用户名: 密码: 验证码:
北祁连西段金佛寺岩体外围多金属成矿带地质特征及其成因研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金佛寺花岗岩体位于北祁连西段,目前在岩体接触带发现有大道口、青大坂、西柳沟、干巴河脑钨钼矿和索铜沟铅锌矿、松木沟铜矿等多处矿点,构成了一个以钨钼为主的多金属成矿带,显示出该区域具有良好的钨钼等多金属成矿地质背景条件,系统分析该成矿带的成矿地质条件和成矿机制,对进一步在区域内寻找与金佛寺花岗岩有关的钨钼多金属矿产具有重要的理论和实践意义。
     本文在系统分析研究区地质资料的基础上,综合采用岩石学、矿物学、矿床学、元素地球化学、成矿流体地球化学、同位素地质学等理论和方法,通过对干巴河脑和青大坂钨钼矿两个典型矿床的深入研究,探讨了多金属成矿带的成矿地质条件和成矿机制,建立了成矿模式,并对区内的资源潜力做了初步预测,同时提出了区内的找矿前景和方向。
     金佛寺岩体外围的多金属成矿带主要赋存在花岗岩体的接触带内,受区域内深大断裂的控制,单个矿床主要产于岩体接触带内NW向与NE向或近EW向次一级断裂内。通过野外观察和矿物组合特征研究表明,研究区内钨钼成矿过程可划分为热液期和表生期两期,热液期又可细分为硅酸盐、多金属硫化物和碳酸盐三个成矿阶段。
     包裹体研究表明:成矿期包裹体均为原生包裹体,未见次生和假次生包裹体,形态多样,有长条形、椭圆形、菱形、矩形、梯形、三角形和各种不规则形状,大小变化不大,多在2-20μm之间;从相态看,有富液、富气的气液两相包裹体和单一液相以及含子矿物包裹体四类。流体包裹体热力学研究表明,主成矿阶段成矿流体温度集中在200-300℃之间,成矿流体盐度为5.7-8.7wt%,密度为0.998-1.018g/cm3,对应成矿压力和成矿深度分别为17.28-27.56MPa和0.64-1.02km,表明研究区成矿流体具有中低温、低盐度、低密度特征,矿床类型为浅成中低温热液型矿床。
     成矿流体碳-氢-氧同位素分析和包裹体成分研究显示:成矿流体δDv-SMOW值在-67--91‰之间,对应热液水的δ18OH20在-1.21-4.04‰之间,δ13CV-PDB值介于-6‰--4.2‰之间,成矿流体属于K+-Na+-SO4+-Cl-型流体,流体中气相组分以H20为主,其次为少量的CO2和N2。以上研究表明,成矿流体起源于岩浆热液,随着成矿作用的进行,成矿期有大量大气降水的混入,显示出氧同位素“漂移”的特点,因而主成矿阶段成矿流体是以岩浆热液水和大气降水为主的混合热液,流体曾发生的不混溶作用是矿质沉淀富集的主要原因。
     研究区内矿石δ34S平均值约为4.7‰,与花岗质岩浆δ34S值(5‰-15‰)最为相近,显示金佛寺花岗岩与成矿的密切关系,同时区内岩矿石微量元素地球化学特征分析显示,围岩花岗岩和矿石微量元素和稀土元素配分曲线具有近似一致的特点,说明侵入的花岗质岩浆和重熔的结晶基底(北大河岩群)为多金属矿床的形成提供了重要的成矿物质来源。
     综合以上研究认为,在北祁连西段金佛寺岩体外围形成的多金属成矿带内的多金属矿床为浅成的中低温岩浆期后热液型矿床,成矿与金佛寺花岗岩体的侵入关系密切,成矿热液为岩浆期后热液和大气降水的混合热液。
Jinfosi pluton is located in western part of the North Qilian Mountains, and a tungsten and molybdenum polymetallic metallogenic belt has been found, which is situated in the contact zone of Jinfosi pluton, and which is composed of some mineralization points, such as Dadaokou, Qingdaban, Ganbahenao wolfram-molybdenum deposits, Suotonggou lead-zinc deposit and Songmugou copper deposit and so on, all of those demonstrated that the region has a good geological conditions to form tungsten and molybdenum deposits. So there are important theoretical and practical significance to study the metallogenic geological conditions and mechanism of the metallogenic belt systematicly, and which can be helpful to find the W-Mo polymetallic deposits relate to the Jinfosi pluton.
