagocytosis of Shrimp by Interaction with Myosin. Proteome Res.8:1198-206.
    Liu Y.C., Li F.H., Dong B., Wang B., Luan W., Zhang X.J. et al. (2007) Molecular cloning, characterization and expression analysis of a putative C-type lectin (Fclectin) gene in Chinese shrimp Fenneropenaeus chinensis. Mol. Immunol.44:598-607.
    Liu Y., Li F., Wang B., Dong B., Zhang X., Xiang J. (2009) A serpin from Chinese shrimp Fenneropenaeus chinensis is responsive to bacteria and WSSV challenge. Fish Shellfish Immunol. 26:345-51.
    Livak K.J., Schmittgen T.D. (2001) Analysis of relative gene expression data using realtime quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402-408.
    Lo C.F., Chang Y.S., Peng S.E., Kou G.H. (2003) Major viral diseases of Penaeus monodon in Taiwan. J.Fish Soc.Taiwan 30:1-103.
    Loker E.S., Adema C.M., Zhang S.M., Kepler T.B. (2004) Invertebrate immune systems-not homologous, not simple, not well understand. Immunol. Rev.198:10-24.
    MacMicking J., Xie Q.W., Nathan C. (1997) Nitric oxide and macrophage function. Annu. Rev. Immunol.15:323-350.
    Mannervik B. (1985) Glutathione peroxidase. Methods Enzymol.113:490-5.
    Mannervik B., Danielson U.H. (1988) Glutathione transferases—structure and catalytic activity. CRC Crit. Rev. Biochem.23:283-337.
    Masutani H., Ueda S., Yodoi J. (2005) The thioredoxin system in retroviral infection and apoptosis. Cell Death Differ.12:991-998.
    Mates J.M., Perez-Gomez C., Nunez de Castro I. (1999) Antioxidant enzymes and human diseases. Clin. Biochem.32:595-603.
    Ma T.H., Benzie J.A., He J.G., Chan S.M. (2008) PmLT, a C-type lectin specific to hepatopancreas is involved in the innate defense of the shrimp Penaeus monodon. J. Invertebr. Pathol.99:332-41.
    Mathew S., Kumar K.A., Anandan R.,Viswanathan Nair P.G.; Devadasan K. (2007) Changes in tissue defence system in white spot syndrome virus (WSSV) infected Penaeus monodon. Comp. Biochem. Physiol. C Toxicol. Pharmacol.145:315-320.
    Mattock K.L., Gough P.J., Humphries J., Burnand K., Patel L., Suckling K.E., Cuello F., Watts C., Gautel M., Avkiran M., Smith A. Legumain and cathepsin-L expression in human unstable carotid plaque. Atherosclerosis doi:10.1016/j.
    McCulloch D.L. (1990) Metabolic response of the grass shrimp Palaemonetes kadiakensis Rathbun, to acute exposure of sublethal changes in pH. Aquat. Toxicol.17:263-274.
    McEligot A.J., Yang S., Meyskens F.L. (2005) Redox regulation by intrinsic species and extrinsic nutrients in normal and cancer cells. Annu. Rev. Nutr.25:261-295.
    Medzhitov R., Janeway C.A. (2002) Decoding the patterns of self and nonself by the innate immune system. Science 296:298-300.
    Mekata T., Sudhakaran R., Okugawa S., Kono T., Sakai M., Itami T. (2010) Molecular cloning and transcriptional analysis of a newly identified anti-lipopolysaccharide factor gene in kuruma shrimp, Marsupenaeus japonicus. Lett. Appl. Microbiol.50:112-9.
    Michel T., Reichhart J.M., Hoffmann J.A., Royet J.(2001) Drosophila Toll is activated by Gram-positive bacteria through a circulating peptidoglycan recognition protein. Nature 414:756-759.
    Mikolajczak S.A., Jacobs-Lorena V., MacKellar D.C., Camargo N., Kappe S.H. (2007) L-FABP is a critical host factor for successful malaria liver stage development. Int. J. Parasitol. 37:483-9.
    Miranda-Vizuete A., Damdimopoulos A.E., Spyrou G. (2000) The mitochondrial thioredoxin system. Antioxid. Redox Signal 2:801-810.
    Mohankumar K., Ramasamy P. (2006) White spot syndrome virus infection decreases the activity of antioxidant enzymes in Fenneropenaeus indicus. Virus Res.115:69-75.
    Molina-Cruz A., DeJong R.J., Charles B., Gupta L., Kumar S., Jaramillo-Gutierrez G, Barillas-Mury C. (2008) Reactive oxygen species modulate Anopheles gambiae immunity against bacteria and Plasmodium. J. Biol. Chem.283:3217-23.
    Moriarty-Craige S.E., Jones D.P. (2004) Extracellular thiols and thiol/disulfide redox in metabolism. Annu. Rev. Nutr.24:481-509.
    Morisato D., Anderson K.V. (1995) Signaling pathways that establish the dorsal-ventral pattern of the Drosophila embryo. Annu. Rev. Genet.29:371-99.
    Mu C., Zhao J., Wang L., Song L., Song X., Zhang H., Qiu L., Gai Y., Cui Z. (2009) A thioredoxin with antioxidant activity identified from Eriocheir sinensis. Fish Shellfish Immunol.26:716-723.
    Mulinari S., Hacker U., Castillejo-Lopez C. (2006) Expression and regulation of Spatzle-processing enzyme in Drosophila. FEBS Lett.580:5406-10.
    Murray J., Manoury B., Balic A., Watts C., Maizels R.M. (2005) Bm-CPI-2, a cystatin from Brugia malayi nematode parasites, differs from Caenorhabditis elegans cystatins in a specific site mediating inhibition of the antigen-processing enzyme AEP. Mol. Biochem. Parasitol. 139:197-203.
