用户名: 密码: 验证码:
自主式车辆环境感知技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着计算机电子技术与自动控制技术的发展,智能化移动平台越来越广泛地应用于军事、民用和科学研究等诸多领域。自主式车辆作为20世纪伟大的发明之一,也日益成为各国高科技战略研究的目标之一。同时,自主式车辆技术的发展促进了自动控制、模式识别、智能系统集成、传感器融合等多种学科以及信息科学技术的发展。基于计算机视觉的道路环境理解技术的研究是自主式车辆的关键技术之一,也是智能技术发展中具有挑战性意义的课题之一。尽管自主式车辆技术经过众多研究者们的深入钻研,然而许多问题仍然没有得到很好的解决,其主要原因来自于环境复杂度以及相关环境干扰因素的增加。针对这些情况,本文针对较多的道路场景进行了深入研究,主要取得的创新性研究成果包括:扩散区域Hough方法道路检测;非结构化道路环境中基于形状模型的模糊聚类分割方法(SMFCM);基于粒子群算法的道路检测新算法;以及视觉动态模型为基础的道路跟踪算法等。具体情况如下:
     本文针对结构化道路环境的特征,提出了一种在全局特征信息层面,基于道路边界扩展区域Hough变换的道路识别方法。对于道路环境中干扰的因素,该方法融合了道路边缘的形态特征和扩散区域在Hough空间中的全局辅助性信息。同时在实验中利用其它传感器融合模块的道路方向估计参数和部分先验的知识降低计算的复杂度,提高应用的实时性。大量的实验证明该方法在结构化和非结构化道路环境中,对道路边缘的识别有较好的作用,对于克服道路环境中干扰(阴影、不规则光照等)因素具有良好的效果和实用价值。
     针对非结构化道路环境的理解,本文提出了一种新的SMFCM算法。该算法利用了道路图像中道路几何的结构特征,构造了基于形状的关系隶属度矩阵,将传统的模糊聚类算法改进成了基于形状模型的模糊聚类算法。该SMFCM算法中的某些参数与道路图像环境相关。通过对较多干扰道路环境的实验,证明了该算法改进了非结构化道路环境中道路分割的效果,具有应用与研究价值。
     为了更精确地检测道路边缘,减少光照阴影、边缘信息模糊等造成的影响,本文提出了一种基于粒子群算法的道路检测新方法。该方法以直线变形模型为基础,在先验知识的辅助下定义了后验概率分布描述道路结构特征,利用粒子群优化算法搜索最优解。同时,针对特殊道路图像设定感兴趣友谊区域,以减低问题计算的复杂度。大量的实验证明本文算法实现了较为准确的道路边缘或者行道线的检测,能够有效地减少噪声因素的影响。
     在车辆运动连续性特征的基础上,结合道路环境与观测视觉的关系,本文提出了一种基于视觉动态模型的道路检测算法。首先,在道路边缘相互平行的假设条件下,仍然引用了直线变形模型来近似道路几何结构,将道路检测问题等价为一个基于先验知识的最大后验概率问题。其次,利用摄像机观测模型,车辆的状态与图像平面的模型参数之间的关系得到建立。同时在自主式车辆运动环境的基础上,建立关于运动状态的动态模型。处理过程中,由于后验概率密度函数的非凹性,使用了粒子群优化算法对采集到的第一帧图像的模型参数进行估计,将其结果作为后续动态模型初始化条件。利用非线性、非高斯等优点,使用了粒子滤波方法对连续图像序列中道路形状以及车辆的状态进行回归估计。该方法的提出能够有效地处理道路边缘特征信息不强、行道线有较多不连续性等状况,大量的实验证明该方法具有较好的应用价值。
With the the development of computer electronics and autocontrol technology, intelligent moving systems are more and more widely applied to military affairs, civil utilizes, scientific fields and so on. As one of the 20th-century great inventions, autonomous vehicles are also becoming the research object for strategic high techniques all over the world. Meanwhile, they have promoted the development of many subjects such as Pattern Recognition, Intelligent Systems Integration, Sensors Fusion. As one of the key orientation, Computer Vision based road surroundings apperceiving technology is the challenging problem for intelligent technologies as well. Although many efforts have been put on Autonomous-Vehicle technology by lots of researchers, there remain some questions unsolved. The main reason is due to the increasing complexity and interfering factors for the environment. In terms of the above situation, deep research and study are carried out for many different road circumstances in this thesis, including Diffused Region of Hough method, Shape-Modeling FCM on Unstructured Roads, New Approach to Road Detection Based on Particle Swarm Optimization, and Vision Dynamic Modeling based on Road Tracking and Detection. They are introduced in details as follows:
     According to the characteristics of structured road environment, a Diffused Region based Hough Algorithm at global information level is proposed. As for the interfering factors of the road surroundings, the method incorporates road edge modality hint and general assistant information for the diffused region in Hough space. Meantime, Orientation estimation from other sensors and knowledge from previous experience could be utilized to decrease the time and computation complexity in experiments. Experiments specify the favorable performance on road edge identification and the effective immunity to interference with regard to structured and unstructured circumstances.