     In this paper, based on systematic analysis to geological data of the study area, and synthetic studies on two typical deposits (Ganbahenao and the Qingdaban W-Mo deposits) by applying multiple disciplines and methods such as petrography, mineralogy, deposit theory, geochemistry, fluid inclusion, and isotope geology, the metallogenic geological conditions and mechanism of the polymetallic metallogenic belt have been discussed in the paper, and the metallogenic model has been established too. Through the above studies, the preliminary forecasting to the field resource potential has been done, and meanwhile, the prospects and direction of the prospecting area has been put forward, too.
     Polymetallic metallogenic belt on the periphery of the Jinfosi pluton mainly exists in the contract zone of Jinfosi granite. Because of the affect of regional deep and major fault zone, the individual ore body mainly occurs in the subsidiary faults, for instance the north-west, north-east and near east-west subsidiary faults in the pluton contact zone. Through the observation of the ore body and the research of the mineral assemblage characteristic, the mineralizing function can be divided into 2 mineralizing periods:hydrothermal and supergene stage, and the hydrothermal stage included silicates, polymetallic sulphides and carbonates three mineralization stages.
     Fluid inclusion in mineralization phase are primary inclusions, no secondary and pseudosecondar inclusions. They have variety shapes, including long strip, elliptic, rhombic, rectangular, trapezoidal, triangular, and various irregular shapes; their sizes change little, most sizes range from 2 to 20μm; The type of inclusions are simple, including liquid-rich phase, vapor-rich phase, single liquid phase, as well as inclusions containing daughter minerals. Thermodynamic parameters of fluid inclusions indicate that:the temperature of the main stage of mineralization is 200-300℃, the salinity is 5.7-8.7wt%, the density is 0.998-1.018g/cm3, and the corresponding depth and pressure of ore-forming are 17.28-27.56MPa and 0.64-1.02Km, which indicate that ore-forming fluid of the study area has a low-medium temperature, low salinity, low density characteristics, so the genetic type of the deposit is a epithermal deposits with low-moderate temperature.
     The studies of the composition and C-H-O isotopes of Ore-forming fluid shows that:δDv-SMOW values of ore-forming fluids are between-67--91‰, the relevant hydrothermal water'sδ18OH2O values are-1.21-4.04%o, and theδ13CV-PDB‰values range from-6%o to-4.2%o. The ore-forming fluids belonged to K+-Na+-SO4+-Cl-system, the gas phase constituent in fluid is mainly based on H2O, and a small amount of CO2 and N2 is in the next place. The above studies indicate that although ore-forming fluids come of magmatic, but with the process of mineralization, a large number of precipitation interlarded the fluid in the ore-forming period, led the oxygen isotopes shows the homothetic "drift" feature, so in the main mineralization stage, the ore-forming fluid was a mixed hydrotherm, which were magmatic hydrothermal fluids and meteoric water, and the fluid immiscibility action was the main reason of mineral precipitation and enrichment.
     The averageδ34S value is about 4.7‰, the value is most similar to the granitic magma's values (5%o-15%o), which suggests that the close relationship between Jinfosi granite and mineralization. At the same time, the geochemical characteristics of minerals and rocks show that they have a similar characteristic that the trace elements character of granite and mineral, as well as the mineral's REE distribution curves also consistent with Jinfosi granite's, all of the evidence illuminates that the intrusive granitic magma and remelting of the crystalline basement (Beidahe Group complex) provided an important source of ore forming materials for the formation of polymetallic deposits.
