用户名: 密码: 验证码:
牛肉物理特性与品质的检测方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了牛肉的物理特性及品质的检测方法,并进行了牛肉的物理特性与品质之间的相关性研究。为探寻牛肉组织导电特性的变化规律,本文对牛肉的复阻抗频率谱进行了研究,实现了牛肉组织电特性参数的估计,为后续牛肉电特性检测电路提供合适的定值电阻。研究了牛肉的导电性与其品质的相关性,利用电导率预测牛肉中水分及脂肪含量的准确率分别为90.64±1.26%及94.79±5.02%。对牛肉的超声波特性进行了研究,超声波声速的测量采用基于单片机控制的信号测量系统,研究了超声波声速及衰减系数与水分含量的相关性,拟合了超声波声速预测牛肉水分含量的线性方程,预测准确率为96.11±2.73%。对牛肉的近红外分析及牛肉颜色等级的自动评定进行了探讨。分析牛肉水分、蛋白质及脂肪含量与近红外响应值的线性相关性,并与小波分解得到的多尺度特征参数与牛肉品质的相关性进行对比,结果表明多尺度特征参数对牛肉含水量的预测准确率高于近红外响应值。建立牛肉肌肉及脂肪颜色等级评定模型,对牛肉肌肉及脂肪颜色等级的评定正确率均较高。提出一种改进的分水岭分割方法及基于形状不变矩参数及Hopfield神经网络的图像检索方法用于对眼肌区域及胸椎末端软骨区域的分割,实现了基于计算机视觉的牛胴体等级的自动评定,正确率达到95.83%。
The traditional detection methods of beef quality have disadvantages, such as detection of long time. The relationship between characteristics of electricity, ultrasound, optical and image-related and beef quality had been studied.Detection method of beef quality based on physical characteristics of beef was proposed. Methods can provide a theoretical basis for the internal composition and structural changes of beef and have great significance for the development of beef quality non-destructive testing methods and testing equipment. 1. Frequency characteristic of beef complex impedance was studied at frequency range from 100Hz to 10MHz. It not only can provide the frequency spectrum of complex impedance, but also provide suitable fixed value resistance for electrical characteristics detection circuit.
     The relationship between the electrical characteristics of beef and beef quality was studied. Electrical characteristics of beef, such as the apparent resistivity, conductivity, slope of voltage-related line, slope of voltage attenuation line, and natural logarithm of impedance were selected to predict the content of water, protein and fat in beef. The results showed that the prediction accuracy for water content of beef by low-frequency was 90.08±9.17%, which was smaller than the prediction accuracy by high-frequency conductivity (90.64±1.26%). High-frequency electrical characteristics can better reflect the beef quality. Fat content of beef can be better predicted by conductivity, and the prediction accuracy was 94.79±5.02%. The relationship between electrical characteristics of beef and protein content had been studied. The result showed that the detection accuracy was relative small (85.9±4.22%) and detection of protein by electrical properties had poor reproducibility.
     2. An ultrasonic velocity measuring system based on microprocessor control was proposed for the first time, and the unit of emission, receiving, counting and communication was designed.The test result showed that the detection accuracy for time was 99.75±0.58%. The relationship between the ultrasonic velocity and water content in beef was studied. Correlation coefficient reached 0.8163. Ultrasonic velocity was used to predict water content of beef, and the prediction accuracy was 96.11±2.73%. The prediction result proved relatively high prediction accuracy. The study also found that decrease of ultrasonic attenuation coefficient was accompanied by increase of water content. The factors which affect the measurement accuracy were discussed, such as temperature, holddown extent of probe, relative overlap area of probe and the direction of fiber in beef. The results showed that temperature played an important role in measurement. The increase of ultrasonic velocity was accompanied by increase of temprature with significant difference (R2=0.869). The average temperature coefficient was 4.6 m/s/℃. Attenuation coefficient did not change significantly with the increase of temperature. Relative overlap area between two probes was the most influential factor of ultrasonic attenuation coefficient. The overlap area was larger, the smaller the degree of attenuation when other factors were in the same conditions.
