用户名: 密码: 验证码:
脑出血模型中铁离子潴留对迟发性脑损伤的作用机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的:
     脑出血后血红蛋白降解释放的铁离子在急性期过后仍长期滞留于脑内。本研究拟观察脑出血后潴留于脑内的铁离子是否对脑组织产生迟发性损伤,并对其机制进行探索。
     研究方法:
     本研究分两部分。第一部分:通过大鼠自体血基底节模型和大鼠海马氯化亚铁注射模型,观察是否存在迟发性脑萎缩并进行FJC染色检测建模后2周时是否仍存在神经元变性。同时,在不同时间点应用Perl's染色观察铁离子脑内潴留情况,应用OX-6染色观察小胶质细胞激活情况,运用磷酸化P65染色观察NF-κB活化情况,运用铁蛋白/OX-42复染观察脑出血后铁蛋白在小胶质细胞中的表达情况。并观察铁离子螯合和米诺环素治疗对迟发性脑萎缩和神经功能的影响。第二部分:进行小胶质细胞和神经元培养。通过OX-6染色和磷酸化P65染色分别观察Fe~(2+)对小胶质细胞的激活作用和对小胶质细胞NF-κB活化的影响。通过Fe~(2+)直接处理神经元和Fe~(2+)处理小胶质细胞后所得上清再处理神经元观察Fe~(2+)对神经元的作用途径,明确小胶质细胞在其中的作用,并给予米诺环素进行干预治疗。
     结果:
     大鼠脑出血模型中12周仍存在铁离子潴留和出血侧铁蛋白染色增强,复染提示脑出血后4周后铁蛋白轻/重链主要表达于小胶质细胞。脑出血后2周时,出血侧基底节未见明显萎缩,在4周时萎缩出现,到8周时则更显著。FJC染色提示2周时,血肿侧仍有变性神经元存在。在海马FeCl_2注射模型中也能在2周时检测到变性神经元。铁离子螯合治疗可以有效减轻脑出血后的迟发性脑萎缩。小胶质细胞激活和NF-κB的活化现象在脑出血模型和海马FeCl_2模型中都存在并至少持续至建模后2周。米诺环素可以减轻脑出血后的迟发性脑萎缩。Fe~(2+)能直接激活培养小胶质细胞。Fe~(2+)直接作用于培养神经元,不能引起其LDH水平的增高,而Fe~(2+)处理后的小胶质细胞进一步孵育产生的上清对神经元具有损伤作用,应用米诺环素则能有效逆转这种损伤,米诺环素还能抑制小胶质细胞激活和NF-κB的活化。
     结论:
     1)大鼠脑出血模型中存在迟发性脑损伤。2)Fe~(2+)可以通过激活小胶质细胞进而引起神经细胞的死亡。3)脑出血后迟发性脑损伤与铁离子长期潴留于脑内有关。长期潴留于脑内的铁离子可能通过小胶质细胞激活引起神经元的迟发性变性死亡。NF-κB活化可能参与了这一过程。研究不仅揭示脑出血后存在的迟发性损伤这一病理现象并对其机制进行了探讨,同时也为今后临床治疗提供了新的思路。
Purpose:
     Persistent iron retention is observed after intracerebral hemorrhage(ICH),while weather it makes delayed injury to brain remains unknown.The present study focuses on the possible effects and mechanism of accumulated iron on brain tissues during chronic stage of ICH.
     Methods:
     The study was including 2 parts.Part 1:A ICH model was set up by infusion of 100μl autologous blood into right basal ganglia of SD rat and a ferrous iron model was set up by insertion of 30μl ferrous chloride of 10mM into right hippocampus of rat seperately.Delayed brain atrophy was assessed and Fluoro-Jade C(FJC) staining at 2weeks after ICH was performed for detection of degenerative neuron.We observed iron retention by Perl's staining,activation of microglia by OX-6 staining and activation of NF-κB by phosphor-P65 subunit staining.Ferritin expression and its distribution on microglia were also investigated.Chelation of iron with deferoxamine was carried out in ICH model to evaluate the role of intracerebral iron accumulation on delayed brain atrophy and neurological functions.Also,the influence of minocycline on delayed brain injury was investigated.Part 2:Cultured microglias were treated with ferrous chloride and the activation of microglia and NF-κB was observed.Then we investigated the possible mechanism of neurotoxicity of iron by direct administration of ferrous iron to neurons or the conditioned medium composed of supernatant from microglia pre-treated with ferrous iron.Minocycline was used and its role on inhibition of microglial activation was observed.
     Results:
     Persistent iron retention and increase in immunity of ferritin were confirmed in ICH.Co-localization of ferritin and OX-42 suggested the expression of ferritin in microglia during chronic stage.As compared with 2 weeks after hemorrhage,a significant brain atrophy occured 6 weeks later.FJC positive cells,indicative of degenerative neurons,could be found in the fight basal ganglia at 2weeks.FJC positive cells were also found in CA1 area of hippocampus in ferrous chloride model.Treatment with deferoxamine could prevent the delayed atrophy.Persistent activation of microglia and NF-κB was observed after blood infusion or ferrous chloride administration as revealed by OX-6 and phosphor-P65 staining.Minocycline could inhibit the delayed brain atrophy.Ferrous iron was capable of inducing the activation of cultured microglia. Direct use of ferrous iron couldn't cause increase of LDH activity of cultured neurons, while the administration of conditioned medium induced injury of neurons as shown by elevation of LDH activity and dead/live ratio,both of which were reversed by minocycline.Treatment of microglia with ferrous iron for 30min induced the activation of NF-κB,which could also be inhibited by minocycline.
     Conclusion:
     1) Delayed brain atrophy and neuron loss occur during chronic stage in rat ICH.
     2) In vitro,ferrous iron can induce activation of microglia directly which can in turn exert injury to neurons.
     3) Iron retention is involved in the delayed brain injury.The iron may activate microglia which therefore results in injury of the surrounding neurons.NF-κB may participate in the process.
引文
[1] Mayer SA, Brun NC, Begtrup K, et al. Efficacy and safety of recombinant activated factor VII for acute intracerebral hemorrhage[J]. N Engl J Med, 2008,358:2127-2137
    
    [2] Mayer SA, Davis SM, Skolnick BE, et al. Can a subset of intracerebral hemorrhage patients benefit from hemostatic therapy with recombinant activated factor VII? [J]. Stroke, 2009,40:833-840.
    