    Murugasu-Oei B., Rodrigues V., Yang X., Chia W. (1995) Masquerade:a novel secreted serine protease-like molecule is required for somatic muscle attachment in the Drosophila embryo. Genes Dev.9:139-154.
    Muta T., Hashimoto R., Miyata T., Nishimura H., Toh Y., Iwanaga S. (1990) Proclotting enzyme from horseshoe crab hemocytes:cDNA cloning, disulfide locations, and subcellular localization. J. Biol. Chem.265:22426-22433.
    Nakamura H., Nakamura K., Yodoi J. (1997) Redox regulation of cellular activation. Annu. Rev. Immunol.15:351-369.
    Nappi A.J. (1974) The role of melanization in the immune reaction of larvae of Drosophila Algonquin against Pseudeucoila bochei. Parasitology 66:23-32.
    Nappi A.J., Christensen B.M. (2005) Melanogenesis and associated cytotoxic reactions: Applications to insect innate immunity. Insect Biochem. Mol. Biol.35:443-459.
    Nappi A.J., Frey F., Carton Y. (2005) Drosophila serpin 27A is a likely target for immune suppression of the blood cell-mediated melanotic encapsulation response. J. Insect Physiol. 51:197-205.
    Nappi A.J., Vass E. (1998) Hydrogen peroxide production in immune-reactive Drosophila melanogaster. J. Parasitol.84:1150-7.
    O'Brien D., McVey J. (1993) Blood coagulation, inflammation, and defense. In:Sim, E. (Ed.) The Natural Immune System, Humoral Factors. IRL Press, New York, pp.257-280.
    Ochiai M., Ashida M. (2004) Gram-negative bacteria binding protein of the peptidoglycan-mediated pathway in the prophenoloxidase cascade. Zool. Sci.21:1328.
    Onishi K., Li Y., Ishii K., Hisaeda H., Tang L., Duan X., Dainichi T., Maekawa Y., Katunuma
    N., Himeno K. (2004) Cathepsin L is crucial for a Thl-type immune response during Leishmania major infection. Microbes Infect 6:468-474.
    Ou X., Tang L., McCrossan M., Henkle-Duhrsen K., Selkirk M.E. (1995) Brugia malayi: localisation and differential expression of extracellular and cytoplasmic CuZn superoxide dismutases in adults and microfilariae. Exp. Parasitol.80:515-29.
    Owada Y., Abdelwahab S.A., Suzuki R., Iwasa H., Sakagami H., Spener F., et al. (2001) Localization of epidermal-type fatty acid binding protein in alveolar macrophages and some alveolartype II epithelial cells in mouse lung. Histochem. J.33:453-7.
    Owada Y., Suzuki R., Iwasa H., Spener F., Kondo H. (2002) Localization of epidermal-type fatty acid binding protein in the thymic epithelial cells of mice. Histochem. Cell Biol.117:55-60.
    Pager C.T., Dutch R.E. (2005) Cathepsin L is involved in proteolytic processing of the Hendra virus fusion protein. J. Virol.79:12714-12720.
    Paskewitz S.M., Andreev O., Shi L. (2006) Gene silencing of serine proteases affects melanization of Sephadex beads in Anopheles gambiae. Insect Biochem. Mol. Biol. 36:701-11.
    Perazzolo L.M., Barracco M.A. (1997) The prophenoloxidase activating system of the shrimp Penaeus paulensis and associated factors. Dev. Comp. Immunol.21:385-95.
    Pereira L.S., Oliveira P.L., Barja-Fidalgo C., Daffre S. (2001) Production of reactive oxygen species by hemocytes from the cattle tick Boophilus microplus. Exp. Parasitol.99:66-72.
    Perry A.C., Jones R., Niang L.S., Jackson R.M., Hall L. (1992) Genetic evidence for an androgen-regulated epididymal secretory glutathione peroxidase whose transcript does not contain a selenocysteine codon. Biochem. J.285:863-870.
    Pham C.G., Bubici C., Zazzeroni F., Papa S., Jones J., Alvarez K., Jayawardena S., Smaele E.D., Cong R., Beaumont C., Torti F.M., Torti S.V., Franzoso G. (2004) Ferritin heavy chain upregulation by NF-kB inhibits TNF a-induced apoptosis by suppressing reactive oxygen species. Cell 119:529-542.
    Piao S., Kim S., Kim J.H., Park J.W., Lee B.L., Ha N.C. (2007) Crystal Structure of the Serine Protease Domain of Prophenoloxidase Activating Factor-I. J. Biol. Chem.282:10783-91.
    Piao S., Song Y.L., Kim J.H., Park S.Y., Park J.W.,Lee B.L., Oh B.H., Ha N.C. (2005) Crystal
    structure of a clip-domain serine protease and functional roles of the clip domains. EMBO J. 24:4404-4414.
    Ploegh H.L. (1998) Viral strategies of immune evasion. Science 280:248-253.
    Powis G., Montfort W.R. (2001) Properties and biological activities of thioredoxins. Annu. Rev. Pharmacol. Toxicol.41:261-295.
    Powis G., Montfort W.R. (2001) Properties and biological activities of thioredoxins. Annu. Rev. Biophys. Biomol. Struct.41:421-455.
    Pye A.E. (1974) Microbial activation of prophenoloxidase from immune insect larvae. Nature 251:610-613.
    Qiu L., Jiang S., Huang J., Wang W., Zhang D., Wu Q., Yang K. (2008) Molecular cloning and mRNA expression of cathepsin C gene in black tiger shrimp(Penaeus monodon). Comp. Biochem. Physiol. A Mol. Integr. Physiol.150:320-325.
    Rahlfs S., Becker K. (2001) Thioredoxin peroxidases of the malarial parasite Plasmodium falciparum. Eur. J. Biochem.268:1404-9.
    Rahlfs S., Fischer M., Becker K. (2001) Plasmodium falciparum possesses a classical glutaredoxin and a second, glutaredoxin-like protein with a PICOT homology domain. J. Biol. Chem. 276:37133-37140.