     Based on the above studies, which suggest that polymetallic deposits in the polymetallic metallogenic belt, formed in the periphery of Jinfosi pluton, western part of North Qilian, belong to mesothermal-epithermal post-magmatic hydrothermal type deposit, between mineralization and the intrusion of Jinfosi pluton, the relationship is so close, ore-forming hydrothermal solution is mixed hydrothermal of post-magmatic hydrothermal and atmospheric precipitation.
引文
1.陈德潜,陈刚.实用稀土元素地球化学.北京:冶金工业出版社,1990,226.
    2. 陈毓川.中国主要成矿区带矿产资源远景评价.北京:地质出版社,1986.
    3.东建星,李杰,林森等.甘肃北祁连西段朱龙关裂谷带地质特征及典型矿床.桂林工学院学报,2002,22(3):341-344.
    4.杜远生,朱杰,顾松竹等.北祁连造山带寒武系-奥陶系硅质岩沉积地球化学特征及其对多岛洋的启示.中国科学D辑:地球科学,2007,37(10):1314-1329.
    5.丰成友,薛春纪,姬金生等.东天山西滩浅成低温热液金矿床地球化学.矿床地质,2000,19(4):322-329.
    6.冯益民,何世平.北祁连山蛇绿岩地质和地球化学研究.岩石学报,1995,11(增刊):125-146.
    7.冯益民,何世平.祁连山大地构造与造山作用.地质出版社,1996.
    8.付国民,苏建平,胡能高等.祁连山西段古元古代北大河岩群中斜长角闪岩的地球化学特征及构造背景,中国地质,2005,32(4):541-547.
    9.甘肃省地质调查院.1:25万《昌马、酒泉幅》区域遥感调查报告.酒泉,2000,66-176.
    10.甘肃省地质局第二区域地质测量队.1:20万《昌马幅》地质矿产报告.酒泉.1970.50-70.
    11.甘肃省地质局第二区域地质测量队.1:20万《酒泉幅》地质矿产报告.酒泉.1969.100-120.
    12.甘肃省地质局第二区域地质测量队.1:20万《祁连山幅》地质矿产报告.酒泉.1974.1-30.
    13.甘肃省地质局第二区域地质测量队.1:20万《玉门市幅》地质矿产报告.酒泉.1969.1-50.
    14.甘肃省地质矿产局.甘肃省区域地质志.北京:中国地质大学出版社.1989.1-50.
    15.甘肃省地质矿产局.甘肃省岩石地层.武汉:中国地质大学出版社,1997,1-314.
    16.高兆奎,白仲吾.祁连褶皱系钨成矿规律研究.甘肃地质学报,2003,12(2):59-61.
    17.葛肖虹,刘俊来.北祁连造山带的形成与背景.地学前缘,1999,6:223-230.
    18.胡能高,苏建平,张海峰等.金佛寺岩体地球化学特征及成因.地质科学与环境学报,2006,28(1):5-12.
    19.金霞,黄增保.甘肃昌马地区阴沟群火山岩地质特征及构造环境探讨.甘肃地质学报,2004,13(1):46-53.
    20.康鸿杰,孙柏年,刘晓煌等.北祁连山西段西柳沟铅锌矿稳定同位素特征.高校地质学报,2008,14(3):433-441.
    21.赖绍聪,刘池阳.青藏高原安多岛弧型蛇绿岩地球化学及成因.岩石学报,2003,19(04):675-682.
    22.赖绍聪,隆平.北祁连山岛弧型火山岩地球化学特征.西北大学学报(自然科学版),1996,26(5):445-450.
    23.李怀坤,陆松年,相振群等.北祁连山西段北大河沿群碎屑锆石SHRIMP U-Pb年代学研究.地质论评,2007,53(1):132-140.
    24.李延河.同位素示踪技术在地质研究中某些应用.地学前缘,1998,5(2):275-281.
    25.刘斌,沈昆.流体包裹体热力学.北京:地质出版社,1999.
    26.刘斌.NaCl-H20溶液包裹体的密度式和等容式及其应用.矿物学报,1987,7(4):345-352.
    27.刘伟,范永香,齐金忠等.甘肃省文县阳山金矿流体包裹体的地球化学特征.现代地质,2003,17(4):443-452.