    [3] Skriver EB, Olsen TS. Tissue damage at computed tomography following resolution of intracerebral hematomas[J].Acta Radiol Diagn (Stockh), 1986,27:495-500.
    
    [4] Felberg RA, Grotta JC, Shirzadi AL, et al. Cell death in experimental intracerebral hemorrhage: the "black hole" model of hemorrhagic damage[J]. Ann Neurol, 2002,51:517-524.
    
    [5] Wu J, Hua Y, Keep RF, et al. Iron and iron-handling proteins in the brain after intracerebral hemorrhage[J].Stroke, 2003,34:2964-2969.
    
    [6] Siesjo BK, Agardh CD, Bengtsson F. Free radicals and brain damage[J]. Cerebrovasc Brain Metab Rev, 1989,1:165-211.
    
    [7] Double KL, Maywald M, Schmittel M, et al. In vitro studies of ferritin iron release and neurotoxicity[J]. J Neurochem, 1998,70:2492-2499.
    
    [8] Connor JR, Menzies SL, St Martin SM, et al. A histochemical study of iron, transferrin, and ferritin in Alzheimer's diseased brains[J]. J Neurosci Res, 1992,31:75-83.
    
    [9] Bartzokis G, Sultzer D, Cummings J, et al. In vivo evaluation of brain iron in Alzheimer disease using magnetic resonance imaging[J]. Arch Gen Psychiatry, 2000,57:47-53
    
    [10] LeVine SM. Iron deposits in multiple sclerosis and Alzheimer's disease brains[J]. Brain Res, 1997,760:298-303.
    
    [11] Collingwood JF, Mikhaylova A, Davidson M, et al. In situ characterization and mapping of iron compounds in Alzheimer's disease tissue[J]. J Alzheimers Dis, 2005,7:267-272.
    
    [12] Oakley AE, Collingwood JF, Dobson J, et al. Individual dopaminergic neurons show raised iron levels in Parkinson disease[J]. Neurology, 2007,68:1820-1825.
    
    [13] Rottkamp CA, Raina AK, Zhu X, et al. Redox-active iron mediates amyloid-beta toxicity[J]. Free Radic Biol Med, 2001,30:447-450.
    
    [14] Mantyh PW, Ghilardi JR, Rogers S, et al. Aluminum, iron, and zinc ions promote aggregation of physiological concentrations of beta-amyloid peptide[J]. J Neurochem, 1993,61:1171-1174.
    
    [15] Honda K, Casadesus G, Petersen RB, et al. Oxidative stress and redox-active iron in Alzheimer's disease[J]. Ann N Y Acad Sci, 2004,10:179-182.
    
    [16] Stadelmann C, Deckwerth TL, Srinivasan A, et al. Activation of caspase-3 in single neurons and autophagic granules of granulovacuolar degeneration in Alzheimer's disease. Evidence for apoptotic cell death[J]. Am J Pathol, 1999,155:1459-1466.
    
    [17] Klegeris A, McGeer PL. Interaction of various intracellular signaling mechanisms involved in mononuclear phagocyte toxicity toward neuronal cells[J]. J Leuk Biol, 2000,67:127-133.
    [18]Wang J,Tsirka SE.Tuftsin fragment 1-3 is beneficial when delivered after the induction of intracerebral hemorrhage[J].Stroke,2005,36:613-8.
    [19]Zhao X,Zhang Y,Strong R,et al.Distinct patterns of intracerebral hemorrhage-induced alterations in NF-κB subunit,iNOS,and COX-2expression[J].J Neurochem,2007:101:652-663.
    [20]Jellinger K,Paulus W,Grundke-Iqbal I,et al.Brain iron and ferritin in Parkinson's and Alzheimer's diseases.J Neural Transm Park Dis Dement Sect.1990,2:327-40.
    [21]Vlad SC,Miller DR,Kowall NW,et al.Protective effects of NSAIDs on the development of Alzheimer disease[J].Neurology,2008,70:1672-1677.
    [22]Chen H,Jacobs E,Schwarzschild MA,et al.Nonsteroidal antiinflammatory drug use and the risk for Parkinson's disease[J].Ann Neurol,2005,58:963-967.
    [23]刘峰,朱长庚等.核因子-κB参与马桑内酯激活小胶质细胞化学研究[J].华中科技大学学报(医学版),2003,32:1-4.
    [24]Kauppinen TM,Swanson RA.Poly(ADP-Ribose) Polymerase-1 Promotes Microglial Activation,Proliferation,and Matrix Metalloproteinase-9-Mediated Neuron Death[J].J Immunol,2005,174:2288-2296.
    [25]Filipov NM,Seegal RF,Lawrence DA.Manganese potentiates in vitro production of proinflammatory cytokines and nitric oxide by microglia through a nuclear factor kappa B-dependent mechanism[J].Toxicol Sci,2005,84:139-148.
    [26]Xiong S,She H,Takeuchi H,et al.Signaling role of intracellular iron in NF-kappaB activation[J].J Biol Chem,.2003,278:17646-17654.
    [27]McCarthy KD,de Vellis J.Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue[J]. J Cell Biol, 1980, 85: 890-902
    
    [28] Jiang Y, Wu J, Hua Y, et al. Thrombin-receptor activation and thrombin-induced brain tolerance[J]. J Cereb Blood Flow Metab, 2002,22:404-410.
    