     Concerning the unstructured environment understanding for different roads, our thesis introduces a SMFCM (Shape-Modeling FCM) algorithm, which combines road geometry feature for the sampled images. This algorithm structures shape trait based membership matrix, which improved as shape-modeling fuzzy clustering algorithm. Besides, some parameters of the SMFCM are connected with the road scenes. Through experiments on many road images with more interference, this method is proved as preferable performance on unstructured roads and the promising value in actual applications.
     To get more accurate detection and understanding on road edges, and reduce the bad effect caused by shadows, blurred edge features, etc., a novel method is put forward. This algorithm is based on line deformable model, and defines a posteriori likelihood matching function with Priori information. Particle Swarm Optimization (PSO) is also applied to search the optimal solution in feature space. Furthermore, a friendly region associated with images is defined to decrease computation difficulties and other interfering factors. Experiments show the satisfactory impression for edge or lane recognition, and the ability to avoid the bad infection led by noise.
     Vision Dynamic Modeling based road tracking and identification mainly integrates the relation of road observation, and our thesis introduces a new algorithm with the continuity characteristic of object motion. Firstly, under the hypothesis of road edges being parallel, line deformable model is used to depict the road structure and road recognition is viewed as the problem of posterior likelihood probability all the same. Secondly, observation model for the camera is utilized to construct the relation between the vehicle state and model parameters in the image plane. Meanwhile, dynamic model for motion state is established in base of the vehicle environment. During the process of the algorithm, due to the non-concavity of the posterior likelihood function, PSO could be used to estimate the model parameters for the sampled first frame image, of which the results are employed as the initialization conditions for the motion model. With the non-linear and non-Gaussian merits, Particle Filtering (PF) is applied to reckon the road shape and vehicle state recursively. This method is proved to settle efficiently the road recognition under the condition of faint edge feature and discontinuous lanes, etc.
引文
[1]Wilcox B., et al. Robotic Vehicles for Planetary Exploration. Proceedings of IEEE International Conference on Robotics and Automation, pp.175-180,1992.
    [2]Franke U, Mehring S, Suissa A, Hahn S. The Daimler-Benz Steering Assistant-a Spin-off from Autonomous Driving.Proc.of Symp.on Intelligent. Vehicles'94, Paris, Oct.1994.
    [3]Hariyama M, Takeuchi T, Kameyama M. Reliable Stereo Matching for Highly-Safe Intelligent Vehicles and Its VLSI Implementation. Proceedings of the IEEE Intelligent. Vehicle Symposium,2001.
    [4]Bishop R. A Survey of Intelligent Vehicle Applications Worldwide. IEEE Intelligent Vehicle Symposium.3:25-30,2003.
    [5]Verburg D J, Van der Knaap, et al. Developing and Testing Intelligent Vehicles. IEEE Intelligent Vehicles,2:537-544,2002.
    [6]Baber J., et al. Cooperative autonomous driving:intelligent vehicles sharing city roads. IEEE Robotics & Automation Magazine,12(1):44-49,2005.
    [7]孙涵,任明武,唐振民,杨静宇.基于机器视觉的自主式车辆导航综述.公路交通科技,22(5):132-135,2005.