     3. Near-infrared analyzer with 11 narrow-band filtering film was selected. The wavelengths were 2336nm, 2310nm, 2230nm, 2180nm, 2100nm, 1940nm, 1680nm, 1759nm, 1818nm, 1982nm and 2139nm. The relationship between beef quality and response value from near-infrared analyzer was studied. High correlation was found in water content of beef with near-infrared response value (R2=0.652~0.866). The protein content of beef was moderately correlated with near-infrared response value (R2=0.558~0.695). The fat content of beef has a bad correlation with near-infrared response value (R2=0.387~0.572). To raise the accuracy of prediction, characteristic parameters were extracted by wavelet analysis. Beef qualitis have high correlation with low frequency wavelet coefficient, and bad correlation with high frequency wavelet coefficient. A characteristic parameter based on Daubechies wavelet decomposition was proposed, which was combination vector composed of low frequency wavelet coefficient with the first scale and second scale. The test showed that the prediction error(94.34±5.33%) for water content in beef from combination vector composed of first scale and second scale was smaller than the error from orginal near-infrared response value(88.62±3.22%). Method with wavelet analysis proved accurate and reliable. The color of beef was captured by solid color sensor, and was used for fitting the beef muscle and fat color grade model. The results showed that the color grade model can better predicted color grade of beef muscle and fat, the assessment accuracy were 94.56 % and 100%, respectively.
     4. This paper presented an improved watershed method used for beef marbling and rib-eye segmentation. In the HSV space, S and V were computered to a new parameter 2×S-V, and threshold segmentation was operated for pre-treatment. And then marked watershed algorithm was used for the segmentation of rib-eye region and beef marbling. The ultimate measurement accuracy for area and perimeter of rib-eye region were 96.98% and 92.67%, respectively. Segmentation error rate of rib-eye region was 9.44%. The ultimate measurement accuracy for area of beef marbling was 93.41%. Measurement accuracy of beef marbling particle number was 91.27%. Grading parameters reprented the grading of beef marbling were selected by correlation analysis. And marbling grade was evaluated by grading model, and compared to the manual evaluation method, the accuracy rate of grading was 95.0%. Physical maturity was also estimated by computer image processing technology for the first time. The calcification extent of cartilage in thoracic vertebra was estimated by computer vision in place of manual method. Retrieval method based on regional moment invariants and Hopfield neural network was proposed. The recognition accuracy for cartilage region was 92.31%. Classified parameter was optimized by the correlation with actual calcification extent of cartilage. The classifying accuracy was 86.0%. The beef carcass grade based on the beef marbling grade and physical maturity grade was estimated, and assessment accuracy was 95.83%.
     In this paper, detection methods of the physical characteristics and quality of beef were proposed with less time and higher measurement accuracy than the traditional method. It can provide detection method and theoretical basis for detection of beef quality based on multi-information fusion.
引文
[1]霍灵光,田露,张越杰.中国牛肉需求量中长期预测分析[J].中国畜牧杂志, 2010, 46(2): 43-47.
    [2]王自明.无损检测综合知识[M].北京:机械工业出版社, 2005.
    [3] SCHWAN H P, TAKASHIMA S. Electrical conduction and dielectric behavior in biological systems: from encyclopedia of Applied Physics[M]. Weinheim and New York: VCH Publishers, 1993.
    [4]周竹,李小昱,王为,等.生物阻抗技术的研究进展及其应用[C].中国科学技术协会年会, 2007.
    [5] VALENTINUZZI M E, MORUCCI J P, FELICE C J,“Monitoring of physiological events by impedance”in Critical Reviews in Biomedical Engineering, pt. II-Bioelectrical Impedance Technique in Medicine, vol. 24, nos. 4-6, J. R. Bourne, Ed. New York: Begell House, 1996.