    Rajaraman G., Wang G.Q., Yan J., Jiang P., Gong Y., Burczynski F.J. (2007) Role of cytosolic liver fatty acid binding protein in hepatocellular oxidative stress:effect of dexamethasone and clofibrate treatment. Mol. Cell Biochem.295:27-34.
    Ranson H., Claudianos C., Ortelli F., Abgrall C., Hemingway J., Sharakhova M.V., Unger M.F., Collins F.H., Feyereisen R. (2002) Evolution of supergene families associated with insecticide resistance. Science 298:179-181.
    Ranson H., Rossiter L., Ortelli F., Jensen B., Wang X., Roth C.W., Collins F.H., Hemingway J. (2001) Identification of a novel class of insect glutathione S-transferases involved in resistance to DDT in the malaria vector Anopheles gambiae. Biochem. J.359:295-304.
    Rantala M.J., Vainikka A., Kortet R. (2003) The role of juvenile hormone in immune function and pheromone production trade-offs:a test of the immunocompetence handicap principle. Proc. R. Soc. Lond., B, Biol. Sci.270:2257-2261.
    Rao X.J., Ling E., Yu X.Q. (2010) The role of lysozyme in the prophenoloxidase activation system of Manduca sexta:An in vitro approach. Dev. Comp. Immunol.34:264-71.
    Rawlings N.D., Barrett A.J. (1994) Families of serine peptidases. Methods Enzymol.244:19-61.
    Raza H., Pongubala J.R., Sorof S. (1989) Specific high affinity binding of lipoxygenase metabolites of arachidonic acid by liver fatty acid binding protein. Biochem. Biophys. Res.
    Commun.161:448-455.
    Reinemer P., Prade L., Hof P., Neuefeind T., Huber R., Zettl R., Palme K., Schell J., Koelln I., Bartunik H.D., Bieseler B. (1996) Threedimensiorial structure of glutathione S-transferase from Arabidopsis thaliana at 2.2 AI resolution:structural characterization of herbicideconjugating plant glutathione S-transferases and a novel active site architecture. J. Mol. Biol.255:289-309.
    Ren Q., Sun R.R., Zhao X.F., Wang J.X. (2009a) A selenium-dependent glutathione peroxidase (Se-GPx) and two glutathione S-transferases (GSTs) from Chinese shrimp(Fenneropenaeus chinensis). Comp. Biochem. Physiol. C Toxicol. Pharmacol.149:613-623.
    Ren Q., Xu Z.L., Wang X.W., Zhao X.F., Wang J.X. (2009) Clip domain serine protease and its homolog respond to Vibrio challenge in Chinese white shrimp, Fenneropenaeus chinensis. Fish Shellfish Immunol.26:787-798.
    Rizki T.M., Rizki R.M., Bellotti R.A. (1985) Genetics of a Drosophila phenoloxidase. Mol. Gen. Genet.201:7-13.
    Robalino J., Almeida J.S., McKillen D., Colglazier J., Trent H.F., Chen Y.A., Peck M.E.T., Browdy C.L., Chapman R.W., Warr G.W., Gross P.S. (2007) Insights into the immune transcriptome of the shrimp Litopenaeus vannamei:tissue-specific expression profiles and transcriptomic responses to immune challenge. Physiol. Genomics 29:44-56.
    Robalino J., Bartlett T.C., Chapman R.W., Gross P.S., Browdy C.L., Warr G.W. (2007) Double-stranded RNA and antiviral immunity in marine shrimp:Inducible host mechanisms and evidence for the evolution of viral counter-responses. Dev. Comp. Immunol.31:539-47.
    Rodriguez J., Le Moullac F. (2000) State of the art of immunological tools and health control of penaeid shrimp. Aquaculture 191:109-19.
    Roh K.B., Kim C.H., Lee H., Kwon H.W., Park J.W., Ryu J.H., Kurokawa K., Ha N.C., Lee W.J., Lemaitre B., Soderhall K., Lee B.L. (2009) Proteolytic Cascade for the Activation of the Insect Toll Pathway Induced by the Fungal Cell Wall Component. J. Biol. Chem. 284:19474-81.
    Romeo-Figueroa M.G., Vargas-Requena C., Sotelo-Mundo R.R., Vargas-Albores F., Roux M.M., Pain A., Klimpel K.R., Dhar A.K. (2002) The lipopolysaccharide and beta-1,3-glucan binding protein gene is upregulated in white spot virus-infected shrimp (Penaeus stylirostris). J. Virol.76:7140-9.
    Higuera-Ciapara I., Soderhall K., et al (2004) Molecular cloning of a b-glucan pattern-recognition
    lipoprotein from the white shrimp Penaeus (Litopenaeus) vannamei:correlations between the deduced amino acid sequence and the native protein structure. Dev. Comp. Immunol. 28:713-726.
    Ratcliffe N.A., Rowley A.F., Fitzgerald S.W., Rhodes C.P. (1985) Invertebrate immunity:basic concepts and recent advances. Int. Rev. Cytol.97:183-350.
    Rattanachai A., Hirono I., Ohira T., Takahashi Y., Aoki T. (2005) Peptidoglycan inducible expression of a serine proteinase homologue from kuruma shrimp (Marsupenaeus japonicus). Fish Shellfish Immunol 18:39-48.
    Rosa de Lima M.F., Sanchez Ferreira C.A., De Freitas J., Valenzuela J.G., Masuda A. (2002)
    Cloning and partial characterization of a Boophilus microplus (Acari:Ixodidae) glutathione S-transferase. Insect Biochem. Mol. Biol.32:747-754.
    Rosen G.M., Pou S., Ramos C.L., Cohen M.S., Britigan B.E. (1995) Free radicals and phagocytic cells. Faseb. Journal 9:200-209.