    28.刘晓煌,孙柏年,曲文俊等.北祁连山西段西柳沟钨钼矿的Re-Os定年及地质意义.岩石学报,2007,23(10):2434-2442.
    29.刘晓煌.金佛寺岩体的成岩成矿作用研究.兰州大学博士学位论文,2007.
    30.卢焕章,卢换章,范宏瑞等.流体包裹体,2004,北京:北京科学技术出版社.
    31.卢焕章.成矿流体,北京:北京科学技术出版社,1997.
    32.毛景文,杨建民,张作衡等.甘肃肃北野牛滩含钨花岗质岩岩石学、矿物学和地球化学研究.地质学报,2000,74(2):142-155.
    33.毛景文,杨健民,张招崇等.被祁连山小柳沟钨钼矿床Re-Os同位素测年及其意义.地质论评,1999,45(4):412-417.
    34.毛景文,张招崇,任丰寿.北祁连山西段金属矿床时空分布和生成演化.地质学报,1999,73(1):73-81.
    35.毛景文,张招崇等.北祁连山西段北大河群Sr-Nd等时线年龄的测定及其地质意义.1998,地质论评.
    36.毛景文,张作衡,张招崇等.北祁连山西段塔儿沟矽卡岩型-石英脉型钨矿床.矿床地质,1998,17[增刊]:543-548.
    37.钱青,张旗,孙晓猛等.北祁连老虎山玄武岩和硅岩的地球化学特征及形成环境.地质科学,2001,36(4):444-453.
    38.邵洁涟.金矿找矿矿物学.湖北,中国地质大学出版社,1990.
    39.史仁灯,杨经绥,吴才来等.北祁连玉石沟蛇绿岩形成于晚震旦世的SHRIMP年龄证据.地质学报,2004,78(5):649-657.
    40.宋述光.北祁连俯冲杂岩带的构造演化.地球科学进展,1997,12(4):391-365.
    41.苏建平,胡能高,张海峰等.北祁连山西段吊大坂花岗片麻岩的锆石U-Pb年龄及地质意义.地质科技情报,2004,23(3):11-14.
    42.汤中立,白云来,徐章华等.华北古陆西南缘(龙首山-祁连山)成矿系统及成矿构造动力学.地质出版社,2002.17-17.
    43.汤中立,Barnes S J.岩浆硫化物矿床成矿机制.北京:地质出版社,1998,1-60.
    44.汤中立,李文渊.金川硫化铜镍(含铂)矿床成矿模式及地质对比.北京:地质出版社,1995,1-209.
    45.王晓地,汪雄武,杨伟等.北祁连西段加里东期花岗岩类与钨成矿作用的关系浅议,华南地质与矿产.2004,(1):17-22.
    46.王银喜,顾连兴,张遵忠等.博格达裂谷双峰式火山岩地质年代学与Nd-Sr-Pb同位素地球化学特征.岩石学报,2006,22(05):1215-1224.
    47.吴才来,姚尚志,杨经绥等.北祁连洋早古生代双向俯冲的花岗岩证据.中国地质,2006,33(6):1198-1208.
    48.夏林圻,夏祖春,任有祥等.北祁连山构造-火山岩浆-成矿动力学.北京:中国大地出版社,2001,1-296.
    49.夏林圻,夏祖春,徐学义.北祁连山构造一火山岩浆演化动力学.西北地质科学,1995,16(1):1-28.
    50.夏林圻,夏祖春,徐学义.北祁连山早古生代洋脊-洋岛和弧后盆地火山作用.地质学报,1998,72(4):301-312.
    51.夏林圻,夏祖春,赵江天等.北祁连山西段元古宙大陆溢流玄武岩性质的确定.中国科学(D辑),2000,30(1):1-8.
    52.夏林折,夏祖春,徐学义.北祁连山海相火山岩岩石成因.北京:地质出版社,1996,1-109.
    53.肖朝阳,邹湘华,贾群子等.祁连成矿带矿产资源现状及思考.西北地质,2003,36(3):39-49.
