用户名: 密码: 验证码:
多巴胺受体激动剂在帕金森模型中的神经保护机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
【研究背景与目的】
     一、帕金森病的简介及发病机制
     1817年,英国学者James Parkinson首先发现一种在老年人中常见的中枢神经系统变性疾病,临床表现以运动徐缓,静止性震颤,僵直等运动系统障碍为主,因此命名为帕金森病(Parkinson's disease, PD)。此后,人们通过大量研究逐渐对帕金森病的流行病学特征、临床特点、发病机制、疾病转归及治疗有了更深入系统的认识。
     帕金森病的主要病理学特征是:中脑黑质致密部(substantia nigra pars compacta, SNpc)为主的多巴胺(dopamine, DA)神经元的进行性丢失以及胞浆内包涵体物质的出现,称为路易小体(Lewy bodies, LBs)。虽然在帕金森疾病中发生的神经变性机制尚未明了,但是广大学者认为帕金森病是一种由多个因素所导致的综合性疾病,这些因素包括遗传因素中a-synuclein、parkin、UCH-L1、PINK1、DJ-1、LRRK2等基因的影响,环境因素如除草剂、鱼藤酮、MPTP等化学毒物的作用,人口老龄化,现代生活习惯及其它因素。这些影响因素可能会引起线粒体功能障碍,氧化应激,炎症反应,兴奋性中毒(图1),从而导致帕金森病的发生。
     近年来,经过许多研究证实了异常聚集的错构蛋白在帕金森发病机制中的作用,这个领域的研究越来越受到重视。泛素蛋白酶体系统(ubiquitin-proteasome system)是清除这些错构蛋白的主要途径,泛素蛋白酶体系统的功能障碍与帕金森的关系成为帕金森病的研究热点。与此同时,在帕金森发病机制研究中,越来越多的研究者认识到自噬溶酶体通路(autophagy-lysosome pathway)对于修复和清除异常聚集蛋白所起到的重要作用
     二、多巴胺受体激动剂在帕金森病治疗中的作用
     帕金森病的治疗以对症治疗和恢复纹状体内多巴胺神经元的功能为主。由于具有良好的耐受性,易于吸收以及经济实惠的特点,左旋多巴一直以来是对症治疗帕金森疾病症状的首选药物。但是它的副作用也很明显,尤其是长期使用会造成严重并发症,例如症状波动,开关现象和运动障碍。除此之外,左旋多巴还对多巴胺神经元有毒性作用,并会导致具有细胞毒性的自由基的生成。这样会破坏残存的多巴胺神经元并加剧帕金森疾病的恶化程度。现在作为左旋多巴的辅助药品,多巴胺受体激动剂在治疗帕金森症状中起到了更为重要的作用,它们通过模拟内源性的神经递质,直接作用于多巴胺受体,使其激活,起到类似多巴胺的作用(图2)。与左旋多巴合用时,可以减少左旋多巴的用量,预防和缓解长期服用左旋多巴所引起的运动障碍。多巴胺受体激动剂有两种亚型:麦角类和非麦角类激动剂。后者包括prarmipexole和ropinirole,比前者更具效用。这种新型的多巴胺受体激动剂具有高度选择性和副作用较少的优点。
     三、帕金森疾病动物模型的构建和应用
     为了直观比较和量化检测帕金森病的表现症状和实验药物的治疗效果,我们需要成功构建帕金森病动物模型进行体内科学实验研究(图3)。神经毒性药物,例如1-甲基-4-苯基-1,2,3,6-四氢吡啶(MPTP),导致的帕金森病动物模型对于研究该病具有重要作用,这些模型可以帮助阐明针对黑质区的多巴胺神经元损伤和退行性病变的进展过程。MPTP会产生类似于特发性帕金森病的改变,例如临床的,生化的,神经病理学的改变,并牵涉到诸多细胞死亡的机制,例如对线粒体电子传递链中线粒体复合物Ⅰ的抑制,导致其缺失;毒性分子活性氧的产生:炎症反应;凋亡;自噬等。
     接触过MPTP的人或灵长类动物会产生类似于帕金森病的症状,并造成多巴胺神经元的变性,对于我们研究帕金森病提供了较为可靠的动物模型。猴的MPTP模型被认为是评估帕金森疾病新的研究策略和治疗方法的金标准,但是缺乏2种帕金森病的特有属性:一是与单胺能神经核内的神经元丢失不一致;二是尚未大量证实神经细胞内路易小体的出现。基于实际考虑,猴MPTP模型不是一种普遍的应用于多巴胺神经变性机制研究的动物模型,而使用MPTP诱导的小鼠模型对于研究以下3种可能导致帕金森疾病的功能障碍:氧化应激,线粒体缺陷,蛋白异常聚集,具有较好的适用性。小鼠模型不但易于构建,而且成本较低,故一直以来是被最广泛应用的帕金森动物模型。但是小鼠模型仍然存在一定的局限性:首先,小鼠对于MPTP的敏感性较差,故需要大剂量的MPTP才能产生足够明显的症状,这就带来了增大环境污染的问题。其次,小鼠的帕金森体征不如猴的典型。最后,黑质纹状体通路受影响的程度取决于MPTP的剂量和注射程序。
     泛素蛋白酶体系统的主要作用是清除细胞内正常或异常聚集的蛋白。lactacystin是一种高选择性的泛素蛋白酶体抑制剂,通过抑制或破坏泛素蛋白酶体系统的作用,能导致聚集的蛋白不能降解并最终导致神经元的功能障碍和死亡。在前期实验中,我们已经证实直接向内侧前脑束进行单侧或双侧立体定向注射lactacystin会产生类似于帕金森病的神经病理特性:严重的多巴胺神经元丧失以及包涵体样蛋白的聚集。此外,我们还发现纹状体内的多巴胺及其代谢产物高香草酸(HVA)及二羟苯乙酸(DOPAC)的含量显著降低,而5-羟色胺(5-HT)、5-羟吲哚乙酸(5-HIAA)的含量去变化不明显。这说明lactacystin是高度选择性的作用于黑质纹状体多巴胺通路。
     四、小结
     本论文的实验是在山东大学与美国Baylor College of Medicine神经科学研究所进行博士生联合培养期间完成的。
     本文将充分、严谨的研究结果与帕金森病的研究现状相结合。通过在不同类型的帕金森小鼠模型上研究多巴胺受体激动剂对于神经退行性疾病的保护作用,旨在通过不同的角度来论证多巴胺受体激动剂神经保护作用的机制,并从一些新的角度分析,提出新的观点,以期能为将来神经外科与其他相关专业合作研究和治疗中枢神经系统的疾病提供理论依据和实验基础。
     第一部分新型多巴胺受体D3激动剂-D264对两种类型帕金森病动物模型的神经保护作用
     【研究目的】
     建立两种不同类型的帕金森疾病(Parkinson's disease, PD)小鼠(C57BL/6)动物模型:MPTP(1-甲基-4-苯基-1,2,3,6-四氢吡啶)模型及lactacystin模型,观察不同剂量新型多巴胺受体D3激动剂-D264对帕金森疾病小鼠模型的作用,以及特异性D3受体拮抗剂U99194干预D264对D3受体的激动作用,联合研究行为学改变(疲劳转棒测试,自主活动测试,爬杆测试),病理学特征(中脑黑质致密区多巴胺神经元),中枢神经系统内生化改变(多巴胺、5-羟色胺及其代谢产物),蛋白酶体活动的改变,脑源性神经营养因子(Brain derived neurotrophic factor, BDNF)和胶质源性神经营养因子(Glial derived neurotrophic factor, GDNF)的改变。分析上述指标,明确这两种帕金森疾病小鼠模型成功构建,以及D264的神经保护作用及机制。
     【研究方法】
     12周龄的雄性C57BL/6小鼠随机分成12个组:对照组1(MPTP),对照组2(lactacystin), MPTP组,lactacystin组,低剂量D264(1 mg/kg)预处理MPTP组,高剂量D264(5 mg/kg)预处理MPTP组,低剂量D264(1 mg/kg)预处理lactacystin组,高剂量D264(5 mg/kg)预处理lactacystin组,独立D264组1(MPTP),独立D264组2(lactacystin),联合使用U99194与D264预处理MPTP组,联合使用U99194与D264预处理lactacystin组。在对小鼠进行MPTP和lactacytin处理的前一天以及处理过后的每周进行行为学测试,并分别于第14天(MPTP组)和第21天(lactacystin组)处死小鼠,取出小鼠的脑组织分别进行低温保存和免疫组化处理,测定中脑黑质酪氨酸羟化酶(TH)阳性细胞数,多巴胺(dopamine, DA)、5-羟色胺(5-HT)及其代谢产物的含量,蛋白酶体活动以及BDNF和GDNF的水平。
     【结果】
     (1)与对照组相比,MPTP和lactacystin处理的小鼠活动能力均大幅降低(P<0.01),TH阳性细胞数降低51.9%和47.9%(P<0.01),DA和5-HT减少87.3%和70.9%(P<0.01), lactacystin抑制蛋白酶体活动48.5%(P<0.01),并降低了BDNF和GDNF的表达水平(P<0.01)。
     (2)与MPTP和lactacystin处理组相比,D264预处理组分别提高了小鼠的活动能力,TH阳性细胞数,DA和5-HT的含量,蛋白酶体活动以及BDNF和GDNF的表达水平,具有明显的神经保护作用。
     (3)与D264预处理组相比,U99194降低了D264的保护作用。
     【结论】
     (1)MPTP和lactacystin的小鼠模型可以表现出大部分帕金森疾病的特点,可以作为本研究中的帕金森疾病动物模型。
     (2)新型多巴胺受体D3激动剂-D264能够减轻MPTP和lactacystin对于小鼠模型的损害,具有明显的保护作用。
     (3)特异性的D3受体拮抗剂U99194可以部分减弱D264的保护作用,说明D264是通过调节D3受体起到保护作用的。
     第二部分Pramipexole在蛋白酶体抑制剂致帕金森动物模型神经损伤中的保护机制研究
     【研究目的】
     帕金森疾病是以中脑黑质区多巴胺神经元的进展性减少和蛋白质的异常聚集形成路易小体为主要特征。导致帕金森疾病中神经退行性病变的原因目前尚未明确。有学者认为泛素-蛋白酶体系统的障碍在帕金森的发病中起重要作用。我们的研究旨在探讨pramipexole在蛋白酶体抑制导致的帕金森小鼠模型中的神经保护作用,以及自噬对其损伤多巴胺神经元的可能保护机制。
     【研究方法】
     10-12周龄的雄性C57BL/6小鼠随机分成6个组:对照组,lactacystin组,独立pramipexole组,低剂量pramipexole (0.1 mg/kg)预处理lactacystin组,高剂量pramipexole (0.5 mg/kg)预处理lacatcystin组,联合使用U99194与pramipexole预处理lactacystin组。在立体定向(小鼠的中前脑束)注射lactacystin的7天前使用pramipexole预处理小鼠,并持续4周。第28天处死小鼠,取出小鼠的脑组织分别进行低温保存和免疫组化处理,测定中脑黑质酪氨酸羟化酶(TH)阳性细胞数,多巴胺(dopamine,DA)、5-羟色胺(5-HT)及其代谢产物的含量,蛋白酶体活动,脑源性神经营养因子(Brain derived neurotrophic factor, BDNF)和胶质源性神经营养因子(Glial derived neurotrophic factor, GDNF)的水平以及在电镜下观察自噬活动。
     【结果】
     我们发现:pramipexole能显著改善小鼠的行为障碍,减少多巴胺神经元的丧失,提高蛋白酶体的活动。我们还指出pramipexole能增加BDNF和GDNF的水平。此外我们还观察到自噬活动在pramipexole处理小鼠中的增强。与pramipexole预处理组相比,U99194降低了D264的保护作用。
     【结论】
     这些结果表明,(1)立体定向注射lactacystin的小鼠模型可以表现出大部分帕金森疾病的特点,可以作为本研究中的帕金森疾病动物模型。(2)pramipexole在蛋白酶体抑制剂致帕金森动物模型神经损伤的神经保护机制可能通过多种分子通路来完成。(3)自噬-溶酶体通路的障碍也可能导致错构蛋白的异常聚集并成为导致神经退行性疾病的原因,包括帕金森病。本研究的结果为大家提供了一个崭新的思路来探讨治疗帕金森疾病的机制与方法。