    [29] Xi G, Keep RF, Hoff JT, Mechanisms of brain injury after intracerebral haemorrhage[J]. Lancet Neurol, 2006,5:53-63.
    
    [30] Wagner KR, Xi G , Hua Y et al. Lobar intracerebral hemorrhage model in pigs: rapid edema development in perihematomal white matter[J]. Stroke, 1996,27:490-497.
    
    [31] Xi G, Keep RF , Hoff. JT, et al. Erythrocytes and delayed brain edema formation following intracerebral hemorrhage in rats[J]. J Neurosurg, 1998,89:991-996.
    
    [32] Xi G, Keep RF, Hoff JT et al. Pathophysiology of brain edema formation[J]. Neurosurg Clin N Am, 2002,13:371-383.
    
    [33] Broderick J, Brott T, Kothari R. Very early edema growth with ICH[J]. Stroke, 1995,26:184.
    
    [34] Zazulia AR, Diringer MN, Derdeyn CP, et al. Progression of mass effect after intracerebral hemorrhage[J]. Stroke, 1999,30:1167-1173.
    
    [35] Xi G, Keep RF, Hoff JT. Erythrocytes and delayed brain edema formation following intracerebral hemorrhage in rats[J]. J Neurosurg, 1998,89:991-996.
    
    [36] Hickenbottom SL, Grotta JC, R Strong, et al. Nuclear factor-kappaB and cell death after experimental intracerebral hemorrhage in rats[J]. Stroke, 1999,30: 2472-2477.
    [37] Matsushita K, Meng W, Wang X. Evidence for apoptosis after intercerebral hemorrhage in rat striatum[J]. J Cereb Blood Metab, 2000,20:396-404.
    
    [38] Qureshi AI, Suri MF, Ostrow PT, et al. Apoptosis as a form of cell death in intracerebral hemorrhage[J]. Neurosurgery, 2003,52 :1041-1047.
    
    [39] Wasserman JK, Schlichter LC. Neuron death and inflammation in a rat model of intracerebral hemorrhage: Effects of delayed minocycline treatment[J]. Brain Res, 2007,36:208-218.
    
    [40] Kutty RK, Maines MD. Purification and characterization of biliverdin reductase from rat liver[J]. J Biol Chem, 1981,256:3956-3962.
    
    [41] Double KL, Maywald M, Schmittel M, et al. In vitro studies of ferritin iron release and neurotoxicity[J]. J Neurochem, 1998,70: 2492-2499.
    
    [42] Huang FP, Xi G, Keep RF, et al. Brain edema after experimental intracerebral hemorrhage: role of hemoglobin degradation products[J]. J Neurosurg, 2002,96:287-293.
    
    [43] Wagner KR, Hua Y, GM de Courten-Myers et al., Tin-mesoporphyrin a potent heme oxygenase inhibitor for treatment of intracerebral hemorrhage: in vivo and in vitro studies[J]. Cell Mol Biol, 2000,46:597-608.
    
    [44] Koeppen AH, Dickson AC, Smith J. Heme oxygenase in experimental intracerebral hemorrhage: the benefit of tin-mesoporphyrin[J]. J Neuropathol Exp Neurol, 2004,63:587-597.
    
    [45] Nakamura T, Keep RF, Hua Y, et al. Deferoxamine-induced attenuation of brain edema and neurological deficits in a rat model of intracerebral hemorrhage[J]. J Neurosurg, 2004,100:672-678.
    
    [46] Nakamura T, Keep RF, Hua Y, et al. Oxidative DNA injury after experimental intracerebral hemorrhage[J]. Brain Research, 2005,1039:30-36.
    
    [47] Wu J, Hua Y, Keep RF, et al., Oxidative brain injury from extravasated erythrocytes after intracerebral hemorrhage[J]. Brain Res, 2002,25,953:45-52.
    
    [48] Palmer C, Roberts RL, Bero C. Deferoxamine posttreatment reduces ischemic brain injury in neonatal rats[J]. Stroke, 1994,25 :1039-1045.
    
    [49] Song S, Hua Y, Keep RF, et al. A new hippocampal model for examining intracerebral hemorrhage-related neuronal death: effects of deferoxamine on hemoglobin-induced neuronal death[J]. Stroke, 2007,38:2861-2863.
    
    [50] Karwacki Z, Kowianski P, Dziewiatkowski J, et al. Quantitative analysis of influence of sevoflurane on the reactivity of microglial cells in the course of the experimental model of intracerebral haemorrhage[J]. European Journal of Anaesthesiology, 2006,23: 874-881.
    
    [51] Lopes KO, Sparks DL, Streit WJ. Microglial dystrophy in the aged and Alzheimer's disease brain is associated with ferritin mmunoreactivity[J].Glia, 2008,56:1048-60.
    
    [52] Hanisch UK, Kettenmann H. Microglia: active sensor and versatile effector cells in the normal and pathologic brain[J]. Nat Neurosci, 2007,10:1387-1394.
    
    [53] Zhao X, Sun G, Zhang J, et al,. Hematoma resolution as a target for intracerebral hemorrhage treatment: role for peroxisome proliferator-activated receptor gamma in microglia/macrophages[J]. Ann Neurol, 2007,61:352-362.
    