    54.许志琴,徐惠芬,张建新等.北祁连走廊南山加里东俯冲杂岩增生地体及其动力学.地质学报,1994,68(1):1-15.
    55.杨钟堂,贾群子,肖明阳等.塔尔沟-小柳沟钨矿集区成矿条件及区域找钨.矿床地质,2002,21(增刊):515-518.
    56.曾建元,杨怀仁,杨宏仪等.北祁连东草河蛇绿岩:一个早古生代的洋壳残片.科学通报,2007,52(7):825-837.
    57.张旗,孙晓猛,周德进等.北祁连蛇绿岩特征、形成环境及其构造意义.地球科学进展,1997,12(4):366-393.
    58.张德会,1997.流体的沸腾和混合在热液成矿中的意义.地球科字进展,12(6):546-552.
    59.张德会,刘伟.流体包裹体成分与金矿床成矿流体来源——以河南西峡石板沟金矿床为例.地质科技情报,1998,17:67-71.
    60.张德会.计算流体地球化学研究的进展.地学前缘(增刊),2000,7:147-158.
    61.张德全,孙桂英,徐洪林.祁连山金佛寺岩体的岩石学和同位素年代学研究.地球学报,1995,4:375-385.
    62.张理刚.稳定同位素在地质科学中的应用.西安:陕西科学技术出版社,1985,54-250.
    63.张旗,Chen Yu,周德进等.北祁连大岔大坂蛇绿岩的地球化学特征及其成因.中国科学(D辑),1998,28(1):30-28.
    64.张旗,王焰,钱青.北祁连早古生代洋盆是裂陷槽还是大洋盆-与葛肖虹讨 论.地质科学,2000,35(1):121-128.
    65.张文淮,张德会,刘敏.江西银山铜铅锌金银矿床成矿流体及成矿机制研究.岩石学报,2003,19(2):242-250.
    66.张招崇,毛景文,杨建民等.北祁连山西段早奥陶世阴沟群火山岩的构造背景.岩石矿物学杂志,1997,16(3):193-201.
    67.张招崇,毛景文,杨建民等.北祁连山西段早奥陶世阴沟群火山岩的构造背景.岩石矿物学杂志,1997,16(3):193-201.
    68.张招崇,毛景文,左国朝等.北祁连西段熬油沟蛇绿岩的矿物学研究.矿物学报,1999,19(1):77-82.
    69.张招崇,周美付,Robinson PT等.北祁连山西段熬油沟蛇绿岩SHRIMP分析结果及其地质意义.岩石学报,2001,17(2):222-226.
    70.张之进.北祁连山早古生代海相火山作用及其成矿特征.西北地质,1983.
    71.张作衡,毛景文,王志良等.新疆西天山阿希金矿床流体包裹体地球化学特征.岩石学报,2007,23(10):2403-2414.
    72.张作衡,毛景文,杨建民等.北祁连加里东造山带塔尔沟矽卡岩-石英脉型钨矿床地质及成因.矿床地质,2002,21(2);200-211.
    73.张作衡,毛景文,杨建民等.甘肃塔儿沟石英脉型钨矿床氢、氧、硫同位素研究.矿床地质,1998,17(增刊):791-794.
    74.张作衡,毛景文,杨建民等.甘肃小柳沟石英脉型钨矿床成矿流体地球化学研究.地球学报,1999,20(增刊):292-297.
    75.赵江天,夏林圻,夏祖春.北祁连山大陆裂谷硅质岩的稀土元素判别.科学通报,1999,44(6):665-669.
    76.赵生贵.祁连造山带特征及其构造演化.甘肃地质学报,1996,5(1):16-29.
    77.赵振华.关于岩石微量元素构造环境判别图解使用的有关问题.大地构造与成矿学,2007,31(1):92-103.
    78.赵振华.稀土元素地球化学研究方法.地质地球化学,1982,1:65-66.
    79.赵振化.微量元素地球化学原理.北京:科学出版社,1997,56-171.
    80.郑永飞,陈江峰.稳定同位素地球化学.北京:科学出版社,2000,143-217.