1. The Pathogenesis of Parkinson's disease
     Parkinson's disease (PD) is named after James Parkinson, who made a first and detailed description of the disease in the year 1817. PD is a neurodegenerative disorder, usually affects old people at the age of 60, clinically characterized by bradykinesia, rigidity, resting tremor, and a variety of other motor.
     The pathological hallmark of PD is progressive loss of dopamine (DA) neurons in the substantia nigra pars compacta (SNpc), and the presence of cytoplasmic inclusions, termed Lewy bodies. There is growing consensus among parkinsonologists, that PD is probably not a homogenous disease, but a syndrome of different disorders, caused by genetic, environmental, aging, and other etiologies. Although the mechanism of neurodegeneration in PD is not clear, the pathogenesis of PD has been postulated to result from a complex interaction between environmental and genetic factors leading to mitochondrial dysfunction, oxidative stress, inflammation, and excitotoxicity, eventually leading to nigral DAergic neuron degeneration.
     Impaired degradation of misfolded and aggregated proteins is being increasingly recognized to play an important role in the pathogenesis of PD. Dysfunction of the ubiquitin-proteasome system (UPS) has been already strongly implicated in the pathogenesis of this disease and growing interest has been shown in identifying the role of autophagy-lysosome pathway (ALP) in repair and removal of misfolded proteins.
     2. The role of dopamine agonist in the treatment of Parkinson's disease
     Current drug therapy in Parkinson's disease is symptomatic and primarily aimed at restoring dopaminergic function in the striatum. Levodopa is still the most effective symptomatic treatment. Levodopa is well tolerated, easy to administer, and inexpensive. However, long term use is associated with disabling complications such as fluctuating motor responses and dyskinesias. Besides, it is reported that levodopa is toxic in vitro to dopaminergic neurons and in vivo its use could lead to formation of cytotoxic free radicals when exogenous dopamine is decarboxylated, these would cause damage to surviving dopaminergic neurons and potentially exacerbate the disease . Dopamine agonists were introduced as an adjunct to levodopa treatment and play an important role in antiparkinsonian by acting directly on dopamine receptors and imitating the endogenous neurotransmitter. There are two subclasses of dopamine agonists:ergoline and non-ergoline agonists. The non-ergoline agonists such as pramipexole and ropinirole are more effective than the ergoline agonist, the reason may be that pramipexole is a selective D3 dopamine receptor agonist and with less side effects.
     3. The animal models of Parkinson's disease:construction and application
     The successful application of animal models to the study of Parkinson's disease has advanced our knowledge of Parkinson's disease. Neurotoxin-based models have been important in clarifying aspects of the disease, such as selective vulnerability of substantia nigra dopaminergic neurons to the degenerative process. It produces clinical, biochemical, and neuropathological changes of those occurring in idiopathic PD. Several cell death mechanisms have been implicated in MPTP toxicity, including an inhibition of complex I in the mitochondrial electron transport chain, the generation of reactive oxygen species (ROS), inflammation, apoptosis, and autophagia.
     Exposure of humans to MPTP causes a syndrome that mimics the core neurological symptoms and relatively selective dopaminergic neurodegeneration of PD. Although the monkey MPTP model is the gold standard for the assessment of novel strategies and agents for the treatment of PD symptoms, the monkey MPTP model does not include two characteristic features of PD. First, neurons are not consistently lost from other monaminergic nuclei, a typical feature of PD . Second, although intraneuronal inclusions resembling LBs have been described classical LBs have not been demonstrated convincingly in the brains of MPTP-intoxicated patients or monkeys. Because of practical considerations, MPTP monkeys have not generally been used to explore the molecular mechanisms of dopaminergic neurodegeneration; the MPTP mouse model is typically used for such studies. MPTP toxicity in mice has become the most commonly used animal model of PD for both technical and financial reasons. These studies have focused on three types of dysfunction that may be important in the pathogenesis of PD:oxidative stress, mitochondrial defect, and abnormal protein aggregation.
     However, several problems need to be emphasized. First, mice are much less sensitive to MPTP than monkeys; thus, much higher doses are required to produce significant SNpc damage in this animal species, presenting a far greater hazardous situation. Second, in contrast to the situation in monkeys, mice treated with MPTP do not develop parkinsonism. Third, the magnitude of nigrostriatal damage depends on the dose and dosing schedule.