    [8]李斌等.中国智能公路磁诱导技术研究进展.公路交通科技,21(11):66-69,2004.
    [9]杨殿阁等.智能交通系统中的汽车技术.汽车工程,25(3):223-226,2003.
    [10]王荣本,李兵,施树明,李斌.世界自主式车辆研究概述.18(5):92-97,2001.
    [11]Andresen F P, et al. Visual Algorithms for Autonomous Navigation. In Proc. of IEEE Int'l Conf. on Robotics and Automation, pp. 856-861,1985.
    [12]Thorpe C, et al. Smart Cars:The CMU Navlab. in Proc. of World Med,1993.
    [13]Hitchcock A. Configuration and Maneuvers in Safety-Consciously Designed AHS Configuration, in tech. report UCB-ITS-PWP-95-2, University of California(Berkeley),1995.
    [14]Shoemaker C M, Bomstein J A. Overview of the Demo III UGV Program. In Part of the SPIE Conf. on Robotic and Semi-Robotic Ground Vehicle Technology, pp.202-211, 1998.
    [15]Ran B, Liu H X. Development of Vision-Based Vehicle Detection and Recognition System for Intelligent Vehicles. In 1999 TRB Annual Meeting, University of Wisconsin at Madison:Madison, WI,1999.
    [16]Shladover S E, et al. Automated Vehicle Control Developments in The PATH Program. IEEE Trans. on Vehicular Technology,40(1):114-130,1991.
    [17]Brusaglino G. Safe and Effective Mobility in Europe-the contribution of the PROMETHEUS Program, in IEE Colloquium on Prometheus and Drive, pp.101-110,1992.
    [18]Bertozzi M, Broggi A, Fascioli A. Vision-based Intelligent Vehicles:State of the art and Perspectives. Robotics and Autonomous Systems,32:1-16,2000.
    [19]Maurer M, Behringer R, Thomanek F, Dickmanns E D.,A Compact Vision System For Road Vehicle Guidance, In Proceedings Of The 13th International Conference on Pattern Recognition, Vienna, Austria,1996.
    [20]Bertozzi M, Broggi A. GOLD:a Parallel Real-time Stereo Vision System for Generic Obstacle and Lane Detection. IEEE Trans. on Image Processing,7(1):62-81,1998.
    [21]Broggi A, Bertozzi M, Fascioli A. ARGO and The Millemiglia In Automatico Tour, In Proceedings Of The IEEE Intelligent Systems,14(1):55-64,1999.
    [22]Bertozzi M, Broggi A. GOLD:A Parallel Real-Time Stereo Vision System for Generic Obstacle And Land Detection, IEEE Transaction On Image Processing,7(1):62-81,1998.
    [23]Committee on Army Unmanned Ground Vehicle Technology. Technology Development for Army Unmanned Ground Vehicles:The National Academies Press,2002.
    [24]Tokoro S, Moriizumi K, Kawasaki T, Nagao T. Sensor Fusion System For Pre-crash Safety System.IEEE. Intelligent Vehicles Symposium, University of Parma, (1):945-950, 2004.
    [25]张朋飞等.多功能室外智能移动机器人实验平台-THMR-Ⅴ.机器人,24(2):97-101.2002.
    [26]孙振平,安向京,贺汉根.CITAVT-Ⅳ—视觉导航的自主车.机器人,24(2):115-121.2002.
    [27]王荣本等.一种视觉导航的实用型AGV设计.机械工程学报,38(11):135-138,2002.
    [28]Li Q, Zheng N, Cheng H. Springrobot:a Prototype Autonomous Vehicle and its Algorithms for Lane Detection. IEEE Trans. on Intelligent Transportation Systems, 5(4):300-308,2004.
    [29]Tzeler M L, Dickmanns E D. Road Recognition with Marveye, In:Proceedings of The IEEE Intelligent Vehicles Symposium'98, Stuttgart, Germany. pp.341-346,1998.
    [30]杨明等.基于视觉的道路跟踪.模式识别与人工智能,14(2):186-193,2001.
    [31]欧青立,何克忠.室外智能移动机器人的发展及其关键技术研究.机器人,22(6):519-526.2000.
