用户名: 密码: 验证码:
MAPKs信号转导通路在小鼠小肠缺血再灌注损伤中的作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
前言
     缺血再灌注(ischemia/reperfusion;Ⅰ/R)损伤是组织器官在缺血的基础上恢复血流后损伤反而加重的现象,是内、外科常见的一种损伤。肠道对缺血最敏感的组织器官之一,肠缺血再灌注常见于严重创(烧)伤、休克、感染、肠移植、新生儿缺血坏死性肠炎及危重病患者,肠缺血再灌注(intestinalischemia/reperfusion;Ⅱ/R)常常原发或继发性肠道疾病,是临床众多疾病的病理生理基础,是引发脓毒症及多器官功能衰竭的始动因素之一。缺血再灌注肠损伤后肠黏膜屏障功能受损,通透性增加,促使肠道细菌及内毒素移位、大量氧自由基生成、炎性细胞浸润增加,细胞因子和炎症介质的失控性释放,不仅引起肠道局部损伤,而且造成远隔器官损害,尤其是肺损伤,诱发全身炎症反应综合症及多器官功能衰竭,病情凶险、严重,在临床上具有极高的发病率和病死率。由于肠缺血再灌注肠损伤在各类临床疾病中均可能原发或继发性发生,对于其发病机制的探讨一直是学者们的研究热点。
     丝裂原活化蛋白激酶(Mitogen activated protein kinases;MAPKs)是真核细胞内一组高度保守的丝/苏氨酸蛋白激酶,目前已知MAPKs有c-Jun氨基末端激酶(JNK)、细胞外信号蛋白激酶(ERK)和p38丝裂原活化蛋白激酶(p38 MAPK)三种主要形式。在损伤应激、氧自由基、感染和炎症等刺激条件下,细胞内MAPKs蛋白的苏氨酸/酪氨酸双位点磷酸化反应从而被顺序激活,通过细胞内信号传递级联效应使基因表达发生变化,在调节组织炎症反应、细胞增殖与凋亡和免疫反应等病理生理过程发挥重要作用。由于各种MAPK本身和其作用底物各有特点,MAPKs三个主要成员成具有相对独立而又相互联系的信号传递网络,三种形式的MAPKs执行不同的生理功能。有研究表明,MAPKs参与了缺血再灌注肠损伤的发病过程,但是,在肠缺血再灌注早期,有关MAPKs蛋白表达及活化过程尚不清楚,MAPKs蛋白及其下游信号通路参与肠缺血再灌注损伤的机制尚未阐明。采用夹闭肠系膜上动脉方法造成小鼠肠缺血再灌注损伤,本实验第一部分观察损伤后肠组织MAPKs及其下游信号通路的变化,探讨小肠组织MAPKs活化及其介导凋亡信号通路在小鼠小肠缺血再灌注损伤中的可能作用。
     肺脏不仅是气体交换的器官,也是一些细胞因子和激素生与灭活的场所,经过各种途径入血的毒素、内源性炎性介质等物质经静脉回流后都要进入肺循环,加上肺脏本身在解剖结构上相对较脆弱,肺循环具有面积大、流速慢、压力低的特点,使肺脏实质细胞暴露在毒性物质的机会和时间增加,因此,在诸多脏器中,肺脏最易受到各种致病因素的打击,也是机体失控炎性损害的主要靶器官之一。尽管目前对肠缺血再灌注肺损伤进行大量的研究,但是其分子机理尚未完全阐明。肠缺血再灌注导致肠粘膜损,肠屏障功能破坏,引起细菌/内毒素移位,氧自由基、细胞因子及炎性介质等有害物质释放并进入全身循环,导致远隔器官损害;同时,它们又都是刺激MAPKs信号通路活化的有力因素。我们由此推测,肠缺血再灌注可能通过激活肺组织MAPKs信号通路活化,参与肠缺血再灌注肺损伤的发生。肺损伤特征性主要表现为肺部剧烈炎症反应,炎症细胞浸润和炎性细胞因子合成、释放增加,其中细胞因子TNF-α、IL-1β在肺组织炎症反应中起着关键作用。第二部分通过观察p38 MAPK信号通路活化在肠缺血再灌注肺损伤的活化过程,使用特异性p38 MAPK抑制剂SB239063抑制p38 MAPK蛋白活性,探讨其在小肠缺血再灌注肺损伤中的作用及可能机制。
     第一部分MAPKs蛋白活化在小肠缺血再灌注损伤的作用
     目的:观察小肠缺血再灌注后小肠组织MAPKs蛋白活化过程及凋亡相关蛋白Bcl-2、Bax和活化型Caspase-3的变化,探讨MAPKs活化及其介导凋亡信号通路在小肠缺血再灌注损伤中的可能作用。
     方法:采用夹闭肠系膜上动脉(superior mesenteric artery;SMA)后再灌注造成小肠缺血再灌注损伤小鼠动物模型,经腹腔注射1%戊巴比妥钠50mg.kg~(-1)麻醉。(1)8-10周龄的雄性C57 BL/6小鼠随机分为肠缺血30min、40min、50min和60min,每组8只,观察14d内肠缺血再灌注后小鼠生存率。(2)小鼠随机分为假手术组(sham),肠缺血再灌注处理组(Ⅱ/R):分再灌注即刻(0)、0.5h、1h、4h、6h和12h不同再灌注时间组。夹闭SMA 40min再灌注造成小鼠Ⅱ/R模型,假手术组同样进行开腹手术但不夹闭动脉。假手术后及肠缺血再灌注后不同时间相处死小鼠取小肠标本,回肠组织10%中性福尔马林液固定待病理检查,用Chiu双盲病理评分,评价肠损伤情况程度;原位末端标记(TUNEL)法对肠组织凋亡细胞进行定位检测;全细胞裂解法提取小肠总蛋白,Western blot蛋白免疫印迹法检测小肠组织JNK、ERK和p38 MAPK蛋白,磷酸化JNK、ERK和p38 MAPK蛋白,以及与凋亡相关蛋白Cleaved-caspase-3、Bcl-2和Bax表达水平,以磷酸化MAPKs蛋白代表其活化水平。
     结果:(1)肠缺血30 min小鼠生存率100%,随着肠缺血时间的增加,动物生存率逐渐降低,肠缺血60 min动物生存率仅约30%。(2)肠组织大体表现及病理评分结果均显示,肠缺血40 min后再灌注早期肠损伤严重,尤以再灌注1h肠组织病理损伤最重,至12h肠组织结构基本恢复正常;TUNEL法定位凋亡细胞结果表明,凋亡细胞分布广泛,包括黏膜、黏膜固有层,黏膜下层,甚至肌层均存在凋亡细胞,涉及细胞成分多样,以肠上皮细胞凋亡为主。肠缺血再灌注损伤细胞凋亡与坏死并存。(3)肠缺血再灌注早期促凋亡的活化型caspase-3蛋白表达增加,与假手术组比较,再灌注0.5h、1h小肠组织活化型caspase-3明显增加(P<0.01),与小肠组织病理损害时相过程基本一致,同时抗凋亡Bcl-2蛋白明显下调(P<0.01);各组间促凋亡蛋白Bax表达无统计学差异。(4)肠缺血再灌注不影响肠组织JNK、ERK、p38 MAPK蛋白表达,而磷酸化JNK、ERK、p38 MAPK蛋白表达明显增加。与假手术对照组比较,肠缺血及再灌注早期,小肠组织JNK持续活化,差异有统计学意义(P<0.01);肠缺血再灌注导致磷酸化ERK显著增加,至再灌注4h下降至接近正常,然后ERK活化再次明显增加(P<0.01),ERK活化呈现明显上升-下降-再上升动态活化过程;肠缺血p38 MAPK活化明显减少(P<0.05),再灌注0.5 h肠组织磷酸化p38 MAPK急剧上升(P<0.01),其后p38 MAPK持续活化,尽管与假手术对照组差异无显著性。
     结论:肠缺血再灌注损伤细胞凋亡与坏死并存;肠缺血再灌注早期小肠组织JNK、p38 MAPK活化、可能通过下调抗凋亡蛋白Bcl-2表达,参与了Caspase-3依赖的细胞凋亡和组织损害,ERK的活化与受损肠组织及时修复有关。对进一步研究MAPKs信号通路活化在Ⅱ/R肠损伤中的作用具有指导意义。
     第二部分p38 MAPK活化在肠缺血再灌注肺损伤的作用
     目的:观察小肠缺血再灌注后肺组织p38 MAPK活化规律、以及肠和肺组织炎性细胞因子TNF-α、IL-1β基因转录水平的变化,探讨p38 MAPK蛋白活化在小鼠小肠缺血再灌注肠道本身及肺损伤中的作用及可能机制。
     方法:为探讨肠缺血再灌注后肺组织p38 MAPK活化动态过程,10周龄健康雄性C57 BL/6小鼠随机分为假手术组(sham),肠缺血再灌注组(Ⅱ/R):再分为肠缺血45min再灌注即刻(0)、0.5h、4h和6h。为了进一步观察p38 MAPK活化在场缺血再灌注肺损伤的可能作用,动物随机分为假手术组(sham)、缺血再灌注对照组(Ⅰ/R)和缺血再灌注+SB239063处理组(Ⅰ/R+SB239063组),Ⅰ/R+SB239063组于术前1h腹腔注入p38 MAPK抑制剂SB239063(3 mg.kg~(-1)),另两组注入等量生理盐水。采用夹闭C57BL/6小鼠肠系膜上动脉45 min后再灌注6h的造成肠缺血再灌注损伤模型。于再灌注6h麻醉后处死小鼠,取小肠、肺标本,Western blot蛋白质印迹法检测肺组织磷酸化p38 MAPK蛋白水平;RT-PCR法检测小肠、肺组织TNF-α、IL-1βmRNA表达;HE染色,光学显微镜观察回肠及肺组织病理学改变,分别用Chiu方法肠损伤、Gloor方法肺损伤病理评分,评价回肠及肺损伤严重程度。
     结果:(1)肠缺血后再灌注导致肺组织p38 MAPK蛋白快速、持续活化,与假手术组比较,差异有显著性(P<0.01)。(2)肠缺血再灌注引起肠道局部及肺损伤,小肠、肺组织TNF-α、IL-1β基因表达水平显著升高。(3)在肠缺血后再灌注6h,SB239063抑制肺组织p38MAPK活化,下调肺组织TNF-α、IL-1βmRNA表达水平,减轻肠缺血再灌注肺损伤(P<0.05);SB239063显著下调小肠组织IL-1β基因表达,尽管不影响TNF-αmRNA表达水平,减轻肠缺血再灌注肠损伤。
     结论:p38 MAPK活化在小肠缺血再灌注肺损伤中起重要作用,抑制p38MAPK降低小肠及肺部分促炎性细胞因子基因转录水平,减轻肠缺血再灌注引起的肠道本身及肺损伤,抑制p38 MAPK活化可以作为预防肠缺血再灌注肺损伤的治疗靶点。
Introduction
     Ischemia/reperfusion(Ⅰ/R) injury is tissue lesions produced during reperfusion were greater than those produced during ischemia,which is a common organ damage that affects both medical and surgical patients.Intestine is one of most vulnerable organs to ischemia injury,and consequently intestinal ischemia/reperfusion(Ⅱ/R) often occurs in severe trauma and burn injury,shock,infection,intestinal transplantation and neonatal necrotizing enterocolitis as well as in patients in intensive care units.Ⅱ/R become the basis of the pathophysiology of numerous diseases and played an initiating role in the development of triggering sepsis and multiple organ failure.Ischemia and reperfusion of the small intestine provoke mucosal barrier dysfunction and augmentation of mucosa permeability,and resulting in bacterial/endotoxic translocation,production of oxygen free radicals,activation of inflammatory responses and uncontrolled release of cytokines and inflammatory mediators.It may lead to injuries in both local and remote organs,particularly in lung, and induces systemic inflammatory response syndrome(SIRS) and multiple organ dysfunction syndromes(MODS),which often progresses to acute respiratory distress syndrome(ARDS) associated with high mortality rate in critically ill patients.The molecular mechanisms ofⅡ/R injury have not been completely defined,and further investigations promote the focuses on the field of intracellular signal transduction pathway in recent years.