    Ross J., Jiang H., Kanost M.R., Wang Y. (2003) Serine proteases and their homologs in the Drosophila melanogaster genome:an initial analysis of sequence conservation and phylogenetic relationship. Gene 304:117-131.
    Rossjohn J., McKinstry W.J., Oakley A.J., Verger D., Flanagan J., Chelvanayagam G., Tan K.L., Board P.G., Parker M.W. (1998) Human theta class glutathione transferase:the crystal structure reveals a sulfate-binding pocket within a buried active site. Structure 6:309-322.
    Rotruck J.T., Pope A.L., Ganther H.E., Swanson A.B., Hafeman D.G., Hoekstra W.G. (1973) Selenium:biochemical role as a component of glutathione neroxidase. Science 179:588-90.
    Rubin G.M., Yandell M.D., Wortman J.R., Gabor Miklos G.L., Nelson C.R., Hariharan I.K., Fortini M.E., Li P.W., Apweiler R., Fleischmann W., et al., (2000b) Comparative genomics of the eukaryotes. Science 287:2204-2215.
    Rudensky A., Beers C. (2006) Lysosomal cysteine proteases and antigen presentation. Ernst Schering Res. Found Workshop 56:81-95.
    Rushmore T.H., Morton M.R., Pickett C.B. (1991) The antioxidant responsive element. Activation by oxidative stress and identification of the DNA consensus sequence required for functional activity. J. Biol. Chem.266:11632-11639.
    Ryu J.H., Ha E.M., Oh C.T., Seol J.H., Brey P.T., Jin I., Lee D.G., Kim J., Lee D., Lee W.J. (2006) An essential complementary role of NF-kappaB pathway to microbicidal oxidants in
    Drosophila gut immunity. EMBO J.25:3693-701.
    Saitoh M., Nishitoh H., Fujii M., Takeda K., Tobiume K., Sawada Y., Kawabata M., Miyazono K., Ichijo H. (1998) Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK)1. EMBO J.17:2596-2606.
    Sajid M., McKerrow J.H. (2002) Cysteine proteases of parasitic organisms. Mol. Biochem. Parasitol.120:1-21.
    Salinas A.E., Wong M.G. (1999) Glutathione S-transferases-A review. Current Med. Chem. 6:279-309.
    Satoh D., Horii A., Ochiai M., Ashida M. (1999) Prophenoloxidase-activating enzyme of the silkworm, Bombvx mori. Purification, characterization, and cDNA cloning. J. Biol. Chem. 274:7441-7453.
    Sawicki R., Singh S.P., Mondal A.K., Benes H., Zimniak P. (2003) Cloning, expression and biochemical characterization of one Epsilon-class (GST-3) and ten Delta-class (GST-1) glutathione S-transferases from Drosophila melanogaster, and identification of additional nine members of the Epsilon class. Biochem. J.370:661-669.
    Sayed A.A., Cook S.K., Williams D.L. (2006) Redox balance mechanisms in Schistosoma mansoni rely on peroxiredoxins and albumin and implicate peroxiredoxins as novel drug targets. J. Biol. Chem.281:17001-10.
    Schnitger A.K.D., Kafatos F.C., Osta M.A. (2007) The melanization reaction is not required for survival of Anopheles gambiae mosquitoes after bacterial infections. J. Biol. Chem. 282:21884-21888.
    Schwarz K.B. (1996) Oxidative stress during viral infection:a review. Free Radic. Biol. Med. 21:64-69.
    Schwede T., Kopp J., Guex N., Peitsch M.C. (2003) SWISS-MODEL:an automated protein homology-modeling server. Nucleic Acids Research 31:3381-3385.
    Segal A. (2005) How neutrophils kill microbes. Annu. Rev. Immunol.23:197-223.
    Selkirk M.E., Smith V.P., Thomas G.R., Gounaris K. (1998) Resistance of filarial nematode parasites to oxidative stress. Int. J. Parasitol.28:1315-32.
    Sellos D., Van Wormhoudt A. (1999) Polymorphism and evolution of collagenolytic serine protease genes in crustaceans. Biochim. Biophys. Acta.1432:419-24.
    Sen C.K., Packer L., (1996) Antioxidant and redox regulation of gene transcription. FASEB J. 10:709-720.
    Seo M.S., Kang S.W., Kim K., Baines I.C., Lee T.H., Rhee S.G. (2000) Identification of a new type of mammalian peroxiredoxin that forms an intramolecular disulfide as a reaction intermediate. J. Biol. Chem.275:20346-54.
    Sheehan D., Meade G., Foley V.M., Dowd C.A. (2001) Structure, function and evolution of glutathione transferases:implications for classification of non-mammalian members of an ancient enzyme superfamily. Biochem. J.360:1-16.
    Shi X.Z., Zhang R.R.,Jia Y.P., Zhao X.F., Yu X.Q., Wang J.X. (2009) Identification and molecular characterization of a Spatzle-like protein from Chinese shrimp (Fenneropenaeus chinensis). Fish Shellfish Immunol.27:610-7.
    Shi X.Z., Zhao X.F., Wang J.X. (2008) Molecular cloning and expression analysis of chymotrypsin-like serine protease fromthe Chinese shrimp,Fenneropenaeus chinensis Fish Shellfish Immunol.25:589-597.
    Shrestha S., Kim Y. (2008) Eicosanoids mediate prophenoloxidase release from oenocytoids in the beet armyworm Spodoptera exigua. Insect Biochem. Mol. Biol.38:99-112.
    Sies H. (1993) Strategies of antioxidant defense. Eur. J. Biochem.215:213-9.
    Sies H. (1997) Oxidative stress:oxidants and antioxidants. Exp. Physiol.82:291-295.