    81.周廷贵,张道忠,周宏.甘肃小柳沟铜钨多金属矿床地质特征及成因探讨.西北地质,1999,32(3):1-10.
    82.朱和平,王莉娟.四极质谱测定流体包裹体中的气相成分.中国科学D辑,2000,31:586-590.
    83.朱炳泉.地球科学中同位素体系理论与应用-兼论中国大陆壳幔演化.北京:科学出版社,1998,130-135.
    84.朱杰,杜远生.北祁连造山带老虎山奥陶系硅质岩地球化学特征及古地理意义.古地理学报,2007,9(1):69-76.
    85.邹治平,黄传俭.甘肃省肃北蒙古族自治县塔尔沟钨矿矿床特征(内部报告),1988.
    86.左国朝,刘寄陈.北祁连早古生代大地构造演化.1987,地质科学,1:15-24.
    87.左国朝,吴汉泉.北祁连中段早古生代双向俯冲-碰撞造山模式剖析.地质科学进展,1997,12(4):315-232.
    88. Allegre CJ and Hart SR. Trace elements in Ignous Petrology.Developments in Petrology, New Youk,1973,1-50.
    89. Batchelor RA and Bowden P. Petrogenetic interpretation of granitoid rock series using multicationic parameters. Chem Geol,1985,48(1):43-55.
    90. Clayton RN, O'neil JR and Mayeda TK. Oxygen isotope exchange between quartz and water. Geophys Res,1972,77:3057-3067.
    91. Craig JR.Geochemical aspects of the origins of ore deposits review of research on modern problems in geochemistry. Earth Sciences,1979,16.:225-272.
    92. Dosso L, Bougault H, Joron JL. Geochemical morphology of the North-Mid Atlantic Ridge,10-40°N:Trace element isotope complementarity. Earth and Planetary Science Letters,1993,120:443-462.
    93. Elliott T, Plank T, Zindler A, et al. Element transport from slab to volcanic front at the Mariana arc. Journal of Geophysical Research,1997,102:14991-15019.
    94. Feng YM, He SP. Orogen ic process of the Qilian Mountains. Acta Geosci Sinica, Specil Issue,1996,76(2):1-5.
    95. Gehrels GE, Yin A, Wang XF. Magmatic history of the northeastern Tibetan Plateau. Journal of Geophsical Research Solid Eerth,2003,108(B9),2423.
    96. Gill J B. Orogenic Andesites and Plate Tectonics. New York:Springer-Verlag, 1981,390.
    97. Gribble R F, Stern R J, Bloomer S H, et al. MORB mantle and subduction components interact to generate basalts in the southern Mariana Trough back-arc basin. Geochimica et Cosmochimica Acta,1996,60:2153-2166.
    98. Harris NB, Pearce JA and Tindle AG.. Geochemical Characteristics of collision zone magmatism. In Collision Tectonic.ed.by Coaward.M.P.et al.Geol.Soc.Sp.publ,1986.19:67-81.
    99. Hawkesworth CJ, Kempton PD, Rogers NW, et al. Continental mantle lithosphere, and shallow level enrichmeng processes in the Earth's mantle. Earth Planet Sci Lett,1990,96(3/4):256-268.
    100.Hayba DO.Environment of ore deposition in the Creede Mining District, San Juan Mountains, Colorado:Part V. Epithermal mineralization from fluid mixing in the OH vein. Econ. Geol.1997,92:29-44.
    101.Heald P, Floey NK, Hayba DO.Comparative anatomy of volcanic-hosted epithermal deposits:acid-sulfate and adularia-sericite types. Economic Geology, 1987,82:1-26.
    102.Hofmann AW. Mantle geochemistry:the message from oceanic volcanism.1997, Nature,385:219-228.
    103.Hole MJ, Saunders AD, Marriner GF, et al. Subduction of pelagic, sediments: Implications for the origin of Ce-anomalous balsalts from the Mariana islands. Journal of the Geological Society,1984,141:453-471.