    [32]Huang H M, Albus J, Messina E. Specifying Autonomy Levels for Unmanned Systems: Interim Report. in Proc. of SPIE on Unmanned Ground Vehicle Technology Ⅵ, pp.386-397, 2004.
    [33]Marr D. Vision:A Computational Investigation into The Human Representation and Processing of Visual Information. W.H.Freeman and Company, San Francisco. pp.54-79, 1982.
    [34]杨明等.基于视觉的道路跟踪.模式识别与人工智能,14(2):186-193,2001.
    [35]Pomerleau D. RALPH:Rapidly Adapting Lateral Position Handler. In IEEE Sym. on Intelligent Vehicles, pp.506-511,1995.
    [36]Crisman J, Thorpe C. SCARF:A Color Vision System that Tracks Roads and Intersections. IEEE Trans. on Robotics and Automation,9(1):49-58,1993.
    [37]Crisman J, Thorpe C. UNSCARF, A Color Vision System for the Detection of Unstructured Roads. in Proc. of IEEE Int'l Conf on Robotics and Automation, pp.2496-2501, 1991.
    [38]Crisman J, Thorpe C. Color Vision for Road Following. in Proc. of SPIE Conf. on Mobile Robots, pp.246-249,1988.
    [39]陆建业.基于单目视觉的校园道路检测研究.硕士学位论文,清华大学,2000.
    [40]Turk M A, Morgenthaler D G, Gremban K D, Marra M. VITS:A Vision System For Autonomous Land Vehicle Navigation. IEEE Transaction on Pattern Analysis and Machine Intelligence,10(3):342-361,1988.
    [41]Kim K I, et al. An Autonomous Land Vehicle PRV II:Progresses and performance enhancement. In Proc. of the IEEE Intelligent Vehicles Sym., pp.264-269,1995.
    [42]Kuehnle A. Symmetry-based Recognition for Vehicle Rears. Pattern Recognition Letters,12(4):249-258,1991.
    [43]Mori H, Charkai N, Matsushita T. On-line Vehicle and Pesestrian detections based on sign pattern. IEEE Transactions on Industrial Electronics,41(4):384-391,1994.
    [44]Buluswar S D, Draper B A. Color Machine Vision for Autonomous Vehicles. Int'l J. of Engineer Applications of Artificial Intelligence,1(2):245-256,1998.
    [45]Kalinke T, Tzomakas C, Seelen W V. A Texture-Based Object Detection and an Adaptive Model-Based Classification, In Proc. of the IEEE Int'l Conf. on Intelligent Vehicles, pp.143-148,1998.
    [46]Handmann U, Kalinke T, Tzomakas C, Werner M, Seelen W. An Image Processing System for Driver Assistance. Image and Vision Computing,18(5):367-376,2000.
    [47]Bensrhair A, Bertozzi M, Broggi A, Miche P, Mousset S, Moulminet G. A Cooperative Approach to Vision-Based Vehicle Detection. IEEE Intelligent Transportation Systems, pp. 209-214,2001.
    [48]Wu J, Zhang X. A PCA Classifier and Its Application in Vehicle Detection. in Proc. IEEE Int'l Joint Conf. Neural Networks,2001.
    [49]Matthews N, An P, Charnley D, Harris C. Vehicle Detection and Recognition in Greyscale Imagery. Control Eng. Practice,4:473-479,1996.
    [50]Goerick C, Detlev N, Werner M. Artificial Neural Networks in Real-Time Car Detection and Tracking Applications. Pattern Recognition Letters, vol.17, pp.335-343,1996.
    [51]Noli D, Werner M, Seelen W. V. Real-Time Vehicle Tracking and Classification. Intelligent Vehicles, pp.101-106,1995.
    [52]Sun Z H, Bebis G, Miller R. On-Road Vehicle Detection Using Gabor Filters and Support Vector Machines. Proc. of the 14th IEEE International Conference on Digital Signal Processing. IEEE Press:pp.1019-1022,2002.
    [53]Sukthankar R. RACCOON:A Real-time Autonomous Car Chaser Operating Optimally at Night. in Proceedings of the IEEE Intelligent Vehicles Symposium, pp.37-42,1993.