    [6] BAUCHOT A D, HARKER F R, ARNOLD W M. The use of electrical impedance spectroscopy to assess the physiological condition of kiwifruit[J]. Postharvest Biology and Technology, 2000, 18(1): 9-18.
    [7] CHEVALIER D, OSSARTO F, GHOMMIDH C. Development of a nondestructive salt and moisture measurement method in salmon (Salmosalar) fillets using impedance technology[J]. Food Control, 2006, 17(5): 342-347.
    [8] SWATLAND H J. Post-mortem changes in pork using parallel needles for both light scattering and low-frequency electrical properties[J]. Food Research International, 1997, 30(3): 293-298.
    [9] BYRNE C E, TROY D J, BUCKLEY D J. Postmortem changes in muscle electrical properties of bovine M.longissimus dorsi and their relationship to meat quality attributes and pH fall[J]. Meat Science, 2000, 54(1): 23-34.
    [10] LEPETIT J, DAMEZ J L, MORENO M V, et al. Electrical anisotropy of beef meat during ageing[C]. In: proceedings of the 47th international congress of meat science and technology. 2001.
    [11] DAMEZ J L, CLERJON S, ABOUELKARAM S, et al. Beef meat electrical impedance spectroscopy and anisotropy sensing for non-invasive early assessment of meat aging[J]. Journal of Food Engineering, 2008, 85(1): 116-122.
    [12] DAMEZ J L, CLERJON S, ABOUELKARAM S, et al. Electrical impedance probing of the muscle food anisotropy for meat ageing control[J]. Food control, 2008, 19(10): 931-939.
    [13] FUNK R. Electromagnetic scanning: Basis and recent advances in technology. In: Proceedings, Symposium on Electronic Evaluation of Meat in Support of Value-Based Marketing, Purdue University. West Lafayette, 1991: 73-84.
    [14] KERRY JOSEPH, KERRY JOHN, LEDWARD D.现代肉品加工与质量控制[M].任发政,李兴民,张原飞,李洪军,译.北京:中国农业大学出版社, 2006.
    [15] LEPETIT J, SALE P, Favier R, et al. Electrical impedance and tenderisation in bovine meat[J]. Meat Science, 2002, 60(1): 51-62.
    [16] BIRCAN C, BARRINGER S A. Determination of protein denaturation of muscle foods using the dielectric properties[J].Journal of Food Science, 2002, 67(1): 202-205.
    [17] ALTMANN M, PLIQUETT U. Prediction of intramuscular fat by impedance spectroscopy[J]. Meat Science, 2006, 72(4): 666-671.
    [18]艳茹,德力格尔桑.宰后牛骨骼肌生物电阻抗特性初探[J].农产品加工(学刊), 2006(2): 31-33.
    [19]方海田,刘慧燕,德力格尔桑.牛宰后肌肉生物电阻抗值与失水率的变化及相互关系的研究[J].肉类研究, 2008(2): 26-29.
    [20]王爱华,王洪志.用阻抗法快速检测猪肉鲜度[J].食品科学, 1992(4): 52-55.
    [21]郭建,覃业梅,代秋芳.鲜肉水份含量的电导法测量[J].湘潭大学自然科学学报, 2002, 24(4): 45-48.
    [22]李云飞,殷涌光,金万镐.食品物性学[M].北京:中国农业出版社, 2001.
    [23]涂晓凯,吴彦,李国峰,等.一种高频超声波换能器驱动电路的设计[J].电子测量技术, 2009, 32(4): 23-25.
    [24] MCCLEMENTS D J. Ultrasonic determination of depletion flocculation in oil-in-water emulsions containing a non-ionic surfactant[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1994, 90(1): 25-35.
    [25] MCCLEMENTS D J. Ultrasonic characterization of foods[J]. Characterization of Food, 1995, 93-116.