    Silverman G.A., Bird P.I., Carrell R.W., Church F.C., Coughlin P.B., Gettins P.G., Irving J.A., Lomas D.A., Luke C.J., Moyer R.W., Pemberton P.A., Remold-O'Donnell E., Salvesen G.S., Travis J., Whisstock J.C. (2001) The serpins are an expanding superfamily of structurally similar but functionally diverse proteins. Evolution, mechanism of inhibition, novel functions, and a revised nomenclature. J. Biol. Chem.276:33293-33296.
    Silverman N., Maniatis T. (2001) NF-kappaB signaling pathways in mammalian and insect innate immunity. Genes Dev.15:2321-2342.
    Singh A.K., Shichi H. (1998) A novel glutathione peroxidase in bovine eve. Seauence analysis. mRNA level, and translation. J. Biol. Chem.273:26171-8.
    Smith C., Giordano H., DeLotto R. (1994) Mutational analysis of the Drosophila snake protease: an essential role for domains within the proenzyme nolvneptide chain. Genetics 136:1355-65.
    Smith C.L., Giordano H., Schwartz M., DeLotto R.(1995) Spatial regulation of Drosophila snake protease activity in the generation of dorsal-ventral polarity. Development 121:4127-35.
    Soderhall I., Wu C., Novotny M., Lee B.L., Soderhall K. (2009) A Novel Protein Acts as a
    Negative Regulator of Prophenoloxidase Activation and Melanization in the Freshwater Crayfish Pacifastacus leniusculus. J. Biol. Chem.284:6301-10.
    Soderhall K. (1982) Phenoloxidase activating system and melanization-a recognition mechanism of arthropods? A review. Dev. Comp. Immunol.6:601-11.
    Soderhall K., Smith V.J. (1983) Separation of the haemocyte populations of Carcinus Maenas and other marine decapods, and prophenoloxidase distribution Dev. Comp. Immunol. 7:229-39.
    Sojka D., Hajdusek O., Dvorak J., Sajid M., Franta Z., Schneider E.L., Craik C.S., Vancova M., Buresova V., Bogyo M., Sexton K.B., McKerrow J.H., Caffr C.R., Kopacek P. (2007) IrAE: an asparaginyl endopeptidase (legumain) in the gut of the hard tick Ixodes ricinus. Int. J. Parasitol.37:713-724.
    Song Y.L., Hsieh Y.T. (1994) Immunostimulation of tiger shrimp(Penaeus monodon) hemocytes for generation of microbicidal substances:analysis of reactive oxygen species. Dev. Comp. Immunol.18:201-9.
    Sriphaijit T., Flegel T.W., Senapin S. (2007) Characterization of a shrimp serine protease homolog, a binding protein of yellow head virus. Dev. Comp. Immunol.31:1145-58.
    Sritunyalucksana K., Lee S.Y., Soderhall K. (2002) A β-1,3-glucan binding protein from the black tiger shrimp, Penaeus monodon. Dev. Comp. Immunol.26:237-45.
    Stanley D.W., Miller J.S., Howard R.W. (1998) The influence of bacterial species and intensity of infections on nodule formation in insects. J. Insect Physiol.44:157-164.
    Stein D., Nusslein-Volhard C. (1992) Multiple extracellular activities in Drosophila egg perivitelline fluid are required for establishment of embryonic dorsal-ventral polarity. Cell 68:429-40.
    Sugumaran M. (1996) Roles of the insect cuticle in host defense reactions. In:Soderhall K, Iwanaga S, Vasta GR, editors. New Directions in Invertebrate Immunology. Fair Haven:SOS Publications; p.355-74.
    Sui Y.P., Wang J.X., Zhao X.F. (2009) The impacts of classical insect hormones on the expression profiles of a new digestive trypsin-like protease (TLP) from the cotton bollworm, Helicoverpa armigera. Insect Mol. Biol.18:443-52.
    Sun Y.D., Fu L.D., Jia Y.P., Du X.J., Wang Q., Wang Y.H., et al. (2008) A hepatopancreas specific C-type lectin from the Chinese shrimp Fenneropenaeus chinensis exhibits antimicrobial activity. Mol. Immunol.45:348-61.
    Syvanen M., Zhou Z.H., Wang J.Y. (1994) Glutathione transferase gene family from the housefly Musca domestica. Mol. Gen. Genet.245:25-31.
    Sztajer H., Gamain B., Aumann K.D., Slomianny C., Becker K., Brigelius-Flohe R., Flohe L. (2001) The putative glutathione peroxidase gene of Plasmodium falciparum codes for a thioredoxin peroxidase. J. Biol. Chem.276:7397-7403.
    Takahashi K., Avissar N., Whitin J., Cohen H. (1987) Purification and characterization of human plasma glutathione peroxidase:a selenoglycoprotein distinct from the known cellular enzyme. Arch. Biochem. Biophys.256:677-86.
    Tamang D., Tseng S.M., Huang C.Y., Tsao I.Y., Chou S.Z., Higgs S., Christensen B.M., Chen C.C. (2004) The use of a double subgenomic Sindbis virus expression system to study mosquito gene function:Effects of antisense nucleotide number and duration of viral infection on gene silencing efficiency. Insect Mol. Biol.13:595-602.
    Tamura H., Iida T., Watanabe T., Suga T. (1990) Long-term effects of hypolipidemic peroxisome proliferator administration on hepatic hydrogen peroxide metabolism in rats. Carcinogenesis 11:445-450.
    Tanaka T., Hosoi F., Yamaguchi-lwai Y., Nakamura H., Masutani H., Ueda S., Nishiyama A., Takeda A., Wada H., Spyrou G., Yodoi J. (2002) Thioredoxin-2 (TRX2) is an essential gene regulating mitochondria-dependent apoptosis. EMBO J.21:1695-17063.
    Tang L., Smith V.P., Gounaris K., Selkirk M.E. (1996) Brugia pahangi:the cuticular glutathione peroxidase (gp29) protects heterologous membranes from lipid peroxidation. Exp. Parasitol. 82:329-32.