    [54]Dima C, Active Learning for Outdoor Perception, doctoral dissertation, Carnegie Mellon University,2006.
    [55]Knoll P, Schaefer B, Guettler H, Bunse M, Kallenbach R. Predictive Safety System Steps Towards Collision Mitigation. SAE Technical Paper,2004.
    [56]Ewald A, Willhoeft V. Laser Scanners for Obstacle Detection in Automotive Applications, In Proc. of the IEEE Intelligent Vehicles Symposium, pp.682-687,2000.
    [57]Zhao H, Shibasaki R.A Novel System for Tracking Pedestrians using Multiple Single-row Laser Range Scanners. IEEE Trans. on Systems, Man and Cybernetics,35(2): 283-291,2005.
    [58]Pai C, Tyan H, Liang Y, Liao H, Chen S. Pedestrian Detection and Tracking at Crossroads. in Proc. of IEEE Intl. Conference on Image Processing, pp.101-104,2003.
    [59]Kang S, Byun H, Lee S. Real-Time Pedestrian Detection Using Support Vector Machines. Intl. Journal of Pattern Recognition and Artificial Intelligence,17(3):405-416, 2003.
    [60]Cutler R, Davis. L. Robust Real-time Periodic Motion Detection, Analysis and Applications, IEEE Transactions on Pattern Analysis and Machine Intelligence,22(8): 781-796,2000.
    [61]Bertozzi M, Broggi A, Fascioli A, Tibaldi A. Pedestrian Localization and Tracking System with Kalman Filtering. IEEE Intelligent Vehicles Symposium, pp.584-589,2004.
    [62]Broggi A, Fascioli A, Carletti M, Meinecke T. A Multi-Resolution Approach for Infrared Vision-Based Pedestrian Detection. IEEE Intelligent Vehicle Symposium, pp.7-12, 2004.
    [63]Milch S, Behrens M. Pedestrian Detection with Radar and Computer Vision. PAL Symposium, Darmstadt University of Technology, Smart microwave sensors GmBH,2001 URL:http://www.smartmicro.de/Pedestrian Detection.pdf
    [64]URL:http://www.asim.ch/e/traffic/index.htm
    [65]金力生等.基于区域生长的智能车辆阴影路径图像分割方法.吉林大学学报(工学版),36(增刊):pp.132-135,2006.
    [66]Guillou E, Meneveaux D, Maisel E. Using Vanishing Point for Camera Calibration and Coarse 3D Reconstruction from a Single Image. The Visual Computer,16(7):396-410,2000.
    [67]Achour K, Benkhelif. A New Approach to 3D Reconstruction without Camera Calibration. Pattern Recognition,34(12):2467-2476,2001.
    [68]Okada R., et al. Obstacle Detection Using Projective Invariant and Vanishing Lines. in Proc. of the Nineth IEEE Int'l Conf. on Computer Vision, pp.330-337,2003.
    [69]Simond N, Rives P. Homography from a Vanishing Point in Urban Scenes. In Proc. of IEEE/RSJ Int'l Conf. on Intelligent Robots and Systems, pp.1005-1010,2003.
    [70]Zhang A M, Russell R A. Dominant Orientation Tracking for Path Following. in IEEE/RSJ Int'l Conf. on Intelligent Robots and Systems, pp.3885-3889,2005.
    [71]Barnard S T. Interpreting Perspective Images. Artificial Intelligence,21:435-462, 1983.
    [72]Rother C. A New Approach for Vanishing Point Detection in Architectural Environments. Proc. British Machine Vision Conf,2002.
    [73]Shufelt J A. Performance Evaluation and Analysis of Vanishing Point Detection Techniques. IEEE Trans. Pattern Analysis and Machine Intelligence,21(3):282-288,1999.
    [74]杨磊,郭木河,何克忠.基于径向基神经网的消失点估计.计算机学报,22(4):383-389.1999.
    [75]Collins R T. Model Acquisition Using Stochastic Projective Geometry[PhD thesis]. Department of Computer Science, University of Massachusetts,1993.
    [76]艾海舟.关于移动机器人自主式系统的研究[博士学位论文],清华大学计算机科学与技术系,北京,1991.