     Mitogen activated protein kinases(MAPKs) are an evolutionarily conserved family of serine/threonine kinases in eukaryotic cells that are primarily composed of three forms of c-Jun NH2 terminal kinase(JNK),extracellular signal regulated kinase (ERK) and p38 MAP kinase(p38 MAPK);MAPKs are activated under the conditions of ischemia/reperfusion injury,oxidative stress,infections and inflammatory cytokines so on.On activation of MAPKs,transcription factors present in the cytoplasm or nucleus are phosphorylated or activated,leading to expression of certain target genes resulting in a biological response,and controlling cell differentiation,cell proliferation,and cell death,and inflammatory response.Although MAP kinases generally function as autonomous signaling modules,the multiple interactions between the different MAP kinase cascades serve to integrate responses and to moderate outputs.Indeed,it has been demonstrated that MAP kinases have overlapping substrate specificities and phosphorylation of regulatory sites is shared among multiple protein kinases.Some studies have proved MAPKs was participated inⅡ/R-induced intestinal injury,however,no systematic evaluation of the expression, activity,or signal transduction of MAPKs has been published so far.It is unclear how MAPKs and its down-stream signal proteins are involved in the development ofⅡ/R. In the first part of this study,we examined the change course of MAPKs activation inⅡ/R-induced intestinal tissues,and explored the potential effects of MAPKs-mediated apoptotic signal pathway in the development ofⅡ/R injury in mice.
     Lungs are not only the gas exchange place,but also the place some cytokines and hormones are inactived.As the lung is the first station that invasive toxins and endogenous inflammatory agents will visit,as well as its physical and anatomic characters,such as low flow rate and pressure,big area,all those add the risk to be injured.From the most,it is the common sense that the lung is one of the most fragile organs and main target organs following uncontrolled systemic inflammatory response.The mechanism of lung injury induced by intestinalⅠ/R is complicated. Many studies have shown thatⅡ/R induce disruption of the intestinal mucosal barrier, allowing translocation of bacteria and endotoxin,reactive oxygen species(ROS), cytokines and inflammatory mediators originated from the injured intestinal tissue into the circulation,which result in distal organ injury including acute lung injury. MAPKs can also be activated in the lung by a number of pro-inflammatory stimuli, including LPS,cytokines,and oxidative stress;it is therefore plausible to speculate that pulmonary MAPKs activation is involved in the pathogenesis ofⅡ/R-induced lung injury.LPS,ROS and inflammatory cytokines generated during intestinalⅠ/R injury may trigger the activation of p38 signaling cascade in the lung,which may then in turn contribute to the development of lung injury.Acute lung injury is characterized by intensive pulmonary inflammatory response.As we known,many inflammatory cells and inflammatory mediators were involved in the systemic inflammatory response and constitute the inflammatory response network.So it has been emphasized that those factors that were closely related to the inflammatory response, such as TNF-α,IL-1βhave played a centre role.Accordingly,in this study,we examined the time course of p38 activation in lung tissues in mice subjected toⅡ/R. With the use of a potent and selective second-generation inhibitor of p38,SB 239063, we determined the effects of in vivo inhibition of p38 onⅡ/R-induced TNF-α,IL-1βgene expression,and investigated the possible role and mechanisms of p38 MAPK activation in theⅡ/R-induced lung injury.
     PartⅠRole of activation of MAPKs signaling transduction pathways in intestinal tissue after intestinal ischemia/reperfusion in mice
     Objective:To observe the dynamic changes of activation of MAPKs and apoptotic proteins of Bcl-2,Bax and Caspase-3 in intestinal tissue after intestinal ischemia/reperfusion(Ⅱ/R) in mice.To explore the potential role of MAPKs-dependent apoptotic signal pathway inⅡ/R-induced mice.
     Methods:AnimalⅡ/R model was established with clamping the superior mesenteric artery(SMA).Mice were intraperitoneally anesthetized with 1%solution of pentobarbital sodium(50 mg.kg~(-1)).First,forty male C57BL/6 mice,8-10 weeks, were randomly divided into five group:30 min,40 min,50 min and 60 min of intestinal ischemia,and survival rate was observed within fourteen days after intestinal reperfusion.Second,mice were randomly divided into sham-operated group (n=6) andⅡ/R groups(n=36);the latter was further divided according to time after reperfusion(0,0.5,1,4,6 and 12 h) after reperfusion.AnimalⅡ/R model was established with clamping SMA for 40 minutes.Animals in the sham-operated mice received no clamping.The expression of JNK and phosphorylation(phospho-) JNK, ERK and phospho-ERK and p38 MAPK and phospho-p38 MAPK,cleaved caspase-3, Bcl-2 and Bax proteins in the intestinal tissue was examined by Western blotting analysis,and the pathological change of ileum tissue was observed by optical microscope.Phospho-MAPKs by Western blot analysis was applied to reflect the activation status of MAPKs