    [26] JAVANAUD C. Applications of ultrasound to food system[J]. Ultrasonics, 1988, 26(3): 117-123.
    [27] POVEY M J W, MCCLEMENTS D J. Ultrasonics in food engineering. PartⅠ: introduction and experimental methods[J]. Journal of Food Engineering, 1988(8): 217-245.
    [28] OPHIR J, MILLER R K, PONNEKANTI H, et al. Elastography of beef muscle[J]. Meat Science, 1994, 36(1-2): 239-250.
    [29] CROSS H R, BELK K E. Objective measurements of carcass and meat quality[J]. Meat Science, 1994, 36(1-2): 191-202.
    [30] ABOUELKARAM S, SUCHORSKI K, BUQUET B, et al. Effects of muscle texture on ultrasonic measurements[J]. Food Chemistry, 2000, 69(4): 447-455.
    [31] SIMAL S,BENEDITO J, CLEMENTE G. Ultrasonic determination of the composition of a meat-based product[J]. Journal of Food Engineering, 2003, 58(3): 253-257.
    [32] CHANAMAI R, MCCLEMENTS D J. Ultrasonic determination of chicken composition[J]. Journal of Agriculture and Food Chemistry, 1999, 47(11): 4686-4692.
    [33] GHAEDIAN R, COUPLAND J N, DECKER E A, et al. Ultrasonic determination of fish composition[J]. Journal of Food Engineering, 1998, 35(3): 323-337.
    [34] PARK B, WHITTAKER A D, MILLER R K, et al. Measuring intramuscular fat in beef with ultrasonic frequency analysis[J]. Journal of Animal Science, 1994, 72(1): 117-125.
    [35]冯若,陈兆华,朱正亚,等.猪的新鲜离体软组织的超声衰减和速度[J].声学学报, 1985, 10(5): 285-292.
    [36] ALLEN P, DWYER C, MULLEN A M, et al. Using ultrasound to measure beef tenderness and fat content[R]. End of project report. 2001.
    [37] DWYER C, MULLEN A M, ALLEN P, et al. Anisotropy of ultrasonic velocity as a method of tracking postmortem ageing in beef [C]. In: Proceeding 47th International Congress of Meat Science and Technology, Poland, 2001, 4(P4): 250.
    [38] DWYER C, MULLEN A M, ALLEN P, et al. Ultrasonic characterisation of dairy and meat systems[C]. In: Proceedings, Food Science and Technology Research Conference, Cork, 2001: 30.
    [39] MILES C A, CUTTING C L.Technical note: changes in the velocity of ultrasound in meat during freezing[J]. J Food Technol., 1974(9): 119-124.
    [40] BENEDITO J, CARCEL J A, ROSSELLO C, et al. Composition assessment of raw meat mixtures using ultrasoic[J]. Meat Science, 2000(57): 365-370.
    [41] BRETHOUR J R. Estimating marbling score in live cattle from ultrasound images using pattern recognition and neural network procedures[J]. J. Anim. Sci., 1994(72): 1425-1429.
    [42] PARK B, WHITTAKER A D, MILLER R K, et al. Predicating intrmuscular fat in beef longissimus muscle from speed of sound[J]. J. Anim. Sci., 1994(72): 109-114.
    [43] SWATLAND H J. Objective assessment of meat yield and quality[J]. Trends in food Sci. and Technol., 1993(6): 117-122.
    [44]刘忠国,王明时,吕扬生.生物组织超声弹性定征的进展[J].生物医学工程学杂志, 2005, 22(1): 207-210.
    [45]任奕林,熊利荣.农产品光电特性测试研究与进展[J].湖北农机化研究, 2005(1): 20.
    [46] NAES T, HILDRUM K I. Comparison of multivariate calibration and discriminant analysis in evaluating NIR spectroscopy for determination of meat tenderness[J]. Applied Spectroscopy, 1997, 51(3): 350-357.