     Lactacystin is a selective inhibitor of ubiquitin proteasome system (UPS), which is responsible for the degradation of normal processed cellular proteins as well as misfolded proteins, it is believed that inhibition or impairment of UPS could lead to the accumulation of toxic proteins and ultimately result in neuronal dysfunction and death. In our lab's previous study, we have showed that direct stereotactic injection with proteasome inhibitor-lactacystin, into the unilateral or bilateral mouse medial forebrain bundle (MFB) can cause severe nigral cell degeneration and inclusion body-like protein aggregate formation, which resemble some neuropathological features of PD. In addition, we have found that, in the lactacystin-injected mice, the striatal levels of dopamine and its metabolites, DOPAC and HVA, were significantly reduced, whereas the levels of 5-HT and 5-HIAA were unchanged, indicating that the toxicity of lactacystin might be relatively selective to nigro-striatal dopaminergic pathway.
     4. Conclusion
     The thesis is based on my study during the Joint training of Shandong University and Baylor College of Medicine.
     Our study on the neuroprotective property of dopamine receptor in two kinds of Parkinson's disease animal models has not only improved the knowledge on neurodegeneration disease but also focus on novel therapeutic strategies. It may provide us further communication between neurology and neurosurgery in different fields of central nervous system diseases.
     PART ONE The neuroprotective property of novel D3 dopamine receptor preferring agonist D-264 in two kinds of Parkinson's disease animal models
     Objectives
     The animal models of Parkinson's disease, induced by MPTP and lactacystin, were constructed. We used a combination study, including a blocking experiment with D3 receptor antagonist U99194, to better understand the mechanism of neuroprotection of selective D3 receptor agonist-D264. We observed the changes of behavioral performances (rotarod, locomotion, pole), the number of dopamine neurons in substantia nigra area, the concentration of dopamine and its metabolites, proteasomal activity, the levels of BDNF and GDNF. After analyzing these changes, we get the conclusions that the mouse models of Parkinson's disease were successfully constructed and the neuroprotective property of D264 was well evaluated.
     Methods
     Male C57BL/6 mice, aged 12 weeks, were randomly assigned into twelve groups:control for MPTP, control for lactacystin, MPTP, lactacystin, D-264 Low Dose (1 mg/kg)+MPTP, D-264 High Dose (5 mg/kg)+MPTP, D-264 Low Dose+lactacystin, D-264 High Dose+lactacystin, D-264 non-lesioned control for MPTP, D-264 non-lesioned control for lactacystin, U99194+D-264 high dose+MPTP, and U99194+D-264 high dose+lactacystin, respectively. The mice were examined 1 day prior to MPTP and lactacystin treatment as a base level and then every week. The mice were sacrificed on day 14 (MPTP) and day 21 (lactacystin), the brains were immediately removed and stored at-80℃until analysis.
     Results
     (1) Compared to the control, behavioral performances, the number of TH positive cells in substantia nigra area, the concentration of dopamine and its metabolites, proteasomal activity, the levels of BDNF and GDNF were significantly reduced in MPTP and lactacystin treated mice.
     (2) Compare to the mice treated with MPTP and lactacystin, pretreatment with D264 at low and high dose significantly attenuated behavioral impairment, showed neuroprotection against both MPTP and lactacystin induced DA neuron loss and depletion of DA and its metabolites in the SN, alleviated lactacystin induced proteasomal inhibition, and increased the BDNF and GDNF levels in MPTP and lactacystin lesioned mice.
     (3) Pretreatment with U99194 partially but significantly altered the neuroprotective effect of selective D3 agonist-D-264.
     Conclusion
     (1) The mouse model induced by MPTP and lactacystin replicated many of the features of PD and were expected to be suitable for our study.
     (2) D-264 can prevent neurodegeneration induced by the selective neurotoxin MPTP and UPS inhibitor lactacystin, be potentially served as a both symptomatic and neuroprotective treatment agent for PD.
     (3) Pretreatment with D3 receptor antagonist U99194 significantly altered the effect of neuroprotection conferred by D-264, which showed that the effect of D-264 was mediated partly or completely by D3 receptor.
     PART TWO Pramipexole in proteasome inhibition induced animal model of Parkinson's disease:Underlying neuroprotective mechanisms
     Objectives
     Parkinson's disease (PD) is characterized by the progressive loss of nigral dopamine (DA) neurons in substantia nigra (SN) area and the accumulation of inclusion bodies, known as Lewy bodies (LBs). The cause of the neurodegenerative process in PD remains unclear. Ubiquitin-proteasome system (UPS) impairment has been proposed to play an important role in the pathogenesis of PD. In the present study, we attempt to better evaluate the mechanism of neuroprotection of pramipexole (PPX) in a mouse model of DA neuron degeneration induced by UPS impairment, in addition to test the possible mechanisms of autophagy in prevention of the proteasome inhibition-induced DA neuron degeneration.
     Methods
     Male C57BL/6 mice at the age of 10-12 weeks were were randomly assigned into six groups:vehicle control, lactacystin, PPX alone, PPX Low Dose (01 mg/kg)+lactacystin, PPX High Dose (0.5 mg/kg)+lactacystin, and U99194+PPX High Dose+lactacystin, respectively. Mice treated with PPX (low dose 0.1 mg/kg or high dose 0.5 mg/kg, i.p, twice a day) started 7 days before, and continued after microinjection of proteasome inhibitor lactacystin in the medial forebrain bundle (MFB) for a total 4 weeks. Animal behaviors, pathological and biochemical assays were performed to determine the neuroprotective effect of PPX.
     Results
     We found that administration with PPX significantly improved behavioral performance, attenuated DA neuron loss and striatal DA reduction, and alleviated proteasomal inhibition and microglial activation in the SN of lactacystin-lesioned mice. We also documented that PPX can increase the levels of brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF) in the lactacystin-lesioned mice. In addition, we demonstrated an activation of autophagy in PPX treated mice. Furthermore, pretreatment with D3 receptor antagonist U99194 significantly altered the neuroprotection conferred by PPX.
     Conclusion
     Our study indicates that, (1) The mouse model microinjected by lactacystin replicated many of the features of PD and were expected to be suitable for our study. (2) Multiple molecular pathways may be attributed to the neuroprotective effects of PPX in the UPS impairment induced animal model of PD. (3) Dysfunction in the autophagy-lysosome pathway (ALP) may cause aggregation of misfolding proteins and attribute to the neurodegenerative diseases, including Parkinson's disease. The results of the study may provide us new insight into the potential novel mechanisms for the treatment of PD.
引文
1. Jankovic J.2008. Parkinson's disease:clinical features and diagnosis. J. Neurol. Neurosurg. Psychiatr.79:368-376.
    2. Moore D.J., West A.B., Dawson V.L., Dawson T.M.2005. Molecular pathophysiology of Parkinson's disease. Annu. Rev. Neurosci.28:57-87.
    3. Klein C, Schlossmacher M.G.2007. Parkinson disease,10 years after its genetic revolution:multiple clues to a complex disorder. Neurol. 69:2093-2104.
    4. Schapira A.H.V.2008. Mitochondria in the aetiology and pathogenesis of Parkinson's disease. Lancet Neurol.7:97-107.
    5. Braak H., Bohl J.R., Muller C.M., et al.2006. Stanley Fahn Lecture 2005: The staging procedure for the inclusion body pathology associated with sporadic Parkinson's disease reconsidered. Mov. Disord.21:2042-2051.
    6. Hegde A.N., Upadhya S.C.2007. The ubiquitin-proteasome pathway in health and disease of the nervous system. Trends Neurosci.30:587-595.
    7. McNaught K.S.P., Jenner P., Olanow C.W.2007. Protein mishandling:Role of the ubiquitin proteasome system in the pathogenesis of Parkinson's disease. In:Jankovic J, Tolosa E, eds. Parkinson's Disease and Movement Disorders,5th edition, Lippincott Williams and Wilkins, Philadelphia, PA pp:33-49.
    8. Pan T, Kondo S., Le W., Jankovic J.2008. The role of autophagy-lysosome pathway in neurodegeneration associated with Parkinson's disease. Brain.131:1969-1978.
    9. Silva M.A., Mattern C, Hacker R., et al.1997. Increased neostriatal dopamine activity after intraperitoneal or intranasal administration of L-dopa:on the role of benserazide pretreatment. Synapse.27:294-302.