    Tavares-Sanchez O.L., Gomez-Anduro G.A., Felipe-Ortega X., Islas-Osuna M.A., Sotelo-Mundo R.R., Barillas-Mury C., Yepiz-Plascencia G. (2004) Catalase from the white shrimp Penaeus (Litopenaeus) vannamei:molecular cloning and protein detection. Comp. Biochem. Physiol. B 138:331-337.
    Teng L., Wada H., Zhang S. (2009) Identification and functional characterization of legumain in amphioxus Branchiostoma belcheri. Biosci. Rep.30:177-86.
    Thiel S. (2007) Complement activating soluble pattern recognition molecules with collagen-like regions, mannan-binding lectin, ficolins and associated serine proteases. Mol. Immunol. 44:3875-3888.
    Tomaszewski K.E., Agarwal D.K., Melnick R.L. (1986) In vitro steady-state levels of hydrogen
    peroxide after exposure of male F344 rats and female B6C3F1 mice to hepatic peroxisome proliferators. Carcinogenesis 7:1871-1876.
    Tong Y., Jiang H., Kanost M.R. (2005) Identification of plasma proteases inhibited by Manduca sexta serpin-4 and serpin-5 and their association with components of the prophenol oxidase activation pathway. J. Biol. Chem.280:14932-14942.
    Tseng D.Y., Ho P.L., Huang S.Y., Cheng S.C., Shiu Y.L., Chiu C.S., Liu C.H. (2009) Enhancement of immunity and disease resistance in the white shrimp, Litopenaeus vannamei, by the probiotic, Bacillus subtilis E20. Fish Shellfish Immunol.26:339-44.
    Tsu A., Perona J.J., Schellenberger V., Turck C.W., Craik C.S. (1994) The substrate specificity of Uca pugilator collagenolytic serine protease 1 correlates with the bovine type I collagen cleavage sites. J. Biol Chem.269:19565-19572.
    Tsu C.A., Craik C.S. (1996) Substrate Recognition by Recombinant Serine Collagenase 1 from Uca pugilator. J. Biol. Chem.271:11563-70.
    Turk B., Turk V., Turk D. (1997) Structural and functional aspects of papain-like cysteine proteinases and their protein inhibitors. Biol. Chem.378:141-150.
    Ursini F., Maiorino M., Brigelius-Flohe R., Aumann K.D., Roveri A., Schomburg D., Flohe L. (1995) Diversity of glutathione peroxidases. Methods Enzymol.252:38-53.
    Ursini F., Maiorino M., Gregolin C. (1985) The selenoenzyme phospholipids hydroperoxide glutathione peroxidase. Biochim. Biophys. Acta.839:62-70.
    Van Wormhoudt A., Sellos D. (1996) Cloning and sequencing analysis of three amylase cDNAs in the shrimp Penaeus vannamei (Crustacea decapoda):evolutionary aspects. J. Mol. Evol. 42:543-551.
    Vermeire J.J., Yoshino T.P. (2007) Antioxidant gene expression and function in in vitro-developing Schistosoma mansoni mother sporocysts:possible role in self-protection. Parasitology 134:1369-78.
    Vlachou D., Schlegelmilch T., Christophides G.K., Kafatos F.C. (2005) Functional genomic analysis of midgut epithelial responses in Anopheles during Plasmodium invasion. Curr. Biol. 15:1185-1195.
    Voit R., Feldmaier-Fuchs G. (1990) Arthropod hemocyanins. Molecular cloning and sequencing of cDNAs encoding the tarantula hemocyanin subunits a and e. J. Biol. Chem. 265:19447-19452.
    Vontas J.G., Small G.J., Hemingway J. (2001) Glutathione Stransferases as antioxidant defence agents confer pyrethroid resistance in Nilaparvata lugens. Biochem. J.357:65-72.
    Wada K., Tanabe T. (1986) N-terminal amino acid sequences of the heavy and light chains of chicken liver cathepsin L. FEBS Lett.209:330-4.
    Wahl M.C., Irmler A., Hecker B., Schirmer R.H., Becker K. (2005) Comparative structural analysis of oxidized and reduced thioredoxin from Drosophila melanogaster. J. Mol. Biol. 345:1119-1130.
    Wang B., Li F., Dong B., Zhang X., Zhang C., Xiang J. (2006) Discovery of the Genes in Response to White Spot Syndrome Virus (WSSV) Infection in Fenneropenaeus chinensis Through cDNA Microarray. Mar. Biotechnol.8:491-500.
    Wang B., Li F., Luan W., Xie Y., Zhang C., Luo Z., et al. (2008) Comparison of gene expression profiles of Fenneropenaeus chinensis challenged with WSSV and Vibrio. Mar. Biotechnol. 10:664-75.
    Wang F.I., Chen J.C. (2006) Effect of salinity on the immune response of tiger shrimp Penaeus monodon and its susceptibility to Photobacterium damselae subsp. Damselae. Fish Shell. Immunol.20:671-681.
    Wang G., Gong Y., Anderson J., Sun D., Minuk G., Roberts M.S., et al. (2005) Antioxidative function of L-FABP in L-FABP stably transfected Chang liver cells. Hepatology 42:871-9.
    Wang G., Shen H., Rajaraman G., Roberts M.S., Gong Y., Jiang P., et al. (2007) Expression and antioxidant function of liver fatty acid binding protein in normal and bileduct ligated rats. Eur. J. Pharmacol 560:61-8.
    Wang P.F., Arscott L.D., Gilberger T.W., Muller S., Williams C.H.Jr (1999) Thioredoxin reductase from Plasmodium falciparum:evidence for interaction between the Cerminal cysteine residues and the active site disulfide-dithiol. Biochemistry 38:3187-3196.
    Wang P.H., Gu Z.H., Huang X.D., Liu B.D., Deng X.X., Ai H.S., Wang J., Yin Z.X., Weng S.P. Yu X.Q., He J.G. (2009) An immune deficiency homolog from the white shrimp. Litopenaeus vannamei, activates antimicrobial peptide genes. Mol. Immunol.46:1897-904.