    [47] HILDRUM K I, NILSEN B N, MIELNIK M, et al. Prediction of sensory characteristics of beef by near-infrared spectroscopy[J]. Meat Science, 1994, 38(1): 67-80.
    [48] PARK B, CHEN Y R, HRUSCHKA W R, et al. Near-infrared reflectance analysis for predicting beef longissimus tenderness[J]. J. Anim. Sci., 1998, 76(8): 2115-2120.
    [49] PARK B, CHEN Y R, HRUSCHKA W R, et al. Assessment of beef tenderness using near-Infrared spectroscopy. Proceedings of the 1997 ASAAE Annual International Meeting. Part3. Aug1214, 1997. Minneapolis, USA, 1997.
    [50] PARK B, CHEN Y R, HRUSCHKA W R, et al. Principal component regression of near-infrared reflectance spectra for beef tenderness prediction[J]. Transactions of the American Society of Agricultural Engineers, 2001, 44(3): 609-615.
    [51] BYRNE C E, DOWNEY G, TROY D J. Non-destructive prediction of selected quality attributes of beef by near-infrared reflectance spectroscopy between 750 and 1098 nm [J]. Meat Science, 1998, 49(4): 399-409.
    [52] R?BOTTEN R, NILSEN B N, HILDRUM K I. Prediction of beef quality attributes from early post mortem near infrared reflectance spectra[J]. Food Chemistry, 2000, 69(4): 427-436.
    [53] LIU Y L, LYON B G, WINDHAM W R, et al. Prediction of color, texture, and sensory characteristics of beef steaks by visible and near infrared reflectance spectroscopy. A feasibility study [J]. Meat Science, 2003, 65(3): 1107-1115.
    [54] RUST S R, PRICE D M, SUBBIAH J, et al. Predicting beef tenderness using near-infrared spectroscopy[J]. J. Anim Sci., 2008, (86): 211-219.
    [55]赵杰文,翟剑妹,刘木华,等.牛肉嫩度的近红外光谱法检测技术研究[J].光谱学与光谱分析, 2006, 26(4): 640-642.
    [56] KRUGGEL W G, FIELD R A, RILEY M L, et a1.Near-infrared reflectance determination of fat,protein and moisture in fresh meat[J].Association of Official Analytical Chemists, 1981, 64(3): 692-696.
    [57]籍保平.近红外光谱技术在农产品加工中的应用[J].粮食加工与食品机械, 2000(6): 31-33.
    [58]刘炜,俞湘麟,孙东东,等.傅立叶变换近红外光谱法快速检测鲜猪肉中肌内脂肪、蛋白质和水分含量[J].养猪, 2005(3): 47-50.
    [59]姬瑞勒,王忠义,黄岚,等.鲜肉深层水分的无损检测方法研究[J].现代科学仪器, 2006(1): 119-121.
    [60] DENOYELLE C, CARTIER P, BAS D. Foss Tecator Infratec 1265肉类分析仪绞细牛肉成分的近红外分析[J].实验与分析, 2006(1): 44-46.
    [61] WAHLBY U, SKJOLDEBRAND C. NIR-measurements of moisture changes in foods[J]. Journal of food engineering, 2001, 47(4): 303-312.
    [62]陆婉珍,袁洪福,徐广通,等.现代近红外光谱分析技术[M].北京:中国石化出版社, 2000.
    [63]丁武,寇莉萍,宋社果,等.用光学特性快速检测肌肉新鲜度的方法[J].西北农林科技大学学报, 2005, 33(5): 139-141.
    [64] WULF D M, CONNOR S F, TATUM J D, et al. Using objective measures of musele color to prediet beef longissimus tenderness[J]. Joumal of Animal Seienee, 1997, 75(3): 684-692.
    [65] GERRARD D E, GAO X, TAN J. Beef marbling and color score determination by image processing[J]. Journal of Food Science, 1996, 61(1): 145-148.