    104.John DD, Hofstra AH, Fleck RE. Geological setting and genesis of the Mule Canyon low-sulfidation epithermal goldsilver deposit, northcentral Nevada. Economic Geology,2003,98:425-463.
    105.Kelemen P B, Hanghoj K, Greene A R. One view of the geochemistry of suhduction-related magmatic arcs, with an emphosis on primitive andesite and lower crust. In:Holland HD and Turekian KK (eds). Treatise on geochemistry, Amsterdam:Elsvier,2003,3:593-660.
    106.Le RW. A Classification of Igneous Rocks and Glossary of Terms. Oxford, 1989,193.
    107.Lindgren W. Mineral deposits. New York:McGraw-Hill,4th ed.,1933:930.
    108.Ludwig KR. Using Isoplot/Ex:A geochronnological toolkit for Microsoft Excel. Berkeley Geochronological Center Special Publication,1998,1:1-4.
    109.Meschede MA. A method of discriminating between different types of mid-ocean basalts and continental tholeiites with the Nb-Zr-Y diagram. Chemical Geology, 1986,56:207-218.
    110.Mullen ED. MnO/TiO2/P2O5:a minor element discriminate for basaltic rocks of oceanic environments and its implications for petrogenesis. Earth and Planetary Science Letters,1983,62:53-62.
    111.Ohmoto H, Goldhaber MB. Sulfur and carbon isotopes. In:Barnes, HL ed.Geochemistry of hydrothermal Ore deposits.3rd ed. New York:John Wiley and Sons.1997,517-611.
    112.Ohmoto H., Rye RO..Isotopes of sulfur and carbon In Barnes H L (ed), Geochemistry of hydrothermal ore deposits, John Wiley&Sons, New York.1979. 509-567.
    113.Pearce JA, Norry MJ. Petrogenetic Implications of Ti, Zr, Y, and Nb Variations in Volcanic Rocks. Contrib Mineral Petrol,1979,69:33-47.
    114.Pearce JA and Cann JR. Tectonic setting of basic volcanic rocks determined using trace element analyses. Earth and Planetary Science Letters,1973,19(6): 290-300.
    115.Pearce JA, Harris NB and Tindle AG. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology,1984,25(4): 956-983.
    116.Roedder E, Bodnar RJ. Geologic pressure determinations from fluid inclusion studies. Ann Rev Earth Plannet Sci,1980,8:263-301.
    117.Roedder E. Fluid-inclusion evidence on the genesis of ores in sedimentary and volcanic rocks. In:Wolf KHedH and Book of Strata-bound and Stratiform Ore Deposits I 2. Amsterdam:Elsevier Scientific Publishing Company,1976, 76-110.
    118.Roedder E.F luid inclusions as samp les of o re fluids. In:Barnes H L ed. Geochem istry of H y d rotherm al O reD ep osits. N ew York:A Wiley
    Interscience Publication,1979,684-737.
    119.Roedder E.Fluid inclusion.Reviews in mineralogy.1984,12:644.
    120.Roedder E. Fluid-inclusion evidence Oll the genesis of ores in sedimentary and volcanic rocks//Wolf K H. Handbook of Strata-bound and S-atifom Ore Deposits:I. Principles and GeneralStudies:Vol.2, Ge ochemical Studies. New York:Elsevier,1976,67-110.
    121.Rollinson HR. Using Geochemical Data:evaluation, presentation, interpretation. Harlow, UK:Longman Group Pub,1993,352.
    122.Runick R, Gao S, Ling W, et al. Petrology and geochemistry of spinel peridotite xenoliths from Hannuoba and Qixia, North China craton. Lithos,2004,77: 609-637.
    123.Samson Iain M., Bas Bulent, Holm Paul E.Hydrothermal evolution of auriferous shear zones,Wawa, Ontario.Economic Geology,1997,92(3):325-342.
    124.Saunders AD, Norry MJ, Tamey J. Origin of MORB and chemically depleted mantle reservoirs:trace element constraints. Journal of Petrology, Special Lithosphere Issue,1988,29:425-445.