    10.Rinne U.K., Bracco F., Chouza C, et al.1997. Cabergoline in the treatment of early Parkinson's disease:results of the first year of treatment in a double-blind comparison of cabergoline and levodopa. The PKDS009 Collaborative Study Group. Neurology.48:363-368.
    11. Sweet R.D., McDowell F.H., et al.1975. Five years'treatment of Parkinson's disease with levodopa. Ann. Intern. Med.83:456-462.
    12.Lesser R.P., Fahn S., Snider S.R., et al.1979. Analysis of the clinical problems in parkinsonism and the complications of long-term levodopa therapy. Neurology.29:1253-1260.
    13.Bedard P.J., Gomez-Mancilla B., Blanchet P., et al.1997. Dopamine agonists as firstline therapy of parkinsonism in MPTP monkeys. In:Olanow CW, Obeso JA, eds. Beyond the decade of the brain. Vol 2. Tunbridge Wells:Wells Medical.101-113.
    14.Melamed E.,Offen D., Shirvan A., et al.1998. Levodopa toxicity and apoptosis. Ann Neurol.44:S149-154.
    15.Halliwell B.1992. Reactive oxygen species and the central nervous system. J Neurochem.59:1609-1623.
    16.Rajput A.H., Fenton M.E., Birdi S., et al.1997. Is levodopa toxic to human substantia nigra? Mov. Disord.12:634-638.
    17. Quinn N.1995. Drug treatment of Parkinson's disease. BMJ.310:575-579.
    18. Brooks D.J.2000. Dopamine agonists:their role in the treatment of Parkinson's disease. J. Neurol. Neurosurg. Psychiatry.68:685-689.
    19. Jackson L.V. Przedborski S.2007. Protocol for the MPTP mouse model of Parkinson's disease. Nat Protoc.2:141-151。
    20. Beal M.F.2001. Experimental models of Parkinson's disease. Nat. Rev. Neurosci.2:325-334.
    21. Dawson T.M.2000. New animal models for Parkinson's disease. Cell. 101:115-118.
    22.Forno L.S., Langston J.W., DeLanney L.E., Irwin I., Ricaurte G.A.1986. Locus ceruleus lesions and eosinophilic inclusions in MPTP-treated monkeys. Ann. Neurol.20:449-455.
    23.Forno L.S., DeLanney L.E., Irwin I., Langston J.W.1993. Similarities and differences between MPTP-induced parkinsonism and Parkinson's disease: Neuropathologic considerations. Adv. Neurol.60:600-608.
    24.Sonsalla P.K. Heikkila R.E.1986. The influence of dose and dosing interval on MPTP-induced dopaminergic neurotoxicity in mice. Eur. J. Pharmacol. 129,:339-345.
    25.McNaught K.S., Bjorklund L.M., Belizaire R., Isacson O., Jenner P., Olanow C.W.2002. Proteasome inhibition causes nigral degeneration with inclusion bodies in rats. Neuroreport.13:1437-1441.
    26.Betarbet R., Sherer T.B., Greenamyre J.T.2005. Ubiquitin-proteasome system and Parkinson s disease, Exp. Neurol.191:s17-s27.
    27.Zhang X., Xie W., Qu S., Pan T., Wang X., Le W.2005. Neuroprotection by iron chelator against proteasome inhibitor-induced nigral degeneration. Biochem. Biophys. Res.Commun.333:544-549.
    1. Biswas S, Hazeldine S, Ghosh B, Parrington I, Kuzhikandathil E, Reith ME, Dutta AK.2008a. Bioisosteric heterocyclic versions of 7-{[2-(4-phenyl-piperazin-1-yl)ethyl]propylamino}-5,6,7,8-tetrahydronap-hthalen-2-ol:identification of highly potent and selective agonists for dopamine D3 receptor with potent in vivo activity. J Med Chem. 51:3005-3019.
    2. Biswas S, Zhang S, Fernandez F, Ghosh B, Zhen J, Kuzhikandathil E. 2008b. Further structure-activity relationships study of hybrid 7-{[2-(4-phenylpiperazin-1-yl)ethyl] propylamino}-5,6,7,8-tetrahydronapht-ha len-2-ol analogues:identification of a high-affinity D3-preferring agonist with potent in vivo activity with long duration of action. J Med Chem. 51:101-117.
    3. Rousselet E, Joubert C, Callebert J, Parain K, Tremblay L, Orieux G, Launay JM, Cohen-Salmon C, Hirsch EC.2003. Behavioral changes are not directly related to striatal monoamine levels, number of nigral neurons, or dose of parkinsonian toxin MPTP in mice. Neurobiol Dis.14:218-228.
    4. Adler CH, Sethi KD, Hauser RA, Davis TL, Hammerstad JP, Bertoni J, Taylor RL, Sanchez-Ramos J, O'Brien CF.1997. Ropinirole for the treatment of early Parkinson's disease. The Ropinirole Study Group. Neurology.49:393-399.
    5. Shannon KM, Bennett JP Jr, Friedman JH.1997. Efficacy of pramipexole, a novel dopamine agonist, as monotherapy in mild to moderate Parkinson's disease. The Pramipexole Study Group. Neurology.49:724-728.
    6. Winner B, Desplats P, Hagl C, Klucken J, Aigner R, Ploetz S, Laemke J, Karl A, Aigner L, Masliah E, Buerger E, Winkler J.2009. Dopamine receptor activation promotes adult neurogenesis in an acute Parkinson model. Exp Neurol.219(2):543-552.
    7. Van Kampen JM, Eckman CB.2006. Dopamine D3 receptor agonist delivery to a model of Parkinson's disease restores the nigrostriatal pathway and improves locomotor behavior. J Neurosci.26:7272-7280.
    8. Ramirez AD, Wong SK, Menniti FS.2003. Pramipexole inhibits MPTP toxicity in mice by dopamine D3 receptor dependent and independent mechanisms. Eur J Pharmacol.475:29-35.
    9. Joyce JN, Millan MJ.2007. Dopamine D3 receptor agonists for protection and repair in Parkinson's disease. Current opinion in pharmacology. 7:100-105.
    10.Bellucci A, Collo G, Sarnico I, Battistin L, Missale C, Spano P.2008. Alpha-synuclein aggregation and cell death triggered by energy deprivation and dopamine overload are counteracted by D2/D3 receptor activation. J Neurochem.106:560-577.
    11.Chen S, Zhang X, Yang D, Du Y, Li L, Li X, Ming M, Le W.2008. D2/D3 receptor agonist ropinirole protects dopaminergic cell line against rotenone-induced apoptosis through inhibition of caspase-and JNK-dependent pathways. FEBS Lett,582:603-610.
    12.Langston JW, Forno LS, Tetrud J, et al.1999. Evidence of active nerve cell degeneration in the substantia nigra of humans years after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine exposure. Ann Neurol. 46:598-605.
    13.Tillerson JL, MillerGW.2003. Grid performance testtomeasure behavioral impairment in the MPTP-treated mouse model of parkinsonism. J Neurosci Methods.123:189-200.
    14. Smith TS, Trimmer PA, Khan SM, et al.1997. Mitochondrial toxins in models of neurodegenerative diseases. Ⅱ:Elevated zif268 transcription and independent temporal regulation of striatal D1 and D2 receptormRNAs and D1 and D2 receptor-binding sites in C57BL/6 mice during MPTP-treatment. Brain Research.765:189-197.
    15.张元鹏,李新钢.2005.实验用帕金森病动物模型的研究进展.中国临床神经外科杂志.10(2):157-160.
    16.高云朝,林祥通.2005.MPTP帕金森病动物模型研究进展.中国实验动物学报.13(4):261-265.
    17.Watanabe H, Muramatsu Y, Kurosaki R, et al.2004. Protective effects of neuronal nitric oxide synthase inhibitor in mouse brain against MPTP neurotoxicity:an immunohistological study. Eur Neuropsychopharmacol. 14:93-104.
    18.Teismann P, Ferger B.2001. Inhibition of the cyclooxygenase isoenzymes COX-1 and COX-2 provide neuroprotection in the MPTP-mouse model of Parkinson's disease. Synapse.39:167-174.
    19.McNaught KS, Bjorklund LM, Belizaire R, Isacson O, Jenner P, Olanow CW. 2002. Proteasome inhibition causes nigral degeneration with inclusion bodies in rats. Neuroreport.13:1437-1441.