     Results:(1) All animals were survived in the group of 30 minute intestinal ischemia,and animal survival rates decreased gradually followed by increase of ischemia time.In contrast,approximately 70%animals died in the group of 60 minute of intestinal ischemia.(2) Most sereve intestinal injury was induced by intestinal ischemia/reperfusion at the early stage of reperfusion,which peaked at 1 h,and intestinal tissue almost recovered 12 h later.Localization of apoptotic cells,as detected by Terminal deoxynucleotidyl transferase dUTP nick end labeling(TUNEL), showed apoptotic cells were scattered in the intestinal tissues including mucosa, propria lamina,mucosa underlayer even and muscular layer.(3) Cleaved-caspase-3 was significantly increased inⅡ/R group at 0.5h,lh after reperfusion compared to the sham-operated group(P<0.01);at the same time,the expression of Bcl-2 protein inⅡ/R group was significantly decreased compared with sham group(P<0.01),and there was no significant difference in Bax expression between different group.(4)Ⅱ/R caused an early activation in all members of the MAPK family,whereas there was no significant change in JNK,ERK and p38 MAPK level at various time points afterⅡ/R. the phospho-JNK in the intestine was significantly elevated within 1 h after reperfusion compared with sham group(P<0.01).when compared with sham group, the expression of phospho-ERK protein in the intestine was significantly increased within 1 h after reperfusion(P<0.01),sharp decreased to the normal level at 4 h of reperfusion,and again elevated significantly at 6 h,12 h after reperfusion(P<0.01); the phospho-p38 MAPK protein was stringly decreased in the ischemia intestinal tissue(P<0.05),in contrast,significantly elevated at 0.5 h after reperfusion(P<0.01), and kept at this high level up to 12 h of reperfusion(P>0.05).
     Conclusions:phosphorylation of JNK and p38 MAPK plays an essential role in the intestinal damages induced byⅡ/R,possibly through down-regulation of Bcl-2 protein and caspase-3 dependent proapoptotic pathway;and ERK phosphorylation may contribute to restitution of damaged intestine.
     PartⅡInhibition of p38 mitogen activated protein kinase attenuates local and pulmonary injury following intestinal ischemia/reperfusion in mice
     Objectives:to investigate the potential roles of p38 mitogen-activated protein kinase(MAPK) in lung injury following intestinalⅠ/R.
     Methods:First,to determine the dynamic changes of pulmonary p38 MAPK activation.Twenty Male C57BL/6 mice were randomly divided into sham-operated group,and 0,0.5,4 and 6 h groups of reperfusion after 45 minute intestinal ischemia (n=4 in each group).To further examine the role of p38 MAPK activation in intestinalⅠ/R-induced lung injury.Mice were randomly divided into sham-operated, intestinalⅠ/R plus vehicle treatment and intestinalⅠ/R plus p38 MAPK inhibitor SB239063 treatment(3 mg/kg,i.p.) groups;intestinalⅠ/R was performed with 45 minutes intestinal ischemia followed by 6 hours reperfusion.The pulmonary p38 MAPK activation was observed by western blot after intestinalⅠ/R;and histopathology and production of TNF-αand IL-1βmRNA in the intestinal and pulmonary tissues were also analyzed at 6 hour of reperfusion after 45 min intestinal ischemia.
     Results:IntestinalⅠ/R caused a rapid activation of p38 MAPK in lung tissues, and which lasted to 6 hour of reperfusion.Selective inhibition of p38 MAPK with SB 239063 could down-regulate an elevated IL- 1βmRNA level induced by intestinalⅠ/R, and significantly attenuated the intestinal injury in the mouse model ofⅡ/R.Further, blockade of p38 MAPK activation not only inhibited the up-regulation of pulmonary TNF-αand IL-1βmRNA levels induced by intestinalⅠ/R,but also significantly attenuated the pulmonary pathological changes.
     Conclusions:Activation of p38 MAPK plays an important role in intestinalⅠ/R-induced lung injury in mice.Inhibiting p38 MAPK activation might be a potential strategy for prevention the pathological changes in lung after intestinalⅠ/R.
引文
[1]Baron P,Traber LD,Traber DL,Nguyen T,Hollyoak M,Heggers JP,and Herndon DN.Gut failure and translocation following burn and sepsis.J Surg Res.1994,57(1):197-204.
    [2] Tadros T, Traber DL, Heggers JP, and Herndon DN. Effects of interleukin-1 alpha administration on intestinal ischemia and reperfusion injury, mucosal permeability, and bacterial translocation in burn and sepsis. Ann Surg. 2003,237(1):101-109.
    [3] Morales J, Kibsey P, Thomas PD, Poznansky MJ, and Hamilton SM. The effects of ischemia and ischemia-reperfusion on bacterial translocation, lipid peroxidation, and gut histology: studies on hemorrhagic shock in pigs. J Trauma 1992, 33(2):221-227.
    [4] Tamion F, Richard V, Lyoumi S, Daveau M, Bonmarchand G, Leroy J, Thuillez C,andLebreton JP. Gut ischemia and mesenteric synthesis of inflammatory cytokines after hemorrhagic or endotoxic shock. Am J Physiol. 1997, 273(2 Pt 1):G314-321.
    