    125.Sheng XJ, Wang JA, Zhang JM. Controlling mechanism of sedimentation-burial history on oil-gas maturation history--A case study in Qaidam Basin. Science in China.1995, B(5):1747-5457.
    126.Song S G, Niu Y, Zhang L, et al. Tectonic evolution of Early Paleozoic HP metamorphic rocks in the North Qilian Mountains, NW China:New perspectives. Journal of Asian Earth Science,2009,35:334-353.
    127.Song SG, Zhang L, NiuYL, et al. Evolution from oceanic subduction to continental collision:A case study of the Northern Tibetan Plateau based on geochemical and geochronological data. Journal of Petrology,2006,47: 435-455.
    128.Song SG, Zhang LF, Niu Y, et al. Eclogite and carpholite-bearing metapelite in the North Qilian suture zone, NW China:implications for Paleozoic cold oceanic subduction and water transport into mantle. Journal of Metamorphic Geology, 2007,25:547-563.
    129.Song XY, Zhou MF, CaoZM, et al. Late Permian rifting of the South China Craton caused by the Emeishan mnatle plume?. J Geol Soc London,2004,161: 773-781.
    130.Sun SS, McDonough WF. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In:Saunders, A. D., eds., Magmatism in the ocean basins. Geol Soc London Spec Pub,1989,42:313-345.
    131.Taylor B E. Degassing of H20 from rhyolite magma during eruption and shallow intrusion, and the isotopic composition of magmatic water in hydrothermal systems. In Hedenquist J W(eds). Magmatic contributions to hydrothermal systems:Geological Survey of Japan,1992,190-194.
    132.Taylor H P Jr. O18/O16 evidence of meteoric-hydrothermal alteration and ore deposition in the Tonopah, Comstock Lode and goldfield mining districts. Nevada:Economic Geology,1973,68:747-764.
    133.Taylor SR, McLennan SM. The continental crust:Its composition and evolution. Oxford:Black-well,1985,1312.
    134.Wu H, Feng Y, Song S. Metamorphic deformation of blueschist belts and their tactonic implications in North Qilian Mountains. China JMetamorphic Geol, 1993,11:523-536.
    135.Wang Y, Sasaki M, Sasada M, et al. Fluid inclusion studies of the Chinkuashih high-sulfidation gold-copperdeposits in Taiwan. Chemical Geology,1999,154: 155-167.
    136.White E D.Diverse Origins of Hydrothermal Ore Fluids. Economic Geology, 1974,6(6).
    137.Wilkinson J.Fluid inclusions in hydrothermal ore deposit.Lithos,2001, 55:229-272.
    138.Winchester JA, Floyd PA. Geochemical discrimination of different magmas series and their differentitation products using immobile elements. Chemical Geology,1977,20:325-343.
    139.Xia LQ, Xia ZC,.Zhao JT. Determination of properties of Proterozoic continental flood basalts of western part from North Qilian Mountains. Science in China.Ser.D,1999, (5):1292-1306.
    140.Xia LQ, Xia ZC, Xu XY.2003. Magmagenesis in the ordovician backarc basins of the Northern Qilian Mountains, China. Geological Society of America Bulletin,115(12):1510-1522.
    141.Yang K, Scott S D. Possible contribution of a metal rich magmatic fluid to a sea floor hydrothermal system. Nature,1996,38(3):420-423.
    142.Zhang JX, Meng FC, WanYS. A cold Early Palaeozoic subduction zone in the North Qilian Mountains, NW China:Petrological and U-Pb geochronological constraints. Journal of Metamorphic Geology,2007,25:285-304.
    143.Zhang Qi, Chen Yu, Zhou Dejin. Geochemical characteristics and genesis of Dachadaban ophiolite in North Qilian area. Science in China Ser.D,1998,41(3): 1006-9313
    144.Zhu YF. Zeng YS and Jiang N. Geochemistry of the ore-forming fluids in gold deposi-from the Taihang Mountains, Northern China. International Geology Review,2001,43:457-473.
    145.Zindler A, Hart S. Chemical geodynamics. Ann Rev Earth Planet Sci,1986, 14:493-571.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700