    [54] Snyder AM, Connor JR. Iron, the substantia nigra and related neurological disorders[J]. Biochim Biophys Acta[J], 2009,1790(7):606-614.
    
    [55] McGeer PL, S Itagaki, Boyes BE, et al. Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson's and Alzheimer's disease brains[J]. Neurology, 1988,38:1285-1291.
    
    [56] Gotz ME, Double K, Gerlach M, et al. The relevance of iron in the pathogenesis of Parkinson's disease[J]. Ann N Y Acad Sci, 2004,1012:193-208.
    
    [57] Mondino F, Filippi P, Magliola U, et al. Magnetic resonance relaxometry in Parkinson's disease[J]. Neurol Sci, 2002,23:S87-S88.
    
    [58] Berg D, Roggendorf W, Schroder U, et al. Echogenicity of the substantia nigra: association with increased iron content and marker for susceptibility to nigrostriatal injury[J]. Arch Neurol, 2002,59:999-1005.
    
    [59] LJ Willmore, GW Sypert, JV Munson and RW Hurd, Chronic focal epileptiform discharges induced by injection of iron into rat and cat cortex[J]. Science, 1978, 200 :1501-1503.
    
    [60] Kress GJ, Dineley KE, Reynolds LI. The relationship between intracellular free iron and cell injury in cultured neurons, astrocytes, and oligodendrocytes[J]. J Neurosci, 2002,22:5848-55.
    
    [61] Burdo JR, Menzies SL, Simpson IA, et al. Distribution of divalent metal transporter 1 and metal transport protein 1 in the normal and Belgrade rat[J]. J Neurosci Res, 2001,66:1198-1207.
    
    [62] Moos T, Rosengren Nielsen T. Ferroportin in the postnatal rat brain: implications for axonal transport and neuronal export of iron[J]. Semin Pediatr Neurol, 2006,133:149-157.
    
    [63] Xi G, Wagner KR, Keep RF, et al. Role of blood clot formation on early edema development after experimental intracerebral hemorrhage[J]. Stroke, 1998,29:2580-2586
    
    [64] Tikka TM, Koistinaho JE. Minocycline provides neuroprotection against N-methyl-D-aspartate neurotoxicity by inhibiting microglia[J]. J Immunol, 2001,166:7527-7533.
    
    [65] Klein NC, Cunha BA. Tetracyclines[J]. Med Clin North Am, 1995,79:789-801.
    
    [66] Domercq M, Matute C. Neuroprotection by tetracyclines[J]. Trends Pharmacol Sci, 2004,25:609-612.
    
    [67] Hansen TM, Nielsen H, Bernth N, et al. Expression of ferritin protein and subunit mRNAs in normal and iron deficient rat brain[J]. Brain Res Mol Brain Res, 1999,65:186-197
    
    [68] Irace C, Scorziello A, Maffettone C, et al. Divergent modulation of iron regulatory proteins and ferritin biosynthesis by hypoxia/reoxygenation in neurones and glial cells[J]. J Neurochem, 2005,95:1321-31.
    
    [69] Zhang X, Surguladze N, Slagle-Webb B, et al. Cellular iron status influences the functional relationship between microglia and oligodendrocytes[J]. Glia, 2006,54:795-804
    
    [70] Sakurai H, Chiba H, Miyoshi H, et al. IkappaB kinases phosphorylate NF-kappaB p65 subunit on serine 536 in the transactivation domain[J]. J Biol Chem, 1999,274:30353-6.
    
    [71] Xiurong Zhao, Yujian Zhang, Roger Strong, et al. Distinct patterns of intracerebral hemorrhage-induced alterations in NF-κB subunit, iNOS, and COX-2 expression[J]. Journal of Neurochemistry, 2007,101:652-663.
    
    [72] She H, Xiong S, Lin M, et al. Iron activates NF-kappaB in Kupffer cells[J]. Am J Physiol Gastrointest Liver Physiol, 2002,283:719-726.
    
    [73] Lin M, Rippe RA, Niemela O, et al. Role of iron in NF-kappa B activation and cytokine gene expression by rat hepatic macrophages[J]. Am J Physiol, 1997,272:1355-1364.
    [74]Valerio A,Boroni F,Benarese M,et al.NF-κB pathway:a target for preventing β-amyloid(Aβ)-induced neuronal damage and Aβ42 production[J].Eur J Neurosci,2006,23:1711-1720.
    [75]Zhao X,Zhang Y,Strong R,et al.15d-Prostaglandin J2 activates peroxisome proliferator-activated receptor-gamma,promotes expression of catalase,and reduces inflammation,behavioral dysfunction,and neuronal loss after intracerebral hemorrhage in rats[J].J Cereb Blood Flow Metab,2006,26:811-820.
    [76]Youdim MB,Grunblatt E,Mandel S.The pivotal role of iron in NF-kappa B activation and nigrostriatal dopaminergic neurodegeneration.Prospects for neuroprotection in Parkinson's disease with iron chelators[J].Ann N Y Acad Sci,1999,890:7-25.
    [77]Shoham S,Youdim MB.Iron involvement in neural damage and microgliosis in models of neurodegenerative diseases[J].Cell Mol Biol(Noisy-le-grand),.2000,46:743-760.
    [1]Fenton JP,Roehrig KL,Mahan DCF,et al.Effect of swine weaning age on body fat and lipogenic activity in liver and adipose tissue[J].J Anim Sci,1985,60:190-199.
    [2]Grossmann JG,Neu M,Evans RW,et al.Metal-induced conformational changes in transferrins[J].J Mol Biol,1993,229:585-590.
    [3]Grossmann JG,Neu M,Pantos E,et al.X-ray solution scattering reveals conformational changes upon iron uptake in lactoferrin,serum and ovo-transferrins[J].J Mol Biol,1992,225:811-819.
    [4]Gerstein M,Anderson BF,Norris GE,et al.Domain closure in lactoferrin:two hinges produce a see-saw motion between alternative close-packed interfaces[J].J Mol Biol,1993,234:357-372.
    [5] Dubljevic V, Sali A, and Goding JW. A conserved RGD (Arg-Gly-Asp) motif in the transferrin receptor is required for binding to transferrin[J].Biochem J, 1999,341:11-14.
    