    Wang S., Zhao X.F., Wang J.X., (2008) Molecular cloning and characterization of the translationally controlled tumor protein from Fenneropenaeus chinensis. Mol. Biol. Rep 36:1683-1693.
    Wang X.W., Xu W.T., Zhang X.W., Zhao X.F., Yu X.Q., Wang J.X. (2009) A C-type lectin is involved in the innate immune response of Chinese white shrimp. Fish Shellfish Immunol. 27:556-562.
    Wang Y., Cheng T., Rayaprolu S., Zou Z.,Xia Q., Xiang Z., et al. (2007) Proteolytic activation of pro-spatzle is required for the induced transcription of antimicrobial peptide genes in lepidopteran insects. Dev. Comp. Immunol.31:1002-12.
    Wang Y., Jiang H. (2004a) Purification and characterization of Manduca sexta serpin-6:A serine proteinase inhibitor that selectively inhibits prophenoloxidase-activating proteinase-3. Insect Biochem. Mol. Biol.34:387-395.
    Wang Y., Jiang H. (2006) Interaction of beta-1,3-glucan with its recognition protein activates hemolymph proteinase 14, an initiation enzyme of the prophenoloxidase activation system in Manduca sexta. J. Biol. Chem.281:9271-9278.
    Wang Y., Jiang H. (2007) Reconstitution of a branch of the Manduca sexta prophenoloxidase activation cascade in vitro:Snake-like hemolymph proteinase 21 (HP21) cleaved by HP 14 activates prophenoloxidase-activating proteinase-2 precursor. Insect Biochem. Mol. Biol. 37:1015-1025.
    Wang Y., Zou Z., Jiang H. (2006) An expansion of the dual clip-domain serine proteinase family
    in Manduca sexta:gene organization, expression, and evolution of prophenoloxidase-activating proteinase-2, hemolymph proteinase 12, and other related proteinases. Genomics 87:399-409.
    Waterhouse R.M., Kriventseva E.V., Meister S., Xi Z., Alvarez K.S., Bartholomay L.C. Barillas-Mury C., Bian G., Blandin S., Christensen B.M., Dong Y., Jiang H., Kanost M.R., Koutsos A.C.,Levashina E.A., Li J., Ligoxygakis P., Maccallum R.M., Mayhew G.F., Mendes A., Michel K., Osta M.A., Paskewitz S., Shin S.W., Vlachou D., Wang L., Wei W., Zheng L., Zou Z., Severson D.W., Raikhel A.S., Kafatos F.C., Dimopoulos G., Zdobnov E.M., Christophides G.K. (2007) Evolutionary dynamics of immune-related genes and pathways in disease-vector mosquitoes. Science 316:1738-1743.
    Watson W.H., Yang X., Choi Y.E.,Jones D.P., Kehrer J.P. (2004) Thioredoxin and its role in toxicology. Toxicol. Sci.78:3-14.
    Weber A.N., Tauszig-Delamasure S., Hoffmann J.A., Lelievre E., Gascan H., Ray K.P., Morse M.A., Imler J.L., Gay, N.J. (2003) Binding of the Drosophila cytokine Spatzle to Toll is direct and establishes signaling. Nat. Immunol.4:794-800.
    Wedlock D.N., Kawakami R.P., Koach J., Buddle B.M., Collins D.M. (2006) Differences of gene expression in bovine alveolar macrophages infected with virulent and attenuated isogenic strains of Mycobacterium bovis. Int. Immunopharmacol.6:957-961.
    Whaley K., Lemercier C. (1993) The complement system. In:Sim, E. (Ed.) The Natural Immune System, Humoral Factors. IRL Press, New York, pp.121-150.
    Williams C.H., Arscott L.D., Miiller S., Lennon B.W., Ludwig M.L., Wang P.F. et al. (2000) Thioredoxin reductase:two modes of catalysis have evolved. Eur. J. Biochem. 267:6110-6117.
    Wolk K., Grutz G., Witte K., Volk H.D., Sabat R. (2005) The expression of legumain, an asparaginyl endopeptidase that controls antigen processing, is reduced in endotoxin-tolerant monocytes. Genes Immun.6:452-6.
    Wood Z.A., Schroder E., Robin Harris J., Poole L.B. (2003) Structure, mechanism and regulation of peroxiredoxins. Trends Biochem. Sci.28:32-40.
    Wu Q.Y., Kuo H.C., Deng G.G. (2005) Serine proteases and cardiac function. Biochim. Biophys. Acta.1751:82-94.
    Wu W., Zhang X. (2007) Characterization of a Rab GTPase up-regulated in the shrimp Peneaus japonicus by virus infection. Fish Shellfish Immunol.23:438-45.
    Yamada K., Takabatake T., Takeshima K. (2000) Isolation and characterization of three novel serine protease genes from Xenopus laevis. Gene 252:209-216.
    Yamamoto K., Zhang P., Miake F.,Kashige N., Aso Y., Banno Y., Fujii H. (2005) Cloning, expression and characterization of theta-class glutathione S-transferase from the silkworm, Bombyx mori. Comp. Biochem. Physiol. B. Biochem. Mol. Biol.141:340-346.
    Yang C., Zhang J., Li F., Ma H., Zhang Q., Jose Priya T.A., Zhang X., Xiang J. (2008) A Toll receptor from Chinese shrimp Fenneropenaeus chinensis is responsive to Vibrio anguillarum infection. Fish Shellfish Immunol.24:564-74.
    Yang L.S., Yin Z.X., Liao J.X., Huang X.D., Guo C.J., Weng S.P., Chan S.M., Yu X.Q., He J.G. (2007) A Toll receptor in shrimp.Mol. Immunol.44:1999-2008.
    Yaqoob P. (2003) Fatty acids as gatekeepers of immune cell regulation. Trends Immunol. 4:639-45.