    20.Betarbet R, Sherer TB, Greenamyre JT.2005. Ubiquitin-proteasome system and Parkinson s disease. Exp. Neurol.191:s17-s27.
    21. Christopher AR, Cecile MP.2004. The ubiquitin-proteasome pathway in Parkinson's disease and other neurodegenerative diseases.TRENDS in Cell Biology.14(12):703-711.
    22.Tanaka K.1995. Molecular biology of proteasomes.Mol Biol Rep.21:21-26.
    23.McNaught KS, Olanow CW.2006. Protein aggregation in the pathogenesis of familial and sporadic Parkinson's disease. Neurobiol Aging.27:530-545.
    24. Dick LR, Cruikshank AA, Destree AT, Grenier L, McCormack TA, Melandri FD, Nunes SL, Palombella VJ, Parent LA, Plamondon L, Stein RL.1997. Mechanisticstudies on the inactivation of the proteasome by lactacystin in cultured cells.J Biol Chem.272(1):182-188.
    25.冯家纯,王晓梅,邵延坤等.2003.胶质细胞源性神经营养因子对大鼠局灶脑缺血损伤的作用.中国临床康复.7(10):1504-1505.
    26. Kim WG, Mohney RP, Wilson B, et al.2000. Regional difference in susceptibility tolipopolysaccharide-induced neurotoicity in the rat brain:role of microglia. J. Neurosci.20:6309-6316.
    27. Block ML, Zecca L, Hong JS.2007. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci.8:57-69.
    28. Love S.1999. Oxidative stress in brain ischemia. Brain pathol.9:119-131.
    29.Streit WJ, Walter SA, Pennell NA.1999. Reactive microgliosis. Prog. Neurobiol.57:563-581.
    30. Raivich G, Banati R.2004. Brain microglia and blood-derived macrophages: molecular profiles and functional roles in multiple sclerosis and animal models of autoimmune demyelinating disease. Brain Res Brain Res Rev. 46(3):261-281.
    31.Busciglio J, Yankner BA.1995. Apoptosis and increased generation of reactive oxygen species in Down's syndrome neurons in vitro. Nature. 378:776-779.
    32. Johnstone M, Gearing AJ, Miller KM.1999. A central role for astrocytes in the inflammatory response to beta-amyloid; chemokines, cytokines and reactive oxygen species are produced. J Neuroimmunol.93:182-193.
    33.Emerit J, Edeas M, Bricaire F.2004. Neurodegenerative diseases and oxidative stress. Biomed Pharmacother.58(1):39-46.
    34. Neumann H, Misgeld T, Matsumuro K, et al.1998. Neurotrophins inhibit major histocompatibility. Class II inducibility of Microglia:involvemene of the P75 neurotrophin receptor. Proc Natl Acad Sci.95001:5779-8574.
    35.Flugel A, Matsumuro K, Neumann H, et al.2001. Antiinflammatory activity of nerve growth factor in experimental autoimmue encephalomylitis inhibition of monocyte transendothelisl migration. Eur J Immunal.31:11-22.
    36.Zuccato C, Cattaneo E.2009. Brain-derived neurotrophic factor in neurodegenerative diseases. Nat Rev Neurol.5:311-322.
    37.Studer L, Spenger C, Seiler RW, et al.1996. Effects of brain-derived neurotrophic factor on neuronal structure of dopaminergic neurons in dissociated cultures of human fetal mesencephalon. Exp Brain Res.1108:328-336.
    38. Michel PP, Ruberg M, Agid Y.1997. Rescue of mesencephalic dopamine neurons by anticancer drug cytosine arabinoside. J Neurochem. 69:1499-1507.
    39. Zhou J, Bradford HF, Stern GM, et al.1994. The response of human and rat fetal ventral mesencephalon in culture to the brain-derived neurotrophic factor treatment. Brain Res.656:147-156.
    40.Blochl A, Sirrenberg C.1996. Neurotrophins stimulate the release of dopamine from rat mesencephalic neurons via trk and p75LNTR receptors. J Biol Chem.271(35):21100-21107.
    41.Baquet ZC, Bickford PC, Jones KR.2005. Brainderived neurotrophic factor is required for the establishment of the proper number of dopaminergic neurons in the substantia nigra pars compacta. J. Neurosci.25:6251-6259.
    42.Porritt MJ, Batchelor PE, Howells DW.2005. Inhibiting BDNF expression by antisense oligonucleotide infusion causes loss of nigral dopaminergic neurons. Exp. Neurol.192:226-234.
    43.Frim DM, Uhler TA, Galpern WR.et al.1994. Implanted fibroblasts genetically engineered to produce brain-derived neurotrophic factor prevent 1-methyl-4-phenylpyridinium toxicity to dopaminergic neurons in the rat. Proc Natl Acad Sci.91:5104-5108.
    44. Galpern WR, Firm DM, Tatter SB, et al.1996. Cell-mediated deliv ery of brain-derived neurotrophic factor enhances dopamine levels in an MPP+rat model of substantia nigra degeneration. Cell Transplant.5:225-232.
    45.Shults CW, Kimber T, Altar CA.1995. BDNF attenuates the effects intrastriatal injection of 6-hydroxydopamine. Neuroreport.6:1109-1112.
    46.Levivier M, Przedborski S, Bencsics C, et al.1995. Intra-striatal implantation of fibroblasts genetically engineered to produce brain-derived neurotrophic factor prevents degeneration of dopaminergic neurons in a rat model of Parkinson's disease. J Neurosci.15:7810-7820.
    47. Hung HC, Lee EH.1996. The mesolimbic dopaminergic pathway is more resistant than the nigrostriatal dopaminergic pathway to MPTP and MPP+ toxicity:role of BDNF gene expression. Brain Res. Mol. Brain Res. 41:14-26.
    48. Anselme L, Perrier, Viviane T, et al.2004. Derivation of mid-brain dopamine neurons from human embryonic stem cells. Proc Natl Acad Sci. 101:12543-12548.
    49.Grondin R, Gash DM.1998. Glial cell line-derived neurotrophic factor (GDNF):a drug candidate for the treatment of Parkinson's disease. J Neurol.245(11 Suppl 3):35-42.
    50.Grondin, Zhang Z, Yi A, et al.2002. Chronic, controlled GDNF infusion promotes structural and functional recovery in advanced parkinsonian monkeys. Brain.125:2191-2201.
    51.Deierborg T, Soulet D, Roybon L, Hall V, Brundin P.2008. Emerging restorative treatments for Parkinson's disease. Prog. Neurobiol. 85:407-432.
    52.Tomac A, Lindqvist E, Lin LF, et al.1995. Protection and repair of the nigrostriataldopaminergic systembyGDNF in vivo. Nature.373:335-339.
    53.Bardgett ME, Depenbrock M, Downs N, Points M, Green L.2009. Dopamine modulates effort-based decision making in rats. Behav Neurosci. 123:242-251.
    54. Collins GT, Witkin JM, Newman AH, Svensson KA, Grundt P, Cao J, Woods JH.2005. Dopamine agonist-induced yawning in rats:a dopamine D3 receptor-mediated behavior. J Pharmacol Exp Ther.314:310-319.
    55. Kling-Petersen T, Ljung E, Svensson K.1995. Effects on locomotor activity after local application of D3 preferring compounds in discrete areas of the rat brain. J Neurol Transm.102:209-220.
    1. Le WD, Appel SH.2004. Mutant genes responsible for Parkinson's disease. Curr OpinPharmacol.4(1):79-84.
    2. Betarbet R, Sherer TB, Greenamyre JT.2005. Ubiquitin-proteasome system and Parkinson's diseases. Exp Neurol.191(1):s17-s27.
    3. Gandhi S, Wood NW.2005. Molecular pathogenesis of Parkinson's disease. Hum Mol Genet.14(18):2749-2755.
    4. Moore DJ, West AB, Dawson VL, Dawson TM.2005. Molecular pathophysiology of Parkinson's disease.Annu Rev Neurosci.28:57-87.
    5. Dawson TM, Dawson VL.2003. Molecular pathways of neurodegeneration in Parkinson's disease.Science.302(5646):819-822.
    6. Cookson MR.2005. The biochemistry of Parkinson's disease.Annu Rev Biochem.74:29-52.
    7. Abou-Sleiman PM, Muqit MM, Wood NW.2006. Expanding insights of mitochondrial dysfunction in Parkinson's disease.Nat Rev Neurosci. 7(3):207-219.