    [6] Collawn JF, Stangel M, Kuhn LA, et al. Transferrin receptor internalization sequence YXRF implicates a tight turn as the structural recognition motif for endocytosis[J].Cell,1990,635:1061-72.
    
    [7] Kawabata H, Yang R, Hirama T, et al. Molecular cloning of transferrin receptor 2: a new member of the transferrin receptor-like family[J]. J Biol Chem, 1999,274:20826-20832.
    
    [8] Camaschella C, Roetto A, and De Gobbi M. Genetic haemochromatosis: genes and mutations associated with iron loading[J]. Best Pract Res Clin Haematol, 2002,15:261-276.
    
    [9] West AP Jr, Bennett MJ, Sellers VM, et al. Comparison of the interactions of transferring receptor and transferrin receptor 2 with transferrin and the hereditary hemochromatosis protein HFE[J]. J Biol Chem, 2000,275:38135-38138.
    
    [10] Levy JE, Jin O, Fujiwara Y, et al. Transferrin receptor is necessary for development of erythrocytes and the nervous system[J]. Nat Genet, 1999,21: 396-399.
    
    [11] Camaschella C, Roetto A, Cali A, et al. The gene TFR2 is mutated in a new type of haemochromatosis mapping to 7q22[J]. Nat Genet, 2000,25:14-15.
    
    [12] Fleming RE, Ahmann JR, Migas MC, et al. Targeted mutagenesis of the murine transferrin receptor-2 gene produces hemochromatosis[J]. Proc Natl Acad Sci U S A, 2002,99:10653-10658.
    [13] Lebron JA, West AP Jr, and Bjorkman PJ. The hemochromatosis protein HFE competes with transferrin for binding to the transferring receptor[J]. J Mol Biol, 1999,294:239-245.
    
    [14] Waheed A, Grubb JH, Zhou XY, et al. Regulation of transferrin-mediated iron uptake by HFE, the protein defective in hereditary hemochromatosis[J]. Proc Natl Acad Sci U S A, 2002,99:3117-3122.
    
    [15] Zhou XY, Tomatsu S, Fleming RE, et al. HFE gene knockout produces mouse model of hereditary hemochromatosis[J]. Proc Natl Acad Sci U S A, 1998,95:2492-2497.
    
    [16] Hubert N and Hentze MW. Previously uncharacterized isoforms of divalent metal transporter (DMT)-1: implications for regulation and cellular function[J]. Proc Natl Acad Sci U S A, 2002,99:12345-12350.
    
    [17] Canonne-Hergaux F, Gruenheid S, Ponka P, et al. Cellular and subcellular localization of the Nramp2 iron transporter in the intestinal brush border and regulation by dietary iron[J]. Blood, 1999,93:4406-4417.
    
    [18] Canonne-Hergaux F, Zhang AS, Ponka P, et al. Characterization of the iron transporter DMTl (NRAMP2/DCT1) in red blood cells of normal and anemic mk/mk mice[J]. Blood, 2001,98:3823-3830.
    
    [19] Fillebeen C, Descamps L, Dehouck MP, et al. Receptor-mediated transcytosis of lactoferrin through the blood-brain barrier[J]. J Biol Chem, 1999,274:7011-7017.
    
    [20] Aisen P, essIing-Resnick M, Leibold EA. Iron metabolism[J]. Curr Opin Chem Biol, 1999,3:200-206.
    
    [21] Donovan A, Lima CA, Pinkus JL, et al. The iron exporter ferroportin/Slc40a1 is essential for iron homeostasis[J]. Cell Metab, 2005,1:191-200.
    
    [22] McKie AT, Marciani P, Rolfs A, et al. A novel duodenal iron-regulated transporter, IREG1, implicated in the basolateral transfer of iron to the circulation[J]. Mol Cell, 2000,5:299-309.
    
    [23] Yang F, Liu XB, Quinones M,et al. Regulation of reticuloendothelial iron transporter MTP1 (Slc11a3) by inflarnmation[J]. J Biol Chem, 2002,277: 39786-39791.
    
    [24] Knutson MD, Vafa MR, Haile DJ, et al. Iron loading and erythrophagocytosis increase ferroportin 1 (FPN1) expression in J774 macrophages[J]. Blood, 2003,102:4191-4197.
    
    [25] Montosi G, Donovan A, Totaro A, et al. Autosomal-dominant hemochromatosis is associated with a mutation in the ferroportin (SLC11A3) gene[J]. J Clin Invest, 2001,108:619-623.
    
    [26] Njajou OT, Vaessen N, Joosse M, et al. A mutation in SLC11A3 is associated with autosomal dominant hemochromatosis[J]. Nat Genet, 2001,28:213-214.
    
    [27] Osaki S. Kinetic studies of ferrous ion oxidation with crystalline human ferroxidase (ceruloplasmin) [J]. J Biol Chem, 1966,241: 5053-5059.
    