    Yeh M.S., Lai C.Y., Liu C.H., Kuo C.M., Cheng W. (2009) A second proPO present in white shrimp Litopenaeus vannamei and expression of the proPOs during a Vibrio alginolyticus injection, molt stage, and oral sodium alginate ingestion. Fish Shellfish Immunol.26:49-55.
    Yu B.P. (1994) Cellular defenses against damage from reactive oxygen species. Physiol. Rev. 74:139-162.
    Yu C.I., Song Y.L. (2000) Outbreaks of Taura syndrome in Pacific white shrimp(Penaeus vannamei) cultured in Taiwan. Fish Pathol.35:21-4.
    Yu X.Q., Jiang H., Wang Y., Kanost M.R. (2003) Nonproteolytic serine proteinase homologs are involved in prophenoloxidase activation in the tobacco hornworm, Manduca sexta. Insect Biochem. Mol. Biol.33:197-208.
    Zdobnov E., von Mering C., Letunic I., Torrents D., Suyama M., Copley R.R., Christophides G.K., Thomasova D., Holt R.A., Subramanian G.M., Mueller H.M., Dimopoulos G., Law J.H., Wells M.A., Birney E., Charlab R., Halpern A.L., Kokoza E., Kraft C.L., Lai Z., Lewis S., Louis C., Barillas-Mury C., Nusskern D., Rubin G.M., Salzberg S.L., Sutton G.G., Topalis P., Wides R., Wincker P., Yandell M., Collins F.H., Ribeiro J., Gelbart W.M., Kafatos F.C., Bork P. (2002) Comparative genome and proteome analysis of Anopheles gambiae and Drosophila melanogaster. Science 298:149-159.
    Zeng Y., Lu C.P. (2009) Identification of differentially expressed genes in haemocytes of the crayfish(Procambarus clarkii) infected with white spot syndrome virus by suppression subtractive hybridization and cDNA microarrays. Fish Shellfish Immunol.26:646-50.
    Zhang G., Lu Z.Q., Jiang H., Asgari S. (2004) Negative regulation of prophenoloxidase (proPO) activation by a clip-domain serine proteinase homolog (SPH) from endoparasitoid venom. Insect Biochem. Mol. Biol.34:477-83.
    Zhang Q., Li F., Zhang J., Wang B., Gao H., Huang B., Jiang H., Xiang J. (2007) Molecular cloning, expression of a peroxiredoxin gene in Chinese shrimp Fenneropenaeus chinensis and the antioxidant activity of its recombinant protein. Mol. Immunol.44:3501-3509.
    Zhang Q., Li F.,. Zhang X.,Dong B., Zhang J., Xie Y., Xiang J. (2008) cDNA cloning, characterization and expression analysis of the antioxidant enzyme gene, catalase, of Chinese shrimp Fenneropenaeus chinensis. Fish Shellfish Immunol.24:584-591.
    Zhang X.W., Xu W.T., Wang X.W., Mu Y., Zhao X.F., Yu X.Q., et,al. (2009) A novel C-type lectin with two CRD domains from Chinese shrimp Fenneropenaeus chinensis functions as a pattern recognition protein. Mol. Immunol.46:1626-37.
    Zhang Y., Qiu L., Song L., Zhang H., Zhao J., Wang L., et al. (2009) Cloning and characterization of a novel C-type lectin gene from shrimp Litopenaeus vannamei. Fish Shellfish Immunol. 26:183-92.
    Zhao D.X., Song S.H., Wang Q., Zhang X.W., Hu S.N., Chen L.Q. (2009) Discovery of immune-related genes in Chinese mitten crab(Eriocheir sinensis) by expressed sequence tag analysis of haemocytes. Aquaculture 287:297-303.
    Zhao M.,soderhall I., Park J.W., Ma Y.G., Osaki T., Ha N.C., Wu C.F., Soderhall K., Lee B.L. (2005) A Novel 43-kDa Protein as a Negative Regulatory Component of Phenoloxidase-induced Melanin Synthesis. J. Biol. Chem.280:24744-51.
    Zhao X.F., An X.M., Wang J.X., Du X.J., Sueda S., Kondo H. (2005) Expression of the Helicoverpa cathepsin B-like proteinase during embryonic development. Arch. Insect Biochem. Physiol.58:39-46.
    Zhao X.F., Wang J.X., Xu X.L., Schmid R., Wiecxorek H. (2002) Molecular cloning and characterization of cathepsin B-like proteinase from the cotton ball worm Helicoverpa armigera. Insect Mol. Biol.11:567-75.
    Zhao Z.Y., Yin Z.X.,Weng S.P., Guan H.J., Li S.D., Xing K., et al. (2007) Profiling of differentially expressed genes in hepatopancreas of white spot syndrome virus-resistant shrimp(Litopenaeus vannamei) by suppression subtractive hybridization. Fish Shellfish Immunol.22:520-34.
    Zhou X., Guo Q., Dai H. (2008) Identification of differentially expressed immune-relevant genes in Chinese soft-shelled turtle (Trionyx sinensis) infected with Aeromonas hvdrophila. Vet. Immunol. Immunopathol.125:82-91.
    Zhu Y., Wang Y., Gorman M.J., Jiang H., Kanost M.R. (2003b) Manduca sexta serpin-3 regulates prophenoloxidase activation in response to infection by inhibiting prophenoloxidaseactivating proteinases. J. Biol. Chem.278:46556-46564.
    Zimmerman A.W., Veerkamp J.H. (2002) New insights into the structure and function of fatty acid-binding proteins. Cell Mol. Life Sci.59:1096-116.
    Zou Z., Lopez D.L., Kanost M.R., Evans J.D., Jiang H. (2006) Comparative analysis of serine protease-related genes in the honey bee genome:Possible involvement in embryonic development and innate immunity. Insect Mol. Biol.15:603-614.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700