    [66]贾渊,汤晓艳,姬长英.牛肉颜色的特征[J].食品科学, 2004, 25(7): 86-89.
    [67] CHEN Y R, MCDONALD T P, CROUSE J D. Determining percent intramuscular on ribeye surface by image processing[C]. 1989 ASAE Annual International Meeting. Paper no.893009, ASAE. St. Joseph, MI, USA.
    [68] CHEN Y R. Application knowledge-based system to meat grading[C]. AI Systems in Government Conference, Proceedings of the Annual, 1989: 120-123.
    [69] KAZUHIKO SHIRANIATA, KENICHIRO HAYASHI, AKIFUMI OTSUBO et al. Grading meat quality by image processing[J]. Pattern Recognition, 2000, 33(l): 97-104.
    [70] SCHUTTE B R, BIJU N, KRANZLER G A, et al. Color video image analysis for augmenting beef carcass grading: Animal Science Research Report[R]. 1998: 32-36.
    [71] FUMITO YOSHIKAWA, KAZUO TORAICHI, KOICHI WADA, et al. On a grading system for beef marbling[J]. Pattern Recognition Letters, 2000, 21(12): 1037-1050.
    [72] JEYAMKONDAN S, RAY N, KRANZLER G A, et al. Beef quality grading usingmachine vision. In: Proceedings of the Conference on Biological Quality and Precision Agriculture II, Boston, USA, pp. 91–101, J. Harbin Eng. Univ. 2000, 22 (5), 41-44.
    [73]陈坤杰.基于分形理论及机器视觉的牛肉自动分级技术研究[D].南京:南京农业大学, 2005.
    [74] CHEN K., QIN C. Segmentation of beef marbling based on vision threshold.Computer and Electronics in Agriculture, 2008, 62(2): 223-230.
    [75] MCDONALD T P, CHEN Y R. Separating connected muscle tissue in images of beef carcass rib-eyes [J]. Trans. of the ASAE, 1990, 33(6): 2059-2065.
    [76]赵杰文,刘木华,张海东.基于数学形态学的牛肉图像中背长肌分割和大理石纹提取技术研究[J].农业工程学报, 2004, 20(1): 143-146.
    [77] DU C J, SUN D W, JACKMAN P, et al. Development of a hybrid image processing algorithm for automatic evaluation of intramuscular fat content in beef M. longissimus dorsi[J]. Meat Science, 2008, 80(4): 1231-1237
    [78]刘木华,赵杰文,张海东.基于模糊C均值聚类的牛肉图像中脂肪和肌肉区域分割技术[J].农业工程学报, 2004, 20(2): 161-163.
    [79] GAO X, TAN J, GERRARD D E. Image segmentation in 3-dimensional color space. 1995 ASAE Annual International Meeting, Paper no. 953607, ASAE, St. Joseph, MI, USA.
    [80] MCDONALD T P, CHEN Y R. A geometric model of marbling in beef longissmus dorsi [J]. Trans of ASAE, 1992, 35(3): 1057-1062.
    [81] GERRARD D E, GAO X, TAN J. Beef marbling and color score determination by image processing[J]. Journal of Food Science, 1996, 61(1): 145-148.
    [82] BELK K E, GEORGE M H. Evaluation of the tendertec beef grading instrument to predict the tenderness of steaks from beef carcasses[J]. Anim.Sci. 2001, 79(3): 688-697.
    [83] BREIDENSTEIN B B, COOPER C C, CASSENS R G, et al. Influence of marbling and maturity on the palatability of beef muscle.Ⅰ.Chemical and organoleptic consederations[J]. Anim. Sci. 1968, 27: 1532-1541.
    [84] HATEM I, TAN J, GERRARD D E. Determination of animal skeletal matrurity by image processing[J]. Meat Science, 2003,65(3):999-1004.
    [85]刘木华,赵杰文,邹小波.牛胸椎骨图像中软骨与硬骨区域的自动分割技术[J].农业工程学报, 2005, 21(8): 110-113.