    [28] Gitlin JD. Aceruloplasminemia[J]. Pediatr Res, 1998,44:271-276.
    
    [29] Park CH, Valore EV, Waring AJ, et al. Hepcidin, a urinary antimicrobial peptide synthesized in the liver[J]. J Biol Chem, 2001,276:7806-7810.
    
    [30] De Domenico I, Ward DM, Langelier C, et al. The molecular mechanism of hepcidin-mediated ferroportin down-regulation[J]. Mol Biol Cell, 2007,18: 2569-2578.
    
    [31] Nemeth E, Tuttle MS, Powelson J, et al. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization[J].Science, 2004,306: 2090-2093.
    
    [32] Qian ZM, Tsoi YK, Ke Y, et al. Ceruloplasmin promotes iron uptake rather than release in BT325 cells[J]. Exp Brain Res,2001,140:369-74.
    
    [33] Harrison PM and Arosio P. The ferritins: molecular properties, iron storage function and cellular regulation[J]. Biochim Biophys Acta, 1996,1275:161-203.
    
    [34] Lawson DM, Treffry A, Artymiuk PJ, et al. Identification of the ferroxidase centre in ferritin[J]. FEBS Lett ,1989,254:207-210.
    
    [35] Arosio P and Levi S. Ferritin, iron homeostasis, and oxidative damage[J]. Free Radic Biol Med, 2002,33:457-463.
    
    [36] Larson JA, Howie HL, and So M. Neisseria Meningitidis accelerates ferritin degradation in host epithelial cells to yield an essential iron source[J]. Mol Microbio,2004,1: 807-820.
    
    [37] Ollinger K and Roberg K. Nutrient deprivation of cultured rat hepatocytes increases the desferrioxamine-available iron pool and augments the sensitivity to hydrogen peroxide[J]. J Biol Chem, 1997,272:23707-23711.
    
    [38] Konijn AM, Glickstein H, Vaisman B, et al. The cellular labile iron pool and intracellular ferritin in K562 cells[J]. Blood, 1999,94:2128-2134.
    
    [39] De Domenico I, Vaughn MB, Li L, et al. Ferroportin-mediated mobilization of ferritin iron precedes ferritin degradation by the proteasome[J]. EMBO J, 2006,25:5396-5404.
    
    [40] Levi S, Corsi B, Bosisio M, et al. A human mitochondrial ferritin encoded by an intronless gene[J]. J Biol Chem, 2001,276:24437-24440.
    
    [41] Langlois d'Estaintot B, Santambrogio P, Granier T, et al. Crystal structure and biochemical properties of the human mitochondrial ferritin and its mutant Serl44Ala[J]. J Mol Biol, 2004 ,340:277-293.
    
    [42] Cai CX, Birk DE, and Linsenmayer TF. Ferritin is a developmentally regulated nuclear protein of avian corneal epithelial cells[J]. J Biol Chem, 1997,272:12831-2839.
    
    [43] Cai CX, Birk DE, and Linsenmayer TF. Nuclear ferritin protects DNA from UV damage in corneal epithelial cells[J]. Mol Biol Cell, 1998,9:1037-1051.
    
    [44] Surguladze N, Patton S, Cozzi A, et al. Characterization of nuclear ferritin and mechanism of translocation[J]. Biochem J, 2005,388:731-740.
    
    [45] Thompson KJ, Fried MG, Ye Z, et al. Regulation, mechanisms and proposed function of ferritin translocation to cell nuclei[J]. J Cell Sci, 2002,115:2165- 2177.
    
    [46] Millholland JM, Fitch JM, Cai CX, et al. Ferritoid, a tissue-specific nuclear transport protein for ferritin in corneal epithelial cells[J]. J Biol Chem, 2003,278:23963-23970.
    
    [47] Wang J, Pantopoulos K. Conditional derepression of ferritin synthesis in cells expressing a constitutive IRPl mutant[J]. Mol Cell Biol,2002,22:4638-4651.
    
    [48] Hentze MW and Kuhn LC. Molecular control of vertebrate iron metabolism: mRNA-based regulatory circuits operated by iron, nitric oxide, and oxidative stress[J]. Proc Natl Acad Sci U S A, 1996,93:8175-8182.
    
    [49] Hentze MW and Argos P. Homology between IRE-BP, a regulatory RNA-binding protein, aconitase, and isopropylmalate isomerase[J]. Nucleic Acids Res, 1991,19:1739-1740.
    
    [50] Rouault TA, Stout CD, Kaptain S, et al. Structural relationship between an iron-regulated RNA-binding protein (IRE-BP) and aconitase: functional implications[J]. Cell, 1991,64:881-883.
    
    [51] Sargent P J , Farnaud S , Evans R W. Structure/function overview of proteins involved in iron storage and transport[J]. Curr Med Chem, 2005,12:2683-2693.
    
    [52] Iwai K, Drake SK, Wehr NB, et al. Iron-dependent oxidation, ubiquitination, and degradation of iron regulatory protein 2: implications for degradation of oxidized proteins[J]. Proc Natl Acad Sci U S A, 1998,95:4924-4928.
    
    [53] Iwai K, Klausner RD, and Rouault TA. Requirements for ironregulated degradation of the RNA binding protein, iron regulatory protein 2[J]. EMBO J,1995,14:5350-5357.
    
    [54] Connor JR, Menzies SL. Cellular management of iron in the brain[J]. J Neurol Sci, 1995,134:33-44.
    
    [55] Bradbury MW. Transport of iron in the blood-braincerebrospinal fluid system[J]. J Neurochem, 1997,69:443-454
    
    [56] Crowe A, Morgan EH. Iron and transferrin uptake by brain and cerebrospinal fluid in the rat[J]. Brain Res, 1992,592:8-16.
    