    [5] 屠伟峰.肠源性MODS的治疗进展.临床麻醉学杂志.2003,19(2): 124-126.
    [6] Oldenburg WA, Lau LL, Rodenberg TJ, Edmonds HJ, Burger CD. Acute mesenteric ischemia: a clinical review. Arch Intern Med, 2004,164: 1054-1062.
    [7] Harward TR, Brooks DL, Flynn TC, and Seeger JM. Multiple organ dysfunction after mesenteric artery revascularization. J Vasc Surg. 1993, 18(3):459-469.
    [8] Podolsky DK. Mucosal immunity and inflammation. V. Innate mechanisms of mucosal defense and repair: the best offense is a good defense. Am J Physiol Gastrointest Liver Physiol, 1999, 277: G495-499.
    [9] Ikeda H, Suzuki Y, Suzuki M, Koike M, Tamura J, Tong J, et al. Apoptosis is a major mode of cell death caused by ischaemia and ischaemia/reperfusion injury to the rat intestinal epithelium. Gut, 1998, 42: 530-537.
    [10] Fujise T, Iwakiri R, Wu B, Amemori S, Kakimoto T, Yokoyama F, Sakata Y,Tsunada S, Fujimoto K. Apoptotic pathway in the rat small intestinal mucosa is different between fasting and ischemia-reperfusion. Am J Physiol Gastrointest Liver Physiol, 2006, 291:G110-G116.
    [11] Hommes DW, peppelenbosch MP, Van Deventer SJH. Mitogen activated protein (MAK) kinase signal transduction pathways and novel Anti-inflammatory target.Gut, 2003, 52: 144-151.
    [12] Zhou Y, Wang QD, Evers BM, and Chung DH. Signal transduction pathways involved in oxidative stress-induced intestinal epithelial cell apoptosis. Pediatr Res. 2005, 58(6): 1192-1197.
    [13] Smith WE, Kane AV, Campbell ST, Acheson DW, Cochran BH, Thorpe CM.Shiga toxin 1 triggers a ribotoxic stress response leading to p38 and JNK activation and induction of apoptosis in intestinal epithelial cells. Infect. Immun.2003,71(3): 1497-1504.
    [14] Schauser K, Olsen JE, Larsson LI. Salmonella typhimurium infection in the porcine intestine: evidence for caspase-3 -dependent and -independent programmed cell death. Histochem Cell Biol. 2005, 123(1): 43-50.
    [15] Bhattacharya S, Ray RM, Viar MJ, and Johnson LR. Polyamines are required for activation of c-Jun NH2-terminal kinase and apoptosis in response to TNF-a in IEC-6 cells. Am J Physiol Gastrointest Liver Physiol. 2003; 285: G980-G91
    [16] Guner YS, Ochoa CJ, Wang J, Zhang X, Steinhauser S, Stephenson L, Grishin A,Upperman JS. Peroxynitrite-induced p38 MAPK pro-apoptotic signaling in enterocytes. Biochem Biophys Res Commun, 2009, 384(2): 221-225.
    [17] Scheid, MP, Schubert, KM, and Duronio, V. Regulation of bad phosphorylation and association with Bcl-x(L) by the MAPK/Erk kinase [J]. J. Biol. Chem., 1999,274:1108-1113.
    [18] Ramesh M. Ray, Sujoy Bhattacharya, and Leonard R. Johnson. Protein Phosphatase 2A Regulates Apoptosis in Intestinal Epithelial Cells. J Biol Chem.,2005, 280(35): 31091-31100.
    [19] Fu XB, Yang YH, Sun TZ, Chen W, Li JY, Sheng ZY, Rapid mitogen-activated protein kinase by basic fibroblast growth factor in rat intestine after ischemia/reperfusion injury. World J Gastroenterol 2003, 9(6): 1312-1317o
    [20] Murayama T, Tanabe M, Matsuda S, Shimazu M, Kamei S, Wakabayashi G,Kawachi S, Matsumoto K, Yamazaki K, Matsumoto K, Koyasu S, Kitajima M.JNK (c-Jun NH2 terminal kinase) and p38 during ischemia reperfusion injury in the small intestine. Plantation. 2006, 81(9): 1325-1330.
    [21] Sant(?)n S, Mihaescu A, Laschke MW, Menger MD, Wang Y, Jeppsson B, Thorlacius H.p38 MAPK regulates ischemia-reperfusion-induced recruitment of leukocytes in the colon.Surgery,2009,145(3):303-312.
    [22]Zheng SY,Fu XB,Xu JG,Zhao JY,Sun TZ,Chen W.Inhibition of p38mitogen-activated protein kinase may decrease intestinal epithelial cell apoptosis and improve intestinal epithelial barrier function after ischemia-reperfusion injury.World J Gastroenterol,2005,11:656-660.
    [23]刘永芳,刘先义,刘志刚,丰新民,王锋.p38丝裂原活化蛋白激酶在肠缺血再灌注损伤大鼠炎性反应中的作用.中华麻醉学杂志,2007,27:839-841.
    [24]Nishimura T,Andoh A,Nishida A,Shioya M,Koizumi Y,Tsujikawa T,Fujiyama Y.FR167653,a p38 mitogen-activated protein kinase inhibitor,aggravates experimental colitis in mice.World J Gastroenterol,2008,14(38):5851-5856.
    [25]Shifflett DE,Jones SL,Moeser A J,Blikslager AT.Mitogen-activated protein kinases regulate COX-2 and mucosal recovery in ischemic-injured porcine ileum.Am J Physiol Gastrointest Liver Physiol,2004,286(6):G906-913.
    [26]Chen XL,Xia ZF,Ben DF,Wang GQ,Wei D.Role of p38 mitogen-activated protein kinase in lung injury after burn trauma.Shock,2003,19(5):475-479.
    [27]Kumar S,Boehm J,Lee JC.p38 MAP kinases:key signalling molecules as therapeutic targets for inflammatory diseases.Nat Rev Drug Discov 2003,2(9):717-726.
    [28]Liu S,Feng G,Wang GL,Liu GJ.p38 MAPK inhibition attenuates LPS-induced acute lung injury involvement of NF-kappaB pathway.Eur J Pharmacol 2008,584(1):159-65.
    [1] Sheng ZY, Dong YL, Wang XH. Bacterial translocation and multiple system organ failure in bowel ischemia and reperfusion, Chin Med J (Engl), 1991, 104:897-903.
    [2] Oldenburg WA, Lau LL, Rodenberg TJ, Edmonds HJ, Burger CD. Acute mesenteric ischemia: a clinical review. Arch Intern Med, 2004, 164: 1054-1062.
    [3] Ikeda H, Suzuki Y, Suzuki M, Koike M, Tamura J, Tong J, Nomura M, Itoh G.Apoptosis is a major mode of cell death caused by ischaemia and ischaemia/reperfusion injury to the rat intestinal epithelium. Gut, 1998, 42:530-537.
    [4] Noda T, Iwakiri R, Fujimoto K, Matsuo S, Aw TY. Programmed cell death induced by ischemia-reperfusion in rat intestinal mucosa. Am J Physiol, 1998, 4:G270-276.
    [5] Fujise T, Iwakiri R, Wu B, Amemori S, Kakimoto T, Yokoyama F, Sakata Y,Tsunada S, Fujimoto K. Apoptotic pathway in the rat small intestinal mucosa is different between fasting and ischemia-reperfusion. Am J Physiol Gastrointest Liver Physiol, 2006, 291:G110-G116.
    [6] Wu B, Iwakiri R, Tsunada S, Utsumi H, Kojima M, Fujise T, Ootani A, Fujimoto K. iNOS enhances rat intestinal apoptosis after ischemia-reperfusion. Free Radic Biol Med. 2002, 3(5):649-58.
    [7] Hommes DW, peppelenbosch MP, Van Deventer SJH. Mitogen activated protein (MAK) kinase signal transduction pathways and novel Anti-inflammatory target.Gut, 2003: 52: 144-151.
    [8] Rosette C, Karin M. Ultraviolet light and osmotic stress: Activation of the JNK cascade through multiple growth factor and cytokine receptors. Science, 1996,274:1194-1197.
    [9] Bradham CA, Stachlewitz RF, Gao W, Qian T, Jayadev S, Jenkins G, Hannun Y,Lemasters JJ, Thurman RG, Brenner DA. Reperfusion after liver transplantation in rats differentially activates the mitogen-activated protein kinases. Hepatology,1997,25:1128-1135.
    [10] Chang L, Karin M. Mammalian MAP kinase signalling cascades. Nature, 2001;410:37-40.
    [11] Lei K, Davis RJ. JNK phosphorylation of Bim-related members of the Bcl2 family induces Bax-dependent apoptosis. Proc Natl Acad Sci USA. 2003, 100:2432-2437.
    [12] Davis RJ. Signal transduction by the JNK group of MAP kinases. Cell, 2000, 13,103(2): 193-200.
    [13] Lips DJ, Bueno OF, Wilkins BJ, Purcell NH, Kaiser RA, Lorenz JN, Voisin L,Saba-El-Leil MK, Meloche S, Pouyss(?)gur J, Pages G, De Windt LJ, Doevendans PA, Molkentin JD. MEK1-ERK2 signaling pathway protects myocardium from ischemic injury in vivo. Circulation, 2004, 109(16):1938-1941.
    [14] Jia YT, Wei W, Ma B, Xu Y, Liu WJ, Wang Y, Lv KY, Tang HT, Wei D, Xia ZF.Activation of p38 MAPK by reactive oxygen species is essential in a rat model of stress-induced gastric mucosal injury. J Immunol, 2007, 179(11): 7808-7819.
    [15] Klintman D, Li X, Santen S, Schramm R, Jeppsson B, Thorlacius H. p38 mitogen-activated protein kinase-dependent chemokine production, leukocyte recruitment, and hepatocellular apoptosis in endotoxemic liver injury. Ann Surg,2005, 242(6): 830-839.
    [16] Zhou Y, Wang QD, Evers BM, and Chung DH. Signal transduction pathways involved in oxidative stress-induced intestinal epithelial cell apoptosis. Pediatr Res, 2005, 58(6): 1192-1197.
    [17] Smith WE, Kane AV, Campbell ST, Acheson DW, Cochran BH, Thorpe CM.Shiga Toxin 1 Triggers a Ribotoxic Stress Response Leading to p38 and JNK Activation and Induction of Apoptosis in Intestinal Epithelial Cells. Infect.Immun 2003, 71(3): 1497-1504.
    [18] Schauser K, Olsen JE, Larsson LI. Salmonella typhimurium infection in the porcine intestine: evidence for caspase-3-dependent and-independent programmed cell death. Histochem Cell Biol. 2005, 123(1): 43-50.