    [86]任超世.生物电阻抗测量技术[J].中国医疗器械信息, 2004, 10(1): 21-25.
    [87] KLERBEL A, PSUTZNER H, KRAUSE E. Measurement of dielectric loss factor a routine method for recogizing PSE muscle[J]. Fleischwirtschaft, 1983, 63(7): 1183-1185.
    [88]柯大观,张立彬,胥芳.基于介电特性的水果无损检测系统研究[J].浙江工业大学学报, 2002, 30(5): 446-450.
    [89]沈健.基于生物组织电阻抗技术的心功能检测技术研究[D].西安:西北工业大学, 2004.
    [90] PANESCU D, COHEN K P, WEBSTER J G, et al. The mosaic electrical characteristics of the skin[J]. IEEE TRans. BME, 1993, 40(5): 434-439.
    [91]马岚,杨玉星.生物电阻抗特征参数提取方法及测量系统的研究[J].航空医学与医学工程, 2002, 15(3): 199-202.
    [92]董秀珍,史学涛,秦明新,等.生物电阻抗特征参数测量数据采集系统的研究[J].生物物理学报, 2001, 17(4): 794-800.
    [93]林新.生物组织阻抗频谱测量技术及特性的基础研究[D].西安:第四军医大学, 2005.
    [94] KENT M, ANDERSON D. Dielectric studies of added water in poultry meat and scallops[J]. Journal of Food Engineering, 1996, 28(3): 239-259.
    [95]郭玉,赵顺平.一种交流恒流源电路的设计[J].电子技术, 2008(12): 46-47.
    [96]余学飞.医学电子仪器原理与设计[M].广州:华南理工大学出版社, 2000.
    [97] http://forum.eet-cn.com/FORUM_POST_10006_1200086817_0.HTM
    [98]应义斌,韩东海.农产品无损检测技术[M].北京:化学工业出版社, 2005.
    [99]杨宇祥,王珏,牛飞龙,等.基于AD8302的生物阻抗频谱测量仪的研制[J].仪器仪表学报, 2006, 27(6): 168-170.
    [100]刘兵.基于Multisim2001仿真软件的移相电路设计与仿真[J].科技信息(学术研究), 2008(26): 86.
    [101]孔保华,马丽珍.肉品科学与技术[M].北京:中国轻工业出版社, 2003.
    [102] HONIKEL. Reference methods for the assessment of physical characteristics of meat[J]. Meat science, 1998, 49(4): 447-457.
    [103]郭文川,朱新华.果品内在品质无损检测技术的研究进展[J].农业工程学报, 2001, 17(5): 1-5.
    [104]全国锅炉压力容器无损检测人员资格鉴定考核委员会组织编.超声波探伤[M].北京:劳动人事出版社, 1989.
    [105]范百刚.超声原理与应用[M].南京:江苏科学技术出版社, 1985.
    [106]麻建国,周建军.超声波技术在食品检测中的应用[J].食品与发酵工业, 1998, 24(5): 52-58.
    [107]严碧歌.脂肪-肌肉组织超声衰减特性的研究[J].压电与声光, 2007, 29(1): 94-96.
    [108]冯若,李化茂.声化学及其应用[M].安徽:安徽科学技术出版社, 1992.
    [109]胡建恺.超声检测原理与方法[M].合肥:中国科学技术大学出版社, 1993.
    [110]潘仲明,祝琴.压电换能器阻抗匹配技术研究[J].应用声学, 2007, 26(6): 357-361.
    [111]张沛霖,张仲渊.压电测量[M].北京:国防工业出版社, 1983.
    [112]李夏青,左丽.超声波流量计换能器的入射角及振荡频率对测量精度的影响[J].仪表技术与传感器, 2000, (4): 28-38.
    [113]郑君,张冬泉,张勇.超声波探伤发射电路中电阻的影响[J].无损检测, 2009, 31(3): 229-231.