    [57] Descamps L, Dehouck MP, Torpier G, et al. Receptormediated transcytosis of transferrin through blood-brain barrier endothelial cells[J]. Am J Physiol, 1996,270:1149-1158.
    
    [58] Connor JR, Menzies SL.Relationship of iron to oligodendrocytes and myelination[J]. Glia, 1996,17:83-93.
    
    [59] Moos T, Trinder D, Morgan EH. Cellular distribution of ferric iron, ferritin, transferrin and divalent metal transporter 1 (DMT1) in substantia nigra and basal ganglia of normal and beta2-microglobulin deficient mouse brain[J]. Cell Mol Biol (Noisy-le-grand) ,2000,46:549-561.
    
    [60] Burdo JR, Menzies SL, Simpson IA,et al. Distribution of divalent metal transporter 1 and metal transport protein 1 in the normal and Belgrade rat[J]. J Neurosci Res, 2001,66:1198-1207.
    
    [61] Connor JR, Menzies SL, Burdo JR, et al. Iron and iron management proteins in neurobiology[J]. Pediatr Neurol, 2001,25:118-129.
    
    [62] Hansen TM, Nielsen H, Bernth N, et al. Expression of ferritin protein and subunit mRNAs in normal and iron deficient rat brain[J]. Brain Res Mol Brain Res, 1999,65:186-197.
    
    [63] Abboud S, Haile DJ. A novel mammalian iron-regulated protein involved in intracellular iron metabolism[J]. J Biol Chem, 2000,275:19906-19912.
    
    [64] Qian ZM,Shen X. Brain iron transport and neurodegeneration[J].Trends Mol Med, 2001,7:103-108
    
    [65] Rolfs A, Hediger MA. Metal ion transporters in mammals: structure, function and pathological implications[J]. J Physiol (Lond), 1999,518:1-12
    
    [66] Qian ZM, Chang YZ, Zhu L, et al. Development and iron-dependent expression of hephaestin in different brain regions of rats[J]. J Cell Biochem, 2007,102: 1225-1233.
    
    [67] Zechel S, Huber-Wittmer K, von Bohlen, et al. Distribution of the iron-regulating protein hepcidin in the murine central nervous system[J]. J Neurosci Res, 2006,84:790-800.
    
    [68] Knutson M, Menzies S, Connor J, et al. Developmental, regional, and cellular expression of SFT/UbcH5A and DMT1 mRNA in brain[J]. J Neurosci Res, 2004,76:633-641.
    [69] Gutierrez JA, Yu J, Rivera S,et al. Functional expression cloning and characterization of SFT, a stimulator of Fe transport[J]. J Cell Biol, 1999,147:204.
    
    [70] Moos T and Morgan EH. Kinetics and distribution of [59Fe-125I]transferrin injected into the ventricular system of the rat[J]. Brain Res, 1998 ,790:115-128.
    
    [71] Taylor EM and Morgan EH. Developmental changes in transferrin and iron uptake by the brain in the rat[J]. Dev Brain Res, 1990,55:35-42.
    
    [72] Gunshin H, Mackenzie B, Berger UV, et al. Cloning and characterization of a mammalian proton-coupled metal-ion transporter[J]. Nature, 1997,388:482- 488.
    
    [73] Moos T and Rosengren Nielsen T. Ferroportin in the postnatal rat brain: implications for axonal transport and neuronal export of iron[J]. Semin Pediatr Neurol,2006,13:149-157.
    
    [74] Burdo JR, Antonetti DA, Wolpert EB, et al. Mechanisms and regulation of transferrin and iron transport in a model blood-brain barrier system[J]. Neuroscience, 2003 ,121:883-890.
    
    [75] Bradbury MW. Transport of iron in the blood-brain-cerebrospinal fluid system[J]. J Neurochem, 1997,69:443-454.
    
    [76] Brock J. Lactoferrin: a multifunctional immunoregulatory protein[J].Immunol. Today, 1995,9:417-419.
    
    [77] Moos T. Immunohistochemiscal localization of intraneuronal tranferrin receptor immunoreactivity in the adult mouse central nervous system[J]. J CompNeurol, 1996,375:665-692
    
    [78] Moos T, Morgan EH. The significance of the mutated divalent metal transporter (DMT1) on iron transport into the Belgrade rat brain[J]. J Neurochem, 2004,88:233-245.
    
    [79] Schipper HM, Bernier L, Mehindate K, et al. Mitochondrial iron sequestration in dopamine-challenged astroglia, role of heme oxygenase-1 and the permeability transition pore[J]. J Neurochem, 1999,72:1802-1811.
    
    [80] Patel BN and David S. A novel glycosylphosphatidylinositolanchored form of ceruloplasmin is expressed by mammalian astrocytes[J]. J Biol Chem, 1997,272:20185-20190.
    
    [81] Bloch B, Popovici T, Levin MJ, et al. Transferrin gene expression visualized in oligodendrocytes of the rat brain by using in situ hybridization and immunohistochemistry[J]. Proc Natl Acad Sci USA, 1985,82:6706-6710.
    
    [82] Wu LJ, Leenders AG, Cooperman S, et al. Expression of the iron transporter ferroportin in synaptic vesicles and the blood-brain barrier[J]. Brain Res, 2004,1001:108-117.
    
    [83] Takeda A., Devenyi A. and Connor J. R. Evidence for nontransferrin-mediated uptake and release of iron and manganese in glial cell cultures from hypotransferrinemic mice[J]. J Neurosci Res, 1998 ,51, 454-462.
    