    [19] Bhattacharya S, Ray RM, Viar MJ, and Johnson LR. Polyamines are required for activation of c-Jun NH2-terminal kinase and apoptosis in response to TNF-a in IEC-6 cells. Am J Physiol Gastrointest Liver Physiol, 2003, 285: G980-991.
    [20] Shi J, Ray RM, Andjohnson LR. Racl mediates intestinal epithelial cell apoptosis via JNK. Am J Physiol Gastrointest Liver Physiol, 2006, 291:G1137-1147.
    [21] Scheid, MP, Schubert, KM, and Duronio, V. Regulation of bad phosphorylation and association with Bcl-x(L) by the MAPK/Erk kinase. J. Biol. Chem, 1999,274: 1108-1113.
    [22] Murayama T, Tanabe M, Matsuda S, Shimazu M, Kamei S, Wakabayashi G,Kawachi S, Matsumoto K, Yamazaki K, Matsumoto K, Koyasu S, Kitajima M..JNK (c-Jun NH2 Terminal Kinase) and p38 during ischemia reperfusion injury in the Small Intestine. Transplantation, 2006, 81: 1325-1330.
    [23] Zheng SY, Fu XB, Xu JG, Zhao JY, Sun TZ, Chen W. Inhibition of p38 mitogen-activated protein kinase may decrease intestinal epithelial cell apoptosis and improve intestinal epithelial barrier function after ischemia-reperfusion injury. World J Gastroenterol, 2005, 11: 656-660.
    [24] Stallion A, Kou TD, Latifi SQ, Miller KA, Dahms BB, Dudgeon DL, and Levine AD. Ischemia/reperfusion: a clinically relevant model of intestinal injury yielding systemic inflammation. J Pediatr Surg 2005, 40(3): 470-477.
    [25] Chiu CJ, McArdle AH, Brown R, Scott HJ, Gurd FN: Intestinal mucosal lesion in low-flow state s. I. A morphological, hemodynamic, and metabolic reappraisal,Arch Surg, 1970, 101: 478-483.
    [26] Baron P, Traber LD, Traber DL, Nguyen T, Hollyoak M, Heggers JP, Herndon DN. Gut failure and translocation following burn and sepsis. J Surg Res. 1994,57(1): 197-204.
    [27] Tadros, T, Traber DL, Heggers JP, and Herndon DN. Effects of interleukin-1 alpha administration on intestinal ischemia and reperfusion injury, mucosal permeability, and bacterial translocation in burn and sepsis. Ann Surg. 2003,237(1):101-109.
    [28] Morales J, Kibsey P, Thomas PD, Poznansky MJ, Hamilton SM. The effects of ischemia and ischemia-reperfusion on bacterial translocation, lipid peroxidation, and gut histology:studies on hemorrhagic shock in pigs.J Trauma 1992,33(2):221-227.
    [29]Tamion,F,Richard V,Lyoumi S,Daveau M,Bonmarchand G,Leroy J,Thuillez C,Lebreton JP.Gut ischemia and mesenteric synthesis of inflammatory cytokines after hemorrhagic or endotoxic shock.Am J Physiol.1997,273(2):G314-321.
    [30]Watson MJ,Ke B,Shen XD,Gao F,Busuttil RW,Kupiec-Weglinski JW,Farmer DG.Intestinal ischemia/reperfusion injury triggers activation of innate toll-like receptor 4 and adaptive chemokine programs.Transplant Proc,2008,40(10):3339-3341.
    [31]Xia Z,Dickens M,Raingeaud J,Davis RJ,Greenberg ME.Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis.Science,1995,270:1326-1331.
    [32]Harper SJ,LoGrasso P.Signalling for survival and death in neurones:the role of stress-activated kinases,JNK and p38.Cell Signal,2001,13:299-310.
    [33]Szabo A,Vollmar B,Boros M,Menger MD.Gender differences in ischemia-reperfusion-induced microcirculatory and epithelial dysfunctions in the small intestine.Life Sci.2006,78(26):3058-3065.
    [34]Udassin R,Vromen A,Haskel Y,The time sequence of injury and recovery following transient reversible intestinal ischemia.J Surg Res.1994,56:221-225.
    [35]Coopersmith,CM,O'Donnell,D,Gordon,JI.Bcl-2 inhibits ischemia-reperfusion-induced apoptosis in the intestinal epithelium of transgenic mice.Am.J.Physiol,1999,276:G677.
    [36]叶冬青 高维娟.C-jun氨基末端激酶信号通路与细胞凋亡.中国老年学杂志,2009.29:894-896.
    [37]Aleshin A,Ananthakrishnan R,Li Q,Rosario R,Lu Y,Qu W,et al.RAGE modulates myocardial injury consequent to LAD infarction via impact on JNK and STAT signaling in a murine model.Am J Physiol Heart Circ Physiol 2008,38:H517-525.
    [38]Terada Y,Inoshita S,Kuwana H,Kobayashia T,Okadoa T,Ichijob H,et al.Important role of apoptosis signal regulating kinase 1 in ischemic acute kidney injury.Biochem Biophys Res Commun 2007,364:1043-1049.
    [39]Shima Y,Tajiri T,Taguehi T,Suita S.Increased expression of c-fos and c-jun in the rat small intestinal epithelium after ischemia-reperfusion injury:a possible correlation with the proliferation or apoptosis of intestinal epithelial cells.J Pediatr Surg,2006,41:830-836.
    [40]Tan J,Kuang W,Jin Z,Jin F,Xu L,Yu Q,et al.Inhibition of NF kappaB by activated c-jun NH2 terminal kinase 1 acts as a switch for C2C12 cell death under excessive stretch.Apoptosis,2009,14:764-770
    [41]刘永芳,刘先义,刘志刚,丰新民,王锋.p38丝裂原活化蛋白激酶在肠缺血再灌注损伤大鼠炎性反应中的作用.中华麻醉学杂志,2007,27:839-841.
    [42]Fu XB,Li XK,Wang T,Cheng B,Sheng ZY.Enhanced anti-apoptosis and gut epithelium protection function of acidic fibroblast growth factor after cancelling of its mitogenic activity.World J Gastroenterol,2004,10(24):3590-3596.
    [43]Shifflett DE,Jones SL,Moeser AJ,Blikslager AT.Mitogen-activated protein kinases regulate COX-2 and mucosal recovery in ischemic-injured porcine ileum.Am J Physiol Gastrointest Liver Physiol.2004;286(6):G906-913.
    [44]McCubrey JA,Steelman LS,Chappell WH,Abrams SL,Wong EW,Chang F,Lehmann B,Terrian DM,Milella M,Tafuri A,Stivala F,Libra M,Basecke J,Evangelisti C,Martelli AM,Franklin RA.Roles of the Raf/MEK/ERK pathway in cell growth,malignant,transformation and drug resistance.Biochim Biophys Acta,2007,1773(8):1263-1284.
    [45]Blikslager AT,Roberts MC,Young KM,Rhoads JM,Argenzio RA.Genistein augments prostaglandin-induced recovery of barrier function in ischemia-injured porcine ileum.Am J Physiol Gastrointest Liver Physiol,2000,278:G207-G216.
    [46]El-Assal ON,Besner GE.HB-EGF enhances restitution after intestinal ischemia/reperfusion via PI3K/Akt and MEK/ERK1/2 activation.Gastroenterology,2005,129(2):609-625.
    [1]Baron P,Traber LD,Traber DL,Nguyen T,Hollyoak M,Heggers JP,and Herndon DN.Gut failure and translocation following burn and sepsis.J Surg Res,1994,57(1):197-204.
    [2]Tadros T,Traber DL,Heggers JP,and Herndon DN.Effects of interleukin-1 alpha administration on intestinal ischemia and reperfusion injury,mucosal permeability,and bacterial translocation in burn and sepsis.Ann Surg,2003,237(1):101-109.
    [3]Morales J,Kibsey P,Thomas PD,Poznansky MJ,and Hamilton SM.The effects of ischemia and ischemia-reperfusion on bacterial translocation,lipid peroxidation,and gut histology:studies on hemorrhagic shock in pigs.J Trauma 1992,33(2):221-227.
    [4]Tamion F,Richard V,Lyoumi S,Daveau M,Bonmarchand G,Leroy J,Thuillez C,and Lebreton JP.Gut ischemia and mesenteric synthesis of inflammatory cytokines after hemorrhagic or endotoxic shock.Am J Physiol,1997,273(2 Pt 1):G314-321.
    [5]Sheng ZY,Dong YL,and Wang XH.Bacterial translocation and multiple system organ failure in bowel ischemia and reperfusion.J Trauma,1992,32(2):148-153.
    [6]Harward TR,Brooks DL,Flynn TC,and Seeger JM.Multiple organ dysfunction after mesenteric artery revascularization.J Vasc Surg,1993,18(3):459-67;discussion 467-469.
    [7]Mao YF,Zheng XF,Cai JM,You XM,Deng XM,Zhang JH,Jiang L,and Sun XJ.Hydrogen-rich saline reduces lung injury induced by intestinal ischemia/reperfusion in rats.Biochem Biophys Res Commun,2009,381(4):602-605.
    [8]Suzuki T,Yamashita K,Jomen W,Ueki S,Aoyagi T,Fukai M,Furukawa H,Umezawa K,Ozaki M,and Todo S.The novel NF-kappaB inhibitor,dehydroxymethylepoxyquinomicin,prevents local and remote organ injury following intestinal ischemia/reperfusion in rats.J Surg Res,2008,149(1):69-75.
    [9]Sorkine P,Setton A,Halpern P,Miller A,Rudick V,Marmor S,Klausner JM,and Goldman G.Soluble tumor necrosis factor receptors reduce bowel ischemia-induced lung permeability and neutrophil sequestration.Crit Care Med,1995,23(8):1377-1381.
    [10]Kumar S,Boehm J,Lee JC.p38 MAP kinases:Key signaling molecules as therapeutic targets for inflammatory diseases.Nat Rev Drug Discov,2003,2:717-726.
    [11]刘永芳,刘先义,刘志刚,丰新民,王锋.p38丝裂原活化蛋白激酶在肠缺血再灌注损伤大鼠炎性反应中的作用.中华麻醉学杂志,2007,27:839-841.
    [12]Zheng SY,Fu XB,Xu JG,Zhao JY,Sun TZ,Chen W.Inhibition of p38mitogen-activated protein kinase may decrease intestinal epithelial cell apoptosis and improve intestinal epithelial barrier function after ischemia-reperfusion injury.World J Gastroenterol,2005,11:656-660.
    [13]Asaduzzaman M,Wang Y,Thorlacius H.Critical role of p38 mitogen-activated protein kinase signaling in septic lung injury.Crit Care Med,2008,36:482-488.
    [14]陈旭林,夏照帆,韦多,贲道锋,王广庆,唐洪泰.p38丝裂原活化蛋白激 酶在烧伤大鼠急性肺损伤中的作用机制.中华烧伤杂志, 2004, 20: 262-264.
    