    [77]Liu H J, Guo Z B, Lu J F, Yang J Y. A Fast Method for Vanishing PointEstimation and Tracking and Its Application in Road Images. The 6th International Conference on ITS Communications, Chengdu, China, pp.106-109,2006.
    [78]Bezdek J C. Pattern Recognition with Fuzzy Objective Function Algorithms[M]. Norwell, MA, USA:Kluwer Academic Publisher,1981.
    [79]Sahoo P K, Soltani S, A. Wong K C, Chen Y C. A Survey of Thresholding Techniques, Computer Vision, Graphics, and Image Processing,41(2):233-260, Feb,1988.
    [80]Canny J F. A Computational Approach to Edge Detection. IEEE transactions on Pattern Analysis and Machine Intelligence,8(6):679-698,1986.
    [81]Nilsson N J. Principles of Artificial Intelligence. Springer Verlag, Berlin,1982.
    [82]Pontriagin L S. Optimal Control and Differential Games:Collection of Papers. American Mathematical Society, Providence,1990.
    [83]Bruel E. Precision of Line Following in Digital Images. [PhD thesis], ETN-89-933329, Technique University, Delft, The Netherlands,1988.
    [84]Cheng H D, Sun Y. A Hierarchical Approach to Color Image Segmentation Using Homogeneity, IEEE Transactions on Image Processing,9(1):2071-2082,2000.
    [85]Hagyard D, RaZaz M, Atkin P, et al. Analysis of Watershed Algorithms for Grayscale Images. In Proeeedings of IEEE Intenational Conefernce on Image Proeessing, Lausanne Switzerland,3:41,1996.
    [86]Roerdink B J, Meijster A. The Watershed Transform:Definitions, Algorithms, and Parallelization Strategies. Fundamenta Informaticae,41:187-228,2000.
    [87]Coleman G B, Andrews H C. Image Segmentation by Clustering. Proceedings of the IEEE,5(67):773-785,1979.
    [88]Pal S K, King R A. Image Enchancement Using Smoothing with Fuzzy Sets. Electronics letters,16:376-378,1980
    [89]Dunn J C. A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well Separated Cluster. Journal of Cybernet,3:32-57,1974.
    [90]Bezdek J C. Pattern recognition with Fuzzy Objective Function Algorithms, Norwell, MA, USA:Kluwer Academic Publishers,1981.
    [91]Karmakar G C, Dooley L S. A Generic Fuzzy Rule Based Image Segmentation Algorithm. Pattern Recognition Letters,23:1215-1227,2002.
    [92]Liew A W C, Yan H. An Adaptive Spatial Fuzzy Clustering Algorithm for 3-D MR Image Segmentation. IEEE Trans, on Medical Imaging,22(9):1063-1075,2003.
    [93]Liew A W C, Leung S H, Lau W H. Fuzzy Image Clustering Incorporating Spatial Continuity. IEE Proceedings-Vision,Image,Signal Process,147(2):185-192,2000.
    [94]Karmakar G C, Dooley L A. Generic Fuzzy Rule Based Technique for Image Segmentation. In:Proceedings(ICASSP'01)of IEEE International Conference on Acoustics, Speech, and Signal Processing. Salt Lake City, UT USA,3:1577-1580,2001.
    [95]Tolias Y A. Panas S M. On Applying Spatial Constraints in Fuzzy Image Clustering Using a Fuzzy Rule-Based System. IEEE Signal Processing Letters,5(10):245-247,1998.
    [96]Pham D L. Spatial Models for Fuzzy Clustering. Computer Vision and Image Understanding,84:285-297,2001.
    [97]Yamada M, Ueda K, Horiba I, Sugie N. Discrimination of the Road Condition Toward Understanding of Vehicle Driving Environments. IEEE Transactions on Intelligent Transportation System,2(1):26-31,2001.
    [98]Roman C, Reinholtz C. Robust Course-boundary Extraction Algorithms for Autonomous Vehicles. IEEE Expert, Intelligent System&Their Application,13(6):32-39, 1998.
    [99]Aufrere R, Chapuis R, Chausse F. A Model-driven Approach for Real-time Road Recognition. Springer-Verlag:Machine Vision and Application,13:95-107,2001.