    [84] Harris ZL, Takahashi Y, Miyajima H, et al. Aceruloplasminemia: molecular characterization of this disorder of iron metabolism[J]. Proc Natl Acad Sci U S A, 1995,92:2539-2543.
    
    [85] Xu X, Pin S, Gathinji M, et al. Aceruloplasminemia: an inherited neurodegenerative disease with impairment of iron homeostasis[J]. Ann N Y Acad Sci,2004,1012:299-305.
    
    [86] Curtis AR, Fey C, Morris CM, et al. Mutation in the gene encoding ferritin light polypeptide causes dominant adult-onset basal ganglia disease[J]. Nat Genet, 2001,28:350-354.
    
    [87] Vidal R, Ghetti B, Takao M, et al. Intracellular Ferritin Accumulation in Neural and Extraneural Tissue Characterizes a Neurodegenerative Disease Associated with a Mutation in the Ferritin Light Polypeptide Gene[J]. J Neuropathol Exp Neurol, 2004,63:363-380.
    
    [88] Ponka P. Rare causes of hereditary iron overload[J]. Semin Hematol, 2002, 39: 249-262.
    
    [89] Cavalcanti F, Monros E, Rodius F, et al. Friedreich's ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion[J]. Science, 1996,271:1423-1427.
    
    [90] Durr A, Cossee M, Agid Y, et al. Clinical and genetic abnormalities in patients with Friedreich's ataxia[J]. N Engl J Med, 1996,335:1169-1175.
    
    [91] Koutnikova H, Campuzano V, Foury F, et al. Studies of human, mouse and yeast homologues indicate a mitochondrial function for frataxin[J]. Nat Genet, 1997,16:345-351.
    
    [92] Babcock M, de Silva D, Oaks R, et al. Regulation of mitochondrial iron accumulation by Yfh1p, a putative homolog of frataxin[J]. Science, 1997,276: 1709-1712.
    
    [93] Puccio H, Simon D, Cossee M, et al. Mouse models for Friedreich ataxia exhibit cardiomyopathy, sensory nerve defect and Fe-S enzyme deficiency followed by intramitochondrial iron deposits[J]. Nat Genet, 2001,27:181-186.
    
    [94] Oakley AE, Collingwood JF, Dobson J, et al. Individual dopaminergic neurons show raised iron levels in Parkinson disease[J]. Neurology, 2007, 68: 1820- 1825.
    
    [95] Halliwell B. Role of free radicals in the neurodegenerative diseases: therapeutic implications for antioxidant treatment[J]. Drugs Aging, 2001,18:685-716.
    
    [96] Perry G, Cash AD, and Smith MA. Alzheimer disease and oxidative stress[J]. J Biomed Biotechno,2002,1 2:120-123.
    
    [97] Cass WA, Grondin R, Andersen AH, et al. Iron accumulation in the striatum predicts aging-related decline in motor function in rhesus monkeys[J]. Neurobiol Aging, 2007,28:258-271.
    
    [98] Zecca L, Youdim MB, Riederer P, et al. Iron, brain ageing and neurodegenerative disorders[J]. Nat Rev Neurosci, 2004,5:863-873.
    
    [99] Kaur D, Yantiri F, Rajagopalan S, et al. Genetic or pharmacological iron chelation prevents MPTP-induced neurotoxicity in vivo: a novel therapy for Parkinson's disease[J]. Neuron, 2003,37:899-909.
    
    [100] Hashimoto M, Hsu LJ, Xia Y, et al. Oxidative stress induces amyloid-like aggregate formation of NACP/alpha-synuclein in vitro[J]. Neuroreport, 1999, 10:717-721.
    
    [101] Thompson K, Menzies S, Muckenthaler M, et al. Mouse brains deficient in H-ferritin have normal iron concentration but a protein profile of iron deficiency and increased evidence of oxidative stress[J]. J Neurosci Res, 2003,71:46-63.
    
    [102] Kaur D, Rajagopalan S, Chinta S, et al. Chronic ferritin expression within murine dopaminergic midbrain neurons results in a progressive age-related neurodegeneration[J]. Brain Res, 2007,1140:188-194.
    
    [103] Shang T, Kotamraju S, Kalivendi SV, et al. 1-Methyl-4-phenylpyridinium- induced apoptosis in cerebellar granule neurons is mediated by transferrin receptor iron-dependent depletion of tetrahydrobiopterin and neuronal nitric-oxide synthase-derived superoxide[J]. J Biol Chem, 2004,279:19099-19112.
    
    [104] Meyron-Holtz EG, Ghosh MC, Iwai K, et al. Genetic ablations of iron regulatory proteins 1 and 2 reveal why iron regulatory protein 2 dominates iron homeostasis[J]. EMBO J, 2004 ,23: 386-395.
    
    [105] LaVaute T, Smith S, Cooperman S, et al. Targeted deletion of the gene encoding iron regulatory protein-2 causes misregulation of iron metabolism and neurodegenerative disease in mice[J]. Nat Genet, 2001,27:209-214.
    
    [106] Smith MA, Wehr K, Harris PL, et al. Abnormal localization of iron regulatory protein in Alzheimer's disease[J]. Brain Res, 1998,788:232-236.
    
    [107] Hochstrasser H, Bauer P, Walter U, et al. Ceruloplasmin gene variations and substantia nigra hyperechogenicity in Parkinson disease[J]. Neurology, 2004,63:1912-1917.
    
    [108] Hochstrasser H, Tomiuk J, Walter U, et al. Functional relevance of ceruloplasmin mutations in Parkinson's disease[J]. FASEB J, 2005 ,19: 1851-1853.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700