    [15] Underwood DC, Osborn RR, Kotzer CJ, Adams JL, Lee JC, Webb EF, Carpenter DC, Bochnowicz S, Thomas HC, Hay DW, Griswold DE. SB 239063, a potent p38 MAP kinase inhibitor, reduces inflammatory cytokine production, airways eosinophil infiltration, and persistence. J. Pharmacol Exp Ther, 2000,293:281-288.
    
    [16] Jia YT, Wei W, Ma B, Xu Y, Liu WJ, Wang Y, Lv KY, Tang HT, Wei D, Xia ZF.Activation of p38 MAPK by reactive oxygen species is essential in a rat model of stress-induced gastric mucosal injury. J Immunol, 2007, 179: 7808-7819.
    
    [17] Wei W, Bing M, Heng-Yu L, Yitao J, Kaiyang L, Guangqing W, Jianrong Z,Shihui Z, Hongtai T, Zhiyong S, Zhaofan X. Biphasic effects of selective inhibition of TGF-beta1 Activin Receptor-Like Kinase (ALK) on LPS-induced lung injury. Shock. 2009 Jun 3. [Epub ahead of print].
    
    [18] Gloor, B, Blinman TA, Rigberg DA, Todd KE, Lane JS, Hines OJ, and Reber HA.Kupffer cell blockade reduces hepatic and systemic cytokine levels and lung injury in hemorrhagic pancreatitis in rats. Pancreas, 2000, 21(4):414-420.
    
    [19] Mallick H, Yang W and Winslet MC. Seifailian AM. Ischemia-reperfusion injury of the intestine and protective strategies against injury. Dig Dis Sci, 2004, 49:1359-1377.
    
    [20] Kostopanagiotou G, Arkadopoulos N, Andreadou I, Diamantopoulou K, Lekka M,Smyrniotis V, and Nakos G. Acute lung injury in a rat model of intestinal ischemia-reperfusion: the potential time depended role of phospholipases A(2). J Surg Res, 2008; 147(1): 108-116.
    
    [21] Saccani S, Pantano S, Natoli G. p38-dependent marking of inflammatory genes for increased NF-kB recruitment. Nat. Immunol, 2002, 3: 69-75.
    
    [22] Brinkman BM, Telliez JB, Schievella AR, Lin LL, Goldfeld AE. Engagement of tumor necrosis factor (TNF) receptor 1 leads to ATF-2- and p38 mitogen-activated protein kinase-dependent TNF-alpha gene expression. J Biol Chem. 1999, 274(43):30882-3086.
    