    [100]Land A H, Doig A G. An automatic method for solving discrete Programming Problems, Econometrica,28:497-520,1960.
    [101]Barnhart C, Johnson E L, Nemhauser G L, Savelsbergh M W P, Vance P H. Branch-and-Price:column generation for solving huge integer Programs. Operations Research,46:316-329,1998.
    [102]McCusker S A, Hobbs B F, Ji Y D. Distributed utility Planning using Probabilistic Production costing and generalized benders decomposition. IEEE Transactions on Power Systems,17(2):497-505,2002.
    [103]Heinonen J, Pettersson F. Scheduling a Specific Type of Batch Process with Evolutionary Computation. The Congresson Evolutionary Computation,2:966-970,2003.
    [104]ChenY B, Yao J H, Zhong Y F. Ant System Based Optimization Algorithm and Its Applications in Identical Parallel Machine Scheduling. Journal of systems engineering and electronics,13(3):78-85,2002.
    [105]Luenberger D G. Introduction to Linear and Nonlinear Programming. Addison-Wesley, 1973(中译本)
    [106]Fletcher R. Practical methods of Optimization, Vol.1:Unconstrained Optimization. New York:John Wiley& sons,1980.
    [107]Glover F, Laguna M, Marti R. Scatter Search. Advances in Evolutionary Computation: Theory and Applications, Springer-Verlag, NewYork, pp:519-537,2003.
    [108]KirkPatric S, Gelatt C D, Vecchi M P. Optimization by Simulated Annealing. Science, 220:671-680,1983.
    [109]段海滨.蚁群算法原理及其应用,科学出版社,2006.
    [110]Srinivas M, Patnail L M. Adaptive Probabilities of Crossover and Mutation in Genetic Algorithms. IEEE Trans System, Man and Cybernet,24(4):656-667,1994.
    [111]Stutzle T, Hovs H. MAX-MIN Ant System. Future Generation Computer System, 16(8):889-914,2000.
    [112]Hollnad J H. Adpatation in Natural and Artificial Systems, The Univesity Of Michigan Press,1975.
    [113]Potts J C, Terri D, et al. The Development and Evaluation of an Improved Genetic Algorithm Based on Migration and Artificial Selection. IEEE Trans. on System, Man, and Cybernetics,24(1):73-86,1994.
    [114]Kennedy J, Eberhart R C, Shi Y. Swarm Intelligence. San Francisco:Morgan Kaufman Publishers,2001.
    [115]Shi Y H, Eberhart R C. Parameter Selection in Particle Swarm Optimization. In: Proceedings of Annual Conference on Evolutionary Programming, San Diego,1998.
    [116]Eberhart R C, Kennedy J. A New Optimizer Using Particle Swarm Theory. Proc.6th Int. Symp. Micro Machine and Human Science:39-43,1995.
    [117]Millonas M M. Swarms Phase Transition and Collective Intelligence [M]. MA:Addison Wesley,1994.
    [118]Engelbrecht A P, Ismail A. Training Product Unit Neural Networks. Stability Control: Theory Appl.,2(1):59-74,1999.
    [119]Huang T, Mohan A S. A Hybrid Boundary Condition for Robust Particle Swarm Optimization. IEEE Antennas and Wireless Propagation Letters,4(1):112-117,2005.
    [120]Dickmanns E D, Mysliwetz B D. Recursive 3-D Road and Relative Ego-state Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence,14(2): 199-213,1992.
    [121]Dickmanns E D. Dynamic Vision for Intelligent Motion Control. Proc. IEEE-Workshop on Intelligent Motion Control:67-74,1990.
    [122]Cedras C, Shah M. Motion-based recognition:A Survey. Image and Vision Computing,13:129-154,1995.
    [123]Thompson W B, Mutch K M, Berzins V A. Analyzing object motion based on optical flow. In 7th International Conference on Pattern Recognition,791-794,1984.
    [124]Alatan A A, Onural L, Wollborn M, Mech R, et al. Image Sequence Analysis for Emerging Interactive Multimedia Services-the European cost 211 framework. IEEE Trans.on Circuits and Systems for Video Technology,8(7):802-813,1998.