    8. Dick LR, Cruikshank AA, Destree AT, Grenier L, McCormack TA, Melandri FD, Nunes SL, Palombella VJ, Parent LA, Plamondon L, Stein RL.1997. Mechanistic studies on the inactivation of the proteasome by lactacystin in cultured cells.J Biol Chem.272(1):182-188.
    9. Silva MA, Mattern C, Hacker R. et al.1997. Increased neostriatal dopamine activity after intraperitoneal or intranasal administration of L-dopa:on the role of benserazide pretreatment. Synapse.27:294-302.
    10. Clark CE, Guttman M.2002. Dopamine agonist monotherapy in Parkinson's disease. The Lancet.360(9347):1767-1770.
    11. Rinne UK, Bracco F, Chouza C, et al.1997. Cabergoline in the treatment of early Parkinson's disease:results of the first year of treatment in a double-blind comparison of cabergoline and levodopa. The PKDS009 Collaborative Study Group. Neurology.48:363-368.
    12. Sweet RD, McDowell FH, et al.1975. Five years'treatment of Parkinson's disease with levodopa. Ann. Intern. Med.83:456-462.
    13. Lesser RP, Fahn S, Snider SR, et al.1979. Analysis of the clinical problems in parkinsonism and the complications of long-term levodopa therapy. Neurology.29:1253-1260.
    14. Bedard PJ, Gomez-Mancilla B, Blanchet P, et al.1997. Dopamine agonists as firstline therapy of parkinsonism in MPTP monkeys. In:Olanow CW, Obeso JA, eds. Beyond the decade of the brain. Vol 2. Tunbridge Wells: Wells Medical.101-113.
    15. Melamed E, Offen D, Shirvan A, et al.1998. Levodopa toxicity and apoptosis. Ann Neurol.44:s149-154.
    16. Halliwell B.1992. Reactive oxygen species and the central nervous system. J Neurochem.59:1609-1623.
    17. Rajput AH, Fenton ME, Birdi S, et al.1997. Is levodopa toxic to human substantia nigra? Mov. Disord.12:634-638.
    18. Quinn N.1995. Drug treatment of Parkinson's disease. BMJ. 310:575-579.
    19. Engking Tan, Joseph Jankovie.2001. Choosing Dipamine Agonists in Parkinson's Disease. Clinical Neuropharmaeology.24(5):247-253.
    20. Peter Jenner, Dse, FRPharmS.2002. Pharmacology of dopamine agonists in the treatment of Parkinson's disease. Neurology.58(s1):s1-s8.
    21. Perachon S, Schwartz JC, Sokoloff P.1999. Functional potencies of new antiparkinsonian drugs at recombinant human dopamine D1, D2 and D3 receptors. Eur J Pharmacol.366:293-300.
    22. Nutt JG, Obeso JA, Stocchi F.2000. Continuous dopamine-receptor stimulation in advanced Parkinson's disease. Trends Nal.23:s109-115.
    23. Olanow WC, Sehapira AHV, Rascal O.2003. Continous dopamine-reooptor stimulation in early Parkinson's disease. Trends Neurosei,23:s117-126.
    24.李冬梅,卢幸明,丛志强.2004.多巴胺受体激动剂治帕金森病的临床研究进展.国外医学.31(6):515-518.
    25.杜芳,李锐,李俊枝,乐卫东.2005.多巴胺受体激动剂的神经保护作用中国新药与临床杂志.24(2):151-155.
    26. Schapira AH.2002. Dopamine agonists and neuroprotection in Parkinson' s disease. Eur J Neurol.9(s3):7-14.
    27. Hara H, Ohta M, Ohta K, et al.2003. Apomorphine attenuates 6-OHDA-induced apoptotic cell death in SH-SY5Y cells. Redox Rep. 8:193-197.
    28. Takata K, Kitamura Y, Kakimura J, et al.2000. Increase of bcl-2 protein in neuronal dendritic processes of cerebral cortex and hippocampus by the antiparkinsonian drugs, talipexole and pramipexole. Brain Res. 872:236-241.
    29. Cassarino DS, Fall CP, Smith TS, et al.1998. Pramipexole reduces reactive oxygen species production in vivo and in vitro and inhibits the mitochondrial permeability transition produced by the parkinsonian neurotoxin methylpyridinium ion. J Neurochem.71:295-301.
    30. Abramova NA, Cassarino DS, Khan SM, et al.2002. Inhibition by R(+) or S(-) pramipexole of caspase activation and cell death induced by methylpyridinium ion or beta amyloid peptide in SH-SY5Y neuroblastoma. J Neurosci Res.67:494:500.
    31. McNaught KS, Olanow CW.2006. Protein aggregation in the pathogenesis of familialand sporadic Parkinson's disease.Neurobiol Aging. 27(4):530-545.
    32. Cookson MR.2005. The biochemistry of Parkinson's disease.Annu Rev Biochem.74:29-52.
    33. Savitt JM, Dawson VL, Dawson TM.2006. Diagnosis and treatment of Parkinson's disease:molecules to medicine. J Clin Invest. 7(116):1744-1754.
    34. Fornai F, Lenzi P, Gesi M, Ferrucci M, Lazzeri G, Busceti CL, Ruffoli R, Soldani P, Ruggieri S, Alessandri MG, Paparelli A.2003. Fine structure and biochemical mechanisms underlying nigrostriatal inclusions and cell death after proteasome inhibition.J Neurosci.23(26):8955-66.
    35. Rideout HJ, Lang-Rollin IC, Savalle M, Stefanis L.2005. Dopaminergic neurons in rat ventral midbrain cultures undergo selective apoptosis and form inclusions.but do not up-regulate iHSP70, following proteasomal inhibition.J Neurochem.93(5):1304-1313.
    36. Bove J, Zhou C, Jackson-Lewis V, Taylor J, Chu Y, Rideout HJ, Wu DC, Kordower JH, Petrucelli L, Przedborski S.2006. Proteasome inhibition and Parkinson's disease modeling.Ann Neurol.60(2):260-264.
    37. Zhang X, Xie WJ, Qu S, Pan TH, Wang XT, Le WD.2005. Neuroprotection by iron chelator against proteasome inhibitor-induced nigral degeneration. Biochem Biophy Res Commun.333(2):544-549.
    38. Siderowf A, Stern M.2003. Update on Parkinson disease. Ann Intern Med. 138:651-658.
    39. Gasser T 2009. Molecular pathogenesis of Parkinson disease:insights from genetic studies. Expert Rev Mol Med.11:e22.
    40. Le W, Chen S, Jankovic J.2009. Etiopathogenesis of Parkinson disease:a new beginning? Neuroscientist.15:28-35.
    41. Jankovic J.2006. An update on the treatment of Parkinson's disease. Mt Sinai J Med.73:682-689.
    42. Gallagher DA, Schapira AH.2009. Etiopathogenesis and treatment of Parkinson's disease. Curr Top Med Chem.9:860-868.
    43. Zhu W, Xie WJ, Pan TH, et al.2007. Prevention and restoration of lactacystin-induced nigrostriatal dopamine neuron degeneration by novel brain-permeable iron chelators. FASEB J.21:3835-3844.
    44. Du F, Li R, Huang Y, et al.2005. Dopamine D3 receptor-preferring agonists induce neurotrophic effects on mesencephalic dopamine neurons. Eur J Neurosci.22:2422-2430.
    45. Deierborg T, Soulet D, Roybon L, et al.2008. Emerging restorative treatments for Parkinson's disease. Prog Neurobiol.85:407-432.
    46. Klionsky DJ, Emr SD.2000. Autophagy as a regulated pathway of cellular degradation. Science.290:1717-1721.
    47.石际俊,刘康永,杨亚萍,刘春风.2009.自噬在帕金森病发病中的作用.生理科学进展.40(1):67-70.
    48. Levine B, Yuan J.2005. Autophagy in cell death:an innocent convict. J Clin Invest.115:2679-2688.
    49. Hara T, Nakamura K, Matsui M, et al.2006. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature.441:885-889.
    50. Komatsu M, Waguri S, Chiba T, et al.2006. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature. 441:880-884.
    51.刘康永,刘春风,钱进军.2008.突变型α-核突触蛋白的自噬性降解途径及可能机制.中华神经科杂志.41:51~55.