    [23] Hoffmeyer A, Grosse-Wilde A, Flory E, Neufeld B, Kunz M, Rapp UR, Ludwig S. Different mitogen-activated protein kinase signaling pathways cooperate to regulate tumor necrosis factor alpha gene expression in T lymphocytes. J Biol Chem, 1999,274(7): 4319-4327
    [24] Barone FC, Irving EA, Ray AM, Lee JC, Kassis S, Kumar S, et al. SB239063, a second-generation p38 mitogen-activated protein kinase inhibitor, reduces brain injury and neurological deficits in cerebral focal ischemia. J Pharmacol Exp Ther,2001,296:312-321.
    [25] Chen XL, Xia ZF, Ben DF, Wang GQ, and Wei D. Role of p38 mitogen-activated protein kinase in lung injury after burn trauma. Shock, 2003, 19(5): 475-479.
    [26] Yoshinari D, Takeyoshi I, Koibuchi Y, Matsumoto K, Kawashima Y, Koyama T,Ohwada S, and Morishita Y. Effects of a dual inhibitor of tumor necrosis factor-alpha and interleukin-1 on lipopolysaccharide-induced lung injury in rats:involvement of the p38 mitogen-activated protein kinase pathway. Crit Care Med,2001, 29(3): 628-634.
    [27] Shimabukuro DW, Sawa T, Gropper MA. Injury and repair in lung and airways.Crit Care Med, 2003. 31(8 Suppl):S524-531.
    [28] Liu S, Feng G, Wang GL, and Liu GJ. p38 MAPK inhibition attenuates LPS-induced acute lung injury involvement of NF-kappaB pathway. Eur J Pharmacol, 2008, 584(1): 159-165.
    [29] Otani Y, Takeyoshi I, Koibuchi Y, Matsumoto K, Muramoto M, and Morishita Y.The effect of FR167653 on pulmonary ischemia-reperfusion injury in rats. J Heart Lung Transplant., 2000. 19(4): 377-83.
    [30] Takeyoshi I, Iwanami K, Ohwada S, Kawashima Y, Kawata K, Aiba M,Kobayashi J, Koyama T, Matsumoto K, Satoh S, Morishita Y. Effect of FR167653 on small bowel ischemia-reperfusion injury in dogs. Dig Dis Sci. 1999, 44(11):2334-2343.
    [31] Kobayashi M, Takeyoshi I, Yoshinari D, Matsumoto K, Morishita Y. p38 Mitogen-activated protein kinase inhibition attenuates ischemia-reperfusion injury of the rat liver. Surgery, 2002, 131: 344-349.
    [32] Arcaroli J, Yum HK, Kupfner J, Park JS, Yang KY, and Abraham E. Role of p38 MAP kinase in the development of acute lung injury.Clin Immunol 2001,101(2):211-219.
    [1]Berlanga J,Prats P,Remirez D,Gonzalez R,Lopez-Saura P,Aguiar J,Ojeda M,Boyle JJ,Fitzgerald AJ,Playford RJ.Prophylactic use of epidermal growth factor reduces ischemia/reperfusion intestinal damage.Am J Pathol.2002,161:373-379.
    [2]田晓峰.肠缺血再灌注损伤对机体的影响[J].中国医师进修杂志,2005,6(28):6-8.
    [3]张喜平,封光华.小肠缺血再灌注损伤的研究进展.世界华人消化杂,2005,13(11):1332-1334.
    [4]Hommes DW,peppelenbosch MP,Van Deventer SJH.Mitogen activated protein(MAK) kinase signal transduction pathways and novel Anti-inflammatory target.Gut,2003,52:144-151.
    [5]Blikslager AT,Roberts MC,Argenzio RA.Prostaglandin-induced recovery of barrier function in porcine ileum is triggered by chloride secretion.Am J Physiol Gastrointest Liver Physiol 1999,276:G28-36.
    [6] Shifflett DE, Bottone FG Jr, Young KM, Moeser AJ, Jones SL, Blikslager AT.Neutrophils augment recovery of porcine ischemia-injured ileal mucosa by an IL-lb and COX-2 dependent mechanism. Am J Physiol Gastrointest Liver Physiol 2004, 287(1): G50-57.
    [7] Cuzzocrea S, Chatterjee P, Mazzon E, Dugo L, De Sarro A, Van de Loo FAJ,Caputi AP, Thiemermann C. Role of induced nitric oxide in the initiation of the inflammatory response after postischemic injury. Shock. 2002, 18:169-176.
    [8] Le'Negrate G, Selva E, Auberger P, Rossi B, Hofman P. Sustained polymorphonuclear leukocyte transmigration induces apoptosis in T84 intestinal epithelial cells. J Cell Biol, 2000, 150: 1479-1488.
    [9] Gayle JM, Jones SL, Argenzio R, Blikslager A. Neutrophils increase paracellular permeability of restituted ischemic-injured porcine ileum. Surgery, 2002, 132:461-470
    [10] Ginzberg HH, Cherapanov V, Dong Q, Cantin A, McCulloch CA, Shannon PT,Downey GP. eutrophil-mediated epithelial injury during transmigration: role of elastase. Am J Physiol Gastrointest Liver Physiol, 2001, 281: G705-G717.
    [11] Hernandez LA, Grisham MB, Twohig B, Arfors KE, Harlan JM, Granger DN.Role of neutrophils in ischemia-reperfusion induced microvascular injury. Am J Physiol Heart Circ Physiol, 1987, 253: H699-703.
    [12] Ikeda H, Suzuki Y, Suzuki M, Koike M, Tamura J, Tong J, Nomura M, Itoh G.Apoptosis is a major mode of cell death caused by ischaemia and ischaemia/reperfusion injury to the rat intestinal epithelium. Gut, 1998,42:530-537.
    [13] Fujise T, Iwakiri R, Wu B, Amemori S, Kakimoto T, Yokoyama F, Sakata Y,Tsunada S, Fujimoto K. Apoptotic pathway in the rat small intestinal mucosa is different between fasting and ischemia-reperfusion. Am J Physiol Gastrointest Liver Physiol, 2006,291: G110-116.
    [14] Fu XB, Yang YH, Sun TZ, Chen W, Li JY, Sheng ZY, Rapid mitogen-activated protein kinase by basic fibroblast growth factor in rat intestine after ischemia/reperfusion injury. World J Gastroenterol, 2003, 9(6):1312-1317.
    [15] Murayama T, Tanabe M, Matsuda S, Shimazu M, Kamei S, Wakabayashi G,Kawachi S, Matsumoto K, Yamazaki K, Matsumoto K, Koyasu S, Kitajima M.JNK (c-Jun NH2 terminal kinase) and p38 during ischemia reperfbsion injury in the small intestine. Plantation. 2006, 81(9): 1325-1330.
    [16] Widmann C, Gibson S, Jarpe MB, Johnson GL. Mitogen-activated protein kinase:conservation of a three-kinase module from yeast to human. Physiol Rev, 1999,79:143-80.
    [17] Xia Z, Dickens M, Raingeaud J, Davis RJ, Greenberg ME. Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science, 1995, 270:1326-1331.
    [18] Harper SJ, LoGrasso P. Signalling for survival and death in neurones: the role of stress-activated kinases, JNK and p38. Cell Signal, 2001, 13: 299-310.
    [19] Assefa Z, Vantieghem A, Declercq W, Vandenabeele P, Vandenheede JR,Merlevede W, de Witte P, Agostinis P. The activation of the c-Jun N-terminal kinase and p38 mitogen-activated protein kinase signaling pathways protects HeLa cells from apoptosis following photodynamic therapy with hypericin. J Biol Chem, 1999, 274(13): 8788-8796.
    [20] Martindale JL, Holbrook NJ. Cellular response to oxidative stress: signaling for suicide and survival. J Cell Physiol, 2002, 192:1-15.
    [21] Zhou Y, Wang Q, Evers BM, Chung DH. Signal transduction pathways involved in oxidative stress-induced intestinal epithelial cell apoptosis. Pediatr Res. 2005,58(6): 1192-1197.
    [22] Naydenov NG, Hopkins AM, Ivanov AI. c-Jun N-terminal kinase mediates disassembly of apical junctions in model intestinal epithelia. Cell Cycle. 2009,8(13):2110-21.
    [23] Thorpe CM, Hurley BP, Lincicome LL, Jacewicz MS, Keusch GT, Acheson DW.Shiga toxins stimulate secretion of interleukin-8 from intestinal epithelial cells.Infect. Immun, 1999, 67: 5985-5993.
    [24] Smith WE, Kane AV, Campbell ST, Acheson DW, Cochran BH, Thorpe CM.Shiga toxin 1 triggers a ribotoxic stress response leading to p38 and JNK activation and induction of apoptosis in intestinal epithelial cells. Infect. Immun 2003,71(3): 1497-1504.
    [25] Schauser K, Olsen JE, Larsson LI. Salmonella typhimurium infection in the porcine intestine: evidence for caspase-3-dependent and-independent programmed cell death. Histochem Cell Biol. 2005,123(1): 43-50.
    [26] Moon DO, Jin CY, Lee JD, Choi YH, Ahn SC, Lee CM, Jeong SC, Park YM,Kim GY. Curcumin decreases binding of Shiga-like toxin-IB on human intestinal epithelial cell line HT29 stimulated with TNF-alpha and IL-1beta:suppression of p38, JNK and NF-kappaB p65 as potential targets. Biol Pharm Bull. 2006,29(7): 1470-1475.
    [27] Bhattacharya S, Ray RM, Viar MJ, and Johnson LR. Polyamines are required for activation of c-Jun NH2-terminal kinase and apoptosis in response to TNF-a in IEC-6 cells. Am J Physiol Gastrointest Liver Physiol 2003, 285: G980-891.
    [28] Shi J, Ray RM, Andjohnson LR. Racl mediates intestinal epithelial cell apoptosis via JNK. Am J Physiol Gastrointest Liver Physiol, 2006, 291:G1137-1147.
    [29] McCubrey JA, Steelman LS, ChappellWH, et al. Roles of the Raf /MEK/ERK pathway in cell growth, malignant, transformation and drug resistance [J].Biochim Biophys Acta, 2007, 1773 (8): 1263-1284.
    [30] Boulton TG, Yancopoulos GD, Gregory JS, Slaughter C, Moomaw C, Hsu J, et al.An insulin-stimulated protein kinase similar to yeast kinases involved in cell cycle control. Science, 1990, 249: 64-67.
    [31] Scheid, MP, Schubert, KM, and Duronio, V. Regulation of bad phosphorylation and association with Bcl-x(L) by the MAPK/Erk kinase. J. Biol. Chem, 1999;274: 1108-1113.
    [32] Fang X, Yu S, Eder A, Mao M, Bast RC Jr, Boyd D, Mills GB. Regulation of BAD phosphorylation at serine 112 by the Ras-mitogen-activated protein kinase pathway. Oncogene, 1999; 18(48): 6635-6640.
    [33] Ray RM, Bhattacharya S, Johnson LR. Protein phosphatase 2A regulates apoptosis in intestinal epithelial cells. J Biol Chem., 2005, 280(35):31091-31100.
    [34] Dieckgraefe BK, Weems DM, Santoro SA, Alpers DH. ERK and p38 MAP kinase pathways are mediators of intestinal epithelial wound-induced signal transduction. Biochem Biophys Res Commun, 1997, 233(2):389-394.
    
    [35] Bhattacharya S, Ray RM, Johnson LR. Prevention of TNF-alpha-induced apoptosis in polyamine-depleted IEC-6 cells is mediated through the activation of ERK1/2. Am J Physiol Gastrointest Liver Physiol, 2004, 286, G479-490.
    
    [36] Zarubin T, Han JH. activation and signaling of the p38 MAP kinase pathway.Cell Research, 2005, 15(1):11-18.
    
    [37] Brinkman BM, Telliez JB, Schievella AR, Lin LL, Goldfeld AE. Engagement of tumor necrosis factor (TNF) receptor 1 leads to ATF-2- and p38 mitogen-activated protein kinase-dependent TNF-alpha gene expression. J Biol Chom, 1999; 274(43): 30882-30886.
    
    [38] Hoffmeyer A, Grosse-Wilde A, Flory E, Neufeld B, Kunz M, Rapp UR, Ludwig S. Different mitogen-activated protein kinase signaling pathways cooperate to regulate tumor necrosis factor alpha gene expression in T lymphocytes. J Biol Chem, 1999, 274(7): 4319-4327.
    
    [39] Stoneley M, Chappell SA, Jopling CL, Dickens M, MacFarlane M, Willis AE.c-Myc protein synthesis is initiated from the internal ribosome entry segment during apoptosis. Mol Cell Biol. 2000, 20(4): 1162-1169.
    