    [114]荆刚.超声流量测量关键技术研究[D].山东:山东科技大学, 2007.
    [115]樊高妮,何永强.单片机AT89C2051在超声波测距系统中的应用[J].湖南文理学院学报, 2006, 18(1): 67-70.
    [116]吴援明.模拟电路分析与设计基础[M].北京:科学出版社, 2006.
    [117]边春元,李文涛. C51单片机典型模块设计与应用[M].北京:机械工业出版社, 2008.
    [118] POVEY M J W, MCCLEMENTS D J. Ultrasonics in food engineering. PartⅠ: Introduction and experimental methods[J]. Journal of Food Engineering, 1988, 8(4): 217-245.
    [119]吴晓峰.超声波传感器应用探讨[J].计量技术, 1993(3): 22-24.
    [120]刘静,章程辉,黄勇平.无损检测技术在农产品品质评价中的应用[J].福建热作科技, 2007, 32(3): 32-36.
    [121]冯登超,乔晓军,何英华,等.基于小波变换的近红外光谱技术在数字农业中的应用[C].中国农业工程学会2005年学术年会论文集, 2005.
    [122]张桂玲,张翠兰,方勇华,等.小波变换在光谱特征提取方面的应用[J].量子电子学报, 2006, 23(1): 22-26.
    [123] REN S X, GAO L. Simultaneous quantitative analysis of overlapping spectrophotometric signals using wavelet multiresolution analysis and partial least squares[J]. Talanta, 2000, 50: 1163-1173.
    [124]田高友,袁洪福,刘慧颖,等.小波变换用于近红外光谱性质分析[J].分析化学, 2004, 32(9): 1125-1130.
    [125]张芳.基于小波分析的东海浮游植物种类荧光光谱识别技术研究[D].青岛:中国海洋大学, 2008.
    [126]刘增辉.颜色传感器技术研究进展[J].传感器技术, 2003, 22(4): 1-4.
    [127]陈坤杰,尹文庆.机器视觉技术在分析牛肉颜色变化特征中的应用[J].食品科学, 2008, 29(9): 92-96.
    [128]贾渊,汤晓艳,姬长英.牛肉颜色的RGB特征[J].食品科学, 2004, 25(7): 86-89.
    [129] MEYER F, BEUCHER S. Morphology segmentation[J]. Visual Comm and Image Representation, 1990, 1(1): 21-46.
    [130]王樊静.牛胴体分级信息自动检测和牛肉分级系统的研究[D].长春:吉林大学, 2009.
    [131]尚可可,刘迎,路毅行,等. HSV色彩空间中的肤色特征及其新的识别参量[J].光电子·激光, 2007, 18(11): 1391-1393.
    [132] GONZALEZ R C, WOODS R E. Digital Image Processing (Second Edition)[M]. Editora: Prentice Hall, 2002.
    [133]章毓晋.图象分割[M].北京:科学出版社, 2001.
    [134]陈坤杰.基于分形理论及机器视觉的牛肉自动分级技术研究[D].南京:南京农业大学, 2005.
    [135]吴继敏.应用图像分析法评价花岗岩结构特征[J].河海大学学报, 1998, 26(4): 1-7.
    [136]涂新斌,王思敬.图像分析的颗粒形状参数描述[J].岩土工程学报, 2004, 26(5): 659-662.
    [137]潘超,彭增起,周光宏.中国黄牛生理成熟度和大理石花纹预测[J].畜牧与兽医, 2006, 38(10): 32-34.
    [138]张弘.数字图像处理与分析[M].北京:机械工业出版社, 2007.
    [139]葛哲学,孙志强.神经网络理论与MATLAB2007实现[M].北京:电子工业出版社, 2008.
    [140]孙永香,郑永果.基于链码的果实图像形状特征提取方法研究[J].福建电脑, 2006(4): 129-130.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700