    52. Erlich S, Alexandrovich A, Shohami E, et al.2007. Rapamycin is a neuroprotective treatment for traumatic brain injury. Neurobiol Dis. 26:86-93.
    53. Zemke D, Azhar S, Majid A.2007. The mTOR pathway as a potential target for the development of therapies against neurological disease. Drug News Perspect.20:495-499.
    54. Pan TH, Kondo S, Zhu W, et al.2008. Neuroprotection of rapamycin in lactacystin-induced neurodegeneration via autophagy enhancement. Neurobiol Dis.32:16-25.
    1. Ciechanover A.2005. Proteolysis:from the lysosome to ubiquitin and theproteasome. Nat Rev.6:79-86.
    2. Rubinsztein DC.2006. The roles of intracellular protein-degradation pathways inneurodegeneration. Nature.443:780-786.
    3. Martinez-Vicente M, Sovak G, Cuervo AM.2005. Protein degradation and aging. Exp Gerontol.40:622-633.
    4. Ravikumar B, Berger Z, Vacher C, O'Kane CJ, Rubinsztein DC.2006. Rapamycin pre-treatment protects against apoptosis. Hum Mol Genet. 15:1209-1216.
    5. Ravikumar B, Duden R, Rubinsztein DC.2002. Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy. Hum Mol Genet.11:1107-1117.
    6. Ravikumar B, Vacher C, Berger Z, Davies JE, Luo S, Oroz LG, et al.2004. Inhibition of mTOR induces autophagy and reduces toxicity ofpolyglutamine expansions in fly and mouse models of Huntington disease. Nat Genet.36:585-595.
    7. Kondo Y, Kondo S.2006. Autophagy and cancer therapy. Autophagy. 2:85-90.
    8. Nakai A, Yamaguchi O, Takeda T, Higuchi Y, Hikoso S, Taniike M, et al. 2007. The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress. Nat Med.13:619-624.
    9. Taylor JP, Hardy J, Fischbeck KH.2000. Toxic proteins in neurodegenerative disease. Science.296:1991-1995.
    10.Braak H, Del Tredici K, Rub U, de Vos RA, Jansen Steur EN, Braak E.2003. Staging of brain pathology related to sporadic Parkinson's disease. Neurobiol Aging.24:197-211.
    11.Lansbury PT, Lashuel HA.2006. A century-ole debate on protein aggregation and neurodegeneration enters the clinic. Nature. 443:774-779.
    12.McNaught KS, Olanow CW.2006. Protein aggregation in the pathogenesis of familial and sporadic Parkinson's disease. Neurobiol Aging.27:530-545.
    13.Zarranz JJ, Alegre J, Gomez-Esteban JC, Lezcano E, Ros R, Ampuero I, et al.2004. The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia. Ann Neurol.55:164-73.
    14.Chua CE, Tang BL.2006. Alpha-synuclein and Parkinson's disease:the first roadblock. J Cell Mol Med.10:837-846.
    15.Mizuta I, Satake W, Nakabayashi Y, Ito C, Suzuki S, Momose Y, et al.2006. Multiple candidate gene analysis identifies alpha-synuclein as a susceptibility gene for sporadic Parkinson's disease. Hum Mol Genet. 15:1151-1158.
    16.Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, et al. 1997. Mutation in the alpha-synuclein gene identified in families with Parkinson's disease. Science.276:2045-2047.
    17.Kruger R, Kuhn W, Muller T, Woitalla D, Graeber M, Kosel S, et al.1998. Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinsons disease. Nat Genet.18:106-108.
    18. Singleton AB, Farrer M, Johnson J, Singleton A, Hague S, Kachergus J, et al.2003. Alpha-synuclein locus triplication causes Parkinson's disease. Science.302:841.
    19.Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV, Greenamyre JT.2000. Chronic systemic pesticide exposure reproduces features of Parkinson's disease. Nat Neurosci.3:1301-1306.
    20. Sherer TB, Kim JH, Betarbet R, Greenamyre JT.2003. Subcutaneous rotenone exposure causes highly selective dopaminergic degeneration and alphasynuclein aggregation. Exp Neurol.179:9-16.
    21.Bonifati V, Rizzu P, van Baren MJ, Schaap O, Breedveld GJ, Krieger E, et al.2003. Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science.299:256-259.
    22.Valente EM, Abou-Sleiman PM, Caputo V, Muqit MM, Harvey K, Gispert S, et al.2004. Hereditary earlyonset Parkinson's disease caused by mutations in PINK1. Science.304:1158-1160.
    23.West AB, Moore DJ, Biskup S, Bugayenko A, Smith WW, Ross CA, et al. 2005. Parkinson's disease-associated mutations in leucine-rich repeat kinase 2 augment kinase activity. Proc Natl Acad Sci.102:16842-16847.
    24.Norris EH, Giasson BI.2005. Role of oxidative damage in protein aggregation associated with Parkinson's disease and related disorders. Antioxid Redox Signal.7:672-684.
    25.Abou-Sleiman PM, Muqit MM, Wood NW.2006. Expanding insights of mitochondrial dysfunction in Parkinson's disease. Nat Rev Neurosci. 7:207-219.
    26. Lin MT, Beal MF. 2006. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature.443:787-795.
    27.Schapira AH.2006. Etiology of Parkinson's disease. Neurology.66:s10-23.
    28.Foroud T, Uniacke SK, Liu L, Pankratz N, Rudolph A, Halter C, et al.2003. Heterozygosity for a mutation in the parkin gene leads to later onset Parkinson disease. Neurology.60:796-801.
    29. Kay DM, Moran D, Moses L.2007. Heterozygous parkin point mutations are as common in control subjects as in Parkinson's patients. Ann Neurol. 61:47-54.
    30. Maraganore DM, Lesnick TG, Elbaz A, Chartier-Harlin MC, Gasser T, Kruger R, et al.2004. UCHL1 is a Parkinson's disease susceptibility gene. Ann Neurol.55:512-521.
    31. Das C, Hoang QQ, Kreinbring CA, Luchansky SJ, Meray RK, Ray SS, et al. 2006. Structural basis for conformational plasticity of the Parkinson's diseaseassociated ubiquitin hydrolase UCH-L1. Proc Natl Acad Sci.103:4675-4680.
    32. Ramirez A, Heimbach A, Grundemann J, Stiller B, Hampshire D, Cid LP, et al.2006. Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase. Nat Genet. 38:1184-1191.
    33. Di Fonzo A, Chien HF, Socal M, Giraudo S, Tassorelli C, Iliceto G, et al. 2007. ATP13A2 missense mutations in juvenile parkinsonism and young onset Parkinson disease. Neurology.68:1557-1562.
    34.Webb JL, Ravikumar B, Atkins J, Skepper JN, Rubinsztein DC.2003. Alphasynuclein is degraded by both autophagy and the proteasome. J Biol Chem.278:25009-25013.
    35. Cuervo AM, Stefanis L, Fredenburg R, Lansbury PT, Sulzer D.2004. Impaired degradation of mutant a-synuclein by chaperone-mediated autophagy. Science.305:1292-1295.
    36.Levine B.2005. Eating oneself and uninvited guests:autophagy-related pathways in cellular defense. Cell.120:159-162.
    37.Klionsky DJ, Emr SD.2000. Autophagy as a regulated pathway of cellular degradation. Science.290:1717-1721.
    38.Hideshima T, Bradner JE, Chauhan D, Anderson KC.2005. Intracellular protein degradation and its therapeutic implications. Clin Cancer Res. 11:8530-8533.
    39.Takeuchi H, Kondo Y, Fujiwara K, Kanzawa T, Aoki H, Mills GB, et al.2005. Synergistic augmentation of rapamycin-induced autophagy in malignant glioma cells by phosphatidylinositol 3-kinase/protein kinase B inhibitors. Cancer Res.65:3336-3346.
    40.Crotzer VL, Blum JS.2005. Autophagy and intracellular surveillance: modulating MHC class II antigen presentation with stress. Proc Natl Acad Sci.102:7779-7780.
    41. Rubinsztein DC, Gestwicki JE, Murphy LO, Klionsky DJ.2007. Potential therapeutic applications of autophagy. Nat Rev Drug Discov.6:304-312.
    42.Kuma A, Kuma A, Hatano M, Yamamoto A, Nakaya H, Yoshimori T, et al. 2004. The role of autophagy during the early neonatal starvation period. Nature.432:1032-1036.