    [125]Mae Y, et al. Optical flow based realtime object tracking by Active Vision System. In:Proc. of 2N DJapan-France Congress on Mechatronics,545-548,1994.
    [126]RanGarajan K, Shah M, Brackle D V. Optimal Corner Detector. Computer Vision, Graphics, and Image Processing,48(2):230-245,1989.
    [127]Jain R, Kasturi R, Schunck B G. Machine Vision. MC-Graw-Hill, New York,1995.
    [128]刘鑫,刘辉,张振平,耿续涛.混合高斯模型和帧间差分相融合的自适应背景模型.中国图形图像学报,(4),2008.
    [129]Horn B K P, Schunk B. Determining Optical Flow. Artificial intelligence,17:185-204, 1981.
    [130]Horn B K P. Robot Vision. MIT Press, Cambridge, MA,1986.
    [131]Saha A, Mukherjee J, Sural S. New Pixel-decimation Patterns for Block Matching in Motion Estimation. Image Communication.23(10):725-738,2008.
    [132]Fukunaga K, Hostetler L D. The Estimation of the Gradient of a Density Function with Applications in Pattern Recognition. IEEE Transaction on Information Theory,21(1): 32-40,1975.
    [133]Yang C, Duraiswami R, Davis L. Efficient Mean-Shift Tracking via a New Similarity Measure. In Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition,1:176-183,2005.
    [134]Kalman R E. A new Approach to Linear Filtering and Prediction Problem Trans. ASME-Journal of Basic Engineering,82:35-45,1960.
    [135]Goodwind G C.自适应滤波.预测与控制.科学出版社,1992.
    [136]Hung Y S, Ho H T. A Kalman Filter Approach to Direct Depth Estimation Incorporating Surface Structure. IEEE Transactions on Pattern Analysis and Machine Intelligence,21(6):570-575,1999.
    [137]Peterfreund N. Robust Tracking of Position and Velocity with Kalman Snakes. IEEE Transactions on Pattern Analysis and Machine Intelligence,21(6):564-569,1999.
    [138]马波,张田文,李培华.基于HMM的卡尔曼蛇跟踪.计算机辅助设计与图形学学报,15(10):1236-1241,2003.
    [139]Jang D S, Choi H I. Active Models for Tracking Moving Objects. Pattern Recognition, 33(7):1135-1146,2000.
    [140]Ehrman L M, Lanterman A D. Extended Kalman filter for Estimating Aircraft Orientation from Velocity Measurements, Radar, Sonar& Navigation,2(1):12-16,2008.
    [141]Kitagawa G. Carlo M. Filter and Smoother for Non-Gaussian Nonlinear State Space Models, Journal of Computational and Graphical Statistics,5(1):1-25,1996.
    [142]Doueet A, GodsillS J, Andrieu C. On Sequential Monte Carlo Sampling Methods for Bayesian Filtering. Statistics and Computing,10(3):197-208,2000.
    [143]Gordon N J, Salmond D J, Smith A F M. Novel Approach to Nonlinear Non-Gaussian Bayesian State Estimation, In IEE Proceedings on Radar and Signal Processing,140(2):107-113,1993.
    [144]Eberhart R. C, Kennedy J. A New Optimizer Using Particle Swarm Theory, in Proc. 6th Int. Symp. Micro Machine and Human Science, Nagoya, Japan, pp. 39-43,1995.
    [145]Engelbrecht A P, Ismail A.Training Product Unit Neural Networks, Stability Control: Theory Appl.,2(1):59-74,1999.
    [146]Caprile B, Torre V. Using Vanishing Points for Camera Calibration. Journal of Computer Vision.4:127-140,1990.
    [147]Giachetti A, Campani M, Torre V. The Use of Optical Flow for Road Navigation. IEEE Trans. on Robotics and Automation,14(1):34-48,1998.
    [148]Franke U, Gavrila D, Gorzig S, Lindner F, Puetzold F, Wohler C. Autonomous Driving Goes Downtown, IEEE Intelligent Systems and their Applications,13(6):40-48, 1998.
    [149]Liow Y T. A Contour Tracking Algorithm That Preserves Common Boundaries Between Regions. CVGIP-Image Understanding,53(3):313-321,1991.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700