    [40] Bulavin DV, Saito S, Hollander MC, Sakaguchi K, Anderson CW, Appella E,Fornace AJ Jr. Phosphorylation of human p53 by p38 kinase coordinates N-terminal phosphorylation and apoptosis in response to UV radiation. EMBO J.1999, 18(23):6845-6854.
    
    [41] Zheng SY, Fu XB, Xu JG, Zhao JY, Sun TZ, Chen W. Inhibition of p38 mitogen-activated protein kinase may decrease intestinal epithelial cell apoptosis and improve intestinal epithelial barrier function after ischemia-reperfusion injury. World J Gastroenterol, 2005, 11(5): 656-660.
    
    [42] Santen S, Mihaescu A, Laschke MW, Menger MD, Wang Y, Jeppsson B,Thorlacius H. p38 MAPK regulates ischemia-reperfusion-induced recruitment of leukocytes in the colon. Surgery, 2009, 145(3): 303-312.
    [43] Nishimura T, Andoh A, Nishida A, Shioya M, Koizumi Y, Tsujikawa T, Fujiyama Y. FR167653, a p38 mitogen-activated protein kinase inhibitor, aggravates experimental colitis in mice. World J Gastroenterol, 2008,14(38):5851-5856.
    
    [44] Walton KL, Holt L, Sartor RB. Lipopolysaccharide activates innate immune responses in murine intestinal myofibroblasts through multiple signaling pathways. Am J Physiol Gastrointest Liver Physiol, 2009, 296(3): G601-611.
    
    [45] Shifflett DE, Jones SL, Moeser AJ, Blikslager AT. Mitogen-activated protein kinases regulate COX-2 and mucosal recovery in ischemic-injured porcine ileum. Am J Physiol Gastrointest Liver Physiol, 2004,286(6): G906-913.
    
    [46] Grishin AV, Wang J, Potoka DA, Hackam DJ, Upperman JS, Boyle P, Zamora R,Ford HR. Lipopolysaccharide induces cyclooxygenase-2 in intestinal epithelium via a noncanonical p38 MAPK pathway. J Immunol, 2006, 176(1):580-588.
    
    [47] Costantini TW, Peterson CY, Kroll L, Loomis WH, Eliceiri BP, Baird A, Bansal V,Coimbra R. Role of p38 MAPK in burn-induced intestinal barrier breakdown. J Surg Res. 2009,156(1): 64-69.
    
    [48] Guner YS, Ochoa CJ, Wang J, Zhang X, Steinhauser S, Stephenson L, Grishin A,Upperman JS. Peroxynitrite-induced p38 MAPK pro-apoptotic signaling in enterocytes. Biochem Biophys Res Commun, 2009, 384(2): 221-225.
    
    [49] Sheng ZY, Dong YL, Wang XH. Bacterial translocation and multiple system organ failure in bowel ischemia and reperfusion. J Trauma, 1992, 32(2):148-153.
    
    [50] Harward TR, Brooks DL, Flynn TC, Seeger JM. Multiple organ dysfunction after mesenteric artery revascularization. J Vasc Surg. 1993, 18(3): 459-469.
    
    [51] Parinandi NL, Kleinberg MA, Usatyuk PV, Cummings RJ, Pennathur A,Cardounel AJ, Zweier JL, Garcia JG, Natarajan V. Hyperoxia-induced NAD(P)H oxidase activation and regulation by MAP kinases in human lung endothelial cells. Am J Physiol Lung Cell Mol Physiol. 2003, 284(1): L26-38.
    
    [52] Khadaroo RG, Parodo J, Powers KA, Papia G, Marshall JC, Kapus A, Rotstein OD. Oxidant-induced priming of the macrophage involves activation of p38 mitogen-activated protein kinase through an Src-dependent pathway. Surgery, 2003,134(2): 242-246.
    [53] Usatyuk PV, Vepa S, Watkins T, He D, Parinandi NL, Natarajan V. Redox regulation of reactive oxygen species-induced p38 MAP kinase activation and barrier dysfunction in lung microvascular endothelial cells. Antioxid Redox Signal. 2003, 5(6): 723-730.
    [54] Haddad JJ, Land SC. Redox/ROS regulation of lipopolysaccharide-induced mitogen-activated protein kinase (MAPK) activation and MAPK-mediated TNF-alpha biosynthesis. Br J Pharmacol, 2002,135(2): 520-36.
    [55] Shen W, Gan J, Xu S, Jiang G, Wu H. Penehyclidine hydrochloride attenuates LPS-induced acute lung injury involvement of NF-kappaB pathway. Pharmacol Res. 2009, 60(4): 296-302.
    [56] Togbe D, Schnyder-Candrian S, Schnyder B, Doz E, Noulin N, Janot L, Secher T,Gasse P, Lima C, Coelho FR, Vasseur V, Erard F, Ryffel B, Couillin I, Moser R.Toll-like receptor and tumour necrosis factor dependent endotoxin-induced acute lung injury. Int J Exp Pathol. 2007, 88(6): 387-391.
    [57] Kim HJ, Lee HS, Chong YH, Kang JL. p38 Mitogen-activated protein kinase up-regulates LPS-induced NF-kappaB activation in the development of lung injury and RAW 264.7 macrophages. Toxicology, 2006, 225(1): 36-47.
    [58] Jarrar D, Kuebler JF, Rue LW 3rd, Matalon S, Wang P, Bland KI, Chaudry IH.Alveolar macrophage activation after trauma-hemorrhage and sepsis is dependent on NF-kappaB and MAPK/ERK mechanisms. Am J Physiol Lung Cell Mol Physiol. 2002, 283(4): L799-805.
    [59] Carter AB, Monick MM, Hunninghake GW. Both Erk and p38 kinases are necessary for cytokine gene transcription. Am J Respir Cell Mol Biol. 1999,20(4): 751-758.
    [60] Schuh K, Pahl A. Inhibition of the MAP kinase ERK protects from lipopolysaccharide-induced lung injury. Biochem Pharmacol. 2009 Jun 15,77(12): 1827-34. Epub 2009 Mar 24.
    [61] Asaduzzaman M, Wang Y, Thorlacius H. Critical role of p38 mitogen-activated protein kinase signaling in septic lung injury. Crit Care Med. 2008, 36(2):482-488.
    [62] Kan W, Zhao KS, Jiang Y, Yan W, Huang Q, Wang J, Qin Q, Huang X, Wang S.Lung, spleen, and kidney are the major places for inducible nitric oxide synthase expression in endotoxic shock: role of p38 mitogen-activated protein kinase in signal transduction of inducible nitric oxide synthase expression. Shock, 2004,21(3): 281-287.
    [63] Han B, Mura M, Andrade CF, Okutani D, Lodyga M, dos Santos CC, Keshavjee S, Matthay M, Liu M. TNF-alpha-induced long pentraxin PTX3 expression in human lung epithelial cells via JNK. J Immunol, 2005, 175(12): 8303-8311.
    [64] Jeon SH, Lee MY, Rahman MM, Kim SJ, Kim GB, Park SY, Hong CU, Kim SZ,Kim JS, Kang HS. The antioxidant, taurine reduced lipopolysaccharide (LPS)-induced generation of ROS, and activation of MAPKs and Bax in cultured pneumocytes. Pulm Pharmacol Ther. 2009,22(6): 562-566.
    [65] Fang WF, Cho JH, He Q, Lin MC, Wu CC, Voelkel NF, Douglas IS. Lipid A fraction of LPS induces a discrete MAPK activation in acute lung injury. Am J Physiol Lung Cell Mol Physiol. 2007, 293(2): L336-344.
    [66] Nash SP, Heuertz RM. Blockade of p38 map kinase inhibits complement-induced acute lung injury in a murine model. Int Immunopharmacol. 2005,5(13-14):1870-80.
    [67] Powell CS, Wright MM, Jackson RM. p38 mapk and MEK1/2 inhibition contribute to cellular oxidant injury after hypoxia. Am J Physiol Lung Cell Mol Physiol. 2004,286(4): L826-833.
    [68] Khadaroo RG, Lu Z, Powers KA, Papia G, Kapus A, Rotstein OD. Impaired activation of mitogen-activated protein kinases after hemorrhagic shock. Surgery,2002,132(2): 360-364.
    [69] Su J, Cui X, Li Y, Mani H, Ferreyra GA, Danner RL, Hsu LL, Fitz Y, Eichacker PQ. SB203580, a p38 Inhibitor, Improved Cardiac Function but Worsened Lung Injury and Survival During Escherichia coli Pneumonia in Mice. J Trauma, 2010 Jan 9. [Epub ahead of print]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700