    43.Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R, et al.2006. Suppression of basal autophagy in neural cells causesneurodegenerative disease in mice. Nature.441:885-889.
    44.Komatsu M, Waguri S, Chiba T, Murata S, Iwata J, Tanida I, et al.2006. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature.441:880-884.
    45.Massey AC, Kaushik S, Sovak G, Kiffin R, Cuervo AM.2006. Consequences of the selective blockage of chaperone-mediated autophagy. Proc Natl Acad Sci.103:5805-5810.
    46.Larsen KE, Sulzer D.2002. Autophagy in neurons:a review. Histol Histopathol.17:897-908.
    47.Boya P, Gonzalez-Polo RA, Casares N, Perfettini JL, Dessen P, Larochette N, et al.2005. Inhibition of macroautophagy triggers apoptosis. Mol Cell Biol.25:1025-1040.
    48. Lee HJ, Khoshaghideh F, Patel S, Lee SJ.2004. Clearance of alpha-synuclein oligomeric intermediates via the lysosomal degradation pathway. J Neurosci.24:1888-1896.
    49.Bandhyopadhyay U, Cuervo AM.2007. Chaperone-mediated autophagy in aging and neurodegeneration:lessons from alpha-synuclein. Exp Gerontol. 42:120-128.
    50. Meredith GE, Totterdell S, Petroske E, Santa Cruz K, Callison RC, Lau YS. 2002. Lysosomal malfunction accompanies alpha-synuclein aggregation in a progressive mouse model of Parkinson's disease. Brain Res. 956:156-165.
    51. Keller JN, Dimayuga E, Chen Q, Thorpe J, Gee J, Ding Q.2004. Autophagy, proteasomes, lipofuscin, and oxidative stress in the aging brain. Int J Biochem Cell Biol.36:2376-2391.
    52. Kiffin R, Kaushik S, Zeng M, Bandyopadhyay U, Zhang C, Massey AC, et al. 2007. Altered dynamics of the lysosomal receptor for chaperonemediated autophagy with age. J Cell Sci.120:782-791.
    53.Jankovic J.2005. Progression of Parkinson disease:are we making progress in charting the course? Arch Neurol.62:351-352.
    54.Nagatsy T, Sawada M.2006. Cellular and molecular mechanisms of Parkinsons disease:neurotoxins, causative genes, and inflammatory cytokines. Cell Mol Neurobiol.26:781-802.
    55.Anglade P, Vyas S, Javoy-Agid F, Herrero MT, Michel PP, Marquez J, et al. 1997. Apoptosis and autophagy in nigral neurons of patients with Parkinson's disease. Histol Histopathol.12:25-31.
    56.Oztap E, Topal A.2003. A cell protective mechanism in a murine model of Parkinson's disease. Turk J Med Sci.33:295299.
    57.Sapp E, Schwarz C, Chase K, Bhide PG, Young AB, Penney J, et al.1997. Huntingtin localization in brains of normal and Huntington's disease patients. Ann Neurol.42:604-612.
    58.Kegel KB, Kim M, Sapp E, Mclntyre C, Castano JG, Aronin N, et al.2000. Huntingtin expression stimulates endosomal-lysosomal activity, endosome tubulation, and autophagy. J Neurosci.20:7268-7278.
    59. Nixon RA, Wegiel J, Kumar A, Yu WH, Peterhoff C, Cataldo A, et al.2005. Extensive involvement of autophagy in Alzheimer disease:an immuno-electron microscopy study. J Neuropathol Exp Neurol. 64:113-122.
    60. Butler D, Bahr BA.2006. Oxidative stress and lysosomes:CNS-related consequences and implications for lysosomal enhancement strategies and induction of autophagy. Antioxid Redox Signal.8:185-196.
    61. Zheng L, Marcusson J, Terman A.2006. Oxidative stress and Alzheimer disease.the autophagy connection? Autophagy.2:143-145.
    62. Butler D, Nixon RA, Bahr BA.2006. Potential compensatory responses through autophagic/lysosomal pathways in neurodegenerative diseases. Autophagy.2:234-7.
    63.Iwata A, Riley BE, Johnston JA, Kopito RR.2005. HDAC6 and microtubules are required for autophagic degradation of aggregated huntingtin. J Biol Chem.280:40282-40292.
    64.Rideout HJ, Lang-Rollin I, Stefanis L.2004. Involvement of macroautophagy in the dissolution of neuronal inclusions. Int J biochem Cell Biol.36:2551-2562.
    65.Pandey UB, Nie Z, Batlevi Y, McCray BA, Ritson GP, Nedelsky NB, et al. 2007. HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS. Nature.447:859-863.
    66.Gonzalez-Polo RA, Niso-Santano M, Ortiz-Ortiz MA, Gomez-Martin A, Moran JM, Garcia-Rubio L, et al.2007a. Inhibition of paraquat-induced autophagy accelerates the apoptotic cell death in neuroblastoma SH-SY5Y cells. Toxicol Sci.97:448-458.
    67. Gonzalez-Polo RA, Niso-Santano M, Ortiz-Ortiz MA, Go mez-Martin A, Moran JM, Garcia-Rubio L, et al.2007b. Relationship between autophagy and apoptotic cell death in human neuroblastoma cells treated with paraquat:could autophagy be a "Brake" in paraquat-induced apoptotic death? Autophagy.3:366-367.
    68.Jankovic J.2006. An update on the treatment of Parkinson's disease. Mt Sinai JMed.73:682-689.
    69.Eriksen JL, Przedborski S, Petrucelli L.2005. Gene dosage and pathogenesis of Parkinson's disease. Trends Mol Med.11:91-96.
    70. Mizushima N, Yamamoto A, Matsui M, Yoshimori T, Ohsumi Y.2004. In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol Biol Cell. 15:1101-1011.
    71.Menzies FM, Ravikumar B, Rubinsztein DC.2006. Protective roles for induction of autophagy in multiple proteinopathies. Autophagy.2:224-225.
    72.Klionsky DJ, Emr SD.2000. Autophagy as a regulated pathway of cellular degradation. Science.290:1717-1721.
    73. Pan T, Kondo S, Zhu W, Xie W, Jankovic J, Le W.2006. Enhancement of autophagy and neuroprotection of rapamycin in lactacystininduced injury of dopaminergic neurons in vitro. Mov Disord.21:s505.
    74. Williams A, Jahreiss L, Sarkar S, Saiki S, Menzies FM, Ravikumar B, et al. 2006. Aggregate-prone proteins are cleared from the cytosol by autophagy:therapeutic implications. Curr Top Dev Biol.76:89-101.
    75.Sarbassov DD, Ali SM, Sabatini DM.2005. Growing roles for the mTOR pathway. Curr Opin Cell Biol.17:596-603.
    76.Sarkar S, Perlstein EO, Imarisio S, Pineau S, Cordenier A, Maglathlin RL, et al.2007b. Small molecules enhance autophagy and reduce toxicity in Huntington's disease models. Nat Chem Biol.3:331-338.
    77.Sarkar S, Rubinsztein DC.2006. Inositol and IP3 levels regulate autophagy: biology and therapeutic speculations. Autophagy.2:132-134.
    78. Sarkar S, Davies JE, Huang Z, Tunnacliffe A, Rubinsztein DC.2007a. Trehalose, a novel mTOR-independent autophagy enhancer, accelerates the clearance of mutant huntingtin and α-synuclein. J Biol Chem. 282:5641-5652.
    79.Bursch W.2001. The autophagosomal-lysosomal compartment in programmed cell death. Cell Death Differ.8:569-581.
    80. Dickson DW.2007. Linking selective vulnerability to cell death mechanisms in Parkinson's disease. Am J Pathol.170:16-19.
    81.Takacs-Vellai K, Bayci A, Vellai T.2006. Autophagy in neuronal cell loss:a road to death. Bioessays.28:1126-1131.
    82.Degterev A, Huang Z, Boyce M, Li Y, Jagtap P, Mizushima N, et al.2005. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol.1:112-119.
    83.Chu CT.2006. Autophagic stress in neuronal injury and disease. J Neuropathol Exp Neurol.65:423-432.
    84. Murphy MP.2001. How understanding the control of energy metabolism can help investigation of mitochondrial dysfunction, regulation and pharmacology. Biochim Biophys Acta.1504:1-11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700