用户名: 密码: 验证码:
嗜卷书虱P450基因的分子生物学特性及其异源表达研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
书虱(psocids)属于虱啮目Psopotera、书虱科Liposcelididae、书虱属Liposcelis,是一类重要的储藏物害虫,大量发生时可造成严重的经济损失,且对化学药剂的抗性发展很快,已经引起了全世界储藏物工作者的高度重视。然而与其它农业害虫相比,以往对该类害虫包括其它储藏物害虫的研究主要集中在应用研究层面,较少涉及基础或应用基础研究领域。昆虫细胞色素P450是昆虫体内一种重要的代谢酶,在昆虫的生命活动中具有重要的生理功能。其中细胞色素P450对杀虫剂的代谢作用增强是大多数昆虫产生抗药性的主要机制之一,这一机制也常被认为是最为重要的一个抗性机制,而且由于其催化底物的多样性,细胞色素P450极有可能介导昆虫的交互抗性。本学位论文在国家自然科学基金(30871631)、教育部新世纪优秀人才支持计划(NCET-04-0854)以及西南大学研究生创新基金优秀博士生项目(kb2008001)的资助下,以目前世界范围内危害严重的嗜卷书虱Liposcelis bostrychophila Badonnel为对象,瞄准昆虫P450功能研究的这一热点问题,率先开展了嗜卷书虱P450基因分子生物学特性及异源表达方面的研究,旨在认识嗜卷书虱细胞色素P450的生理功能、了解P450与书虱抗性形成与发展的相互关系、鉴定书虱抗性相关P450基因以及揭示其介导书虱抗药性的分子机制。通过近4年的研究,取得了如下研究结果:
     1嗜卷书虱Housekeeping基因的克隆及内参基因的筛选
     1.1 Housekeeping基因的克隆及序列分析
     结合反转录PCR(reverse transcriptase-PCR,RT-PCR)与cDNA末端快速扩增(rapid amplification of cDNA ends,RACE)等技术,首次成功地从嗜卷书虱体内分离克隆获得了4个不同的Housekeeping基因Lbp-Actin1、Lbβ-Actin2、Lba-Tubulin及LbGapdh的cDNA全序列,GenBank登录号分别为FJ196622、FJ447483、FJ595242及FJ595241.通过序列分析,明确了4个Housekeeping基因的开放阅读框,并推导了其编码的氨基酸序列。进一步利用Protparam、Scanprosite、PSORT、TMHMM、SignalP 3.0以及ProtFun等生物信息学软件分析了上述Housekeeping基因编码蛋白质的理化性质、保守基序、细胞内的定位、跨膜结构、信号肽序列以及潜在的生理功能。使用Mega 4.01软件应用Neighbor Joining方法构建了其相应的系统发育树并明确了与其它物种相应Housekeeping基因的遗传距离。此外,应用蛋白质三维结构同源模拟工具SWISS-MODEL,成功地构建了各自的三维结构模型。研究结果丰富了嗜卷书虱的遗传信息,并且为将来深入探讨啮目昆虫的进化关系提供了可能的分子标记。1.2内参基因的筛选
     研究表明,在实时定量PCR(qPCR)中选用不同的内参基因可能会对基因表达转录分析的结果产生重要影响。然而在昆虫学的相关研究中,内参基因筛选这个重要的问题却常被忽视。本研究在成功建立嗜卷书虱5个候选内参基因(Lbβ-Actin1、Lbβ-Actin2、Lba-Tubulin、LbGapdh及18S rRNA)qPCR反应体系的基础上,利用NormFinder和geNorm分析软件综合评估了这5个候选内参基因在嗜卷书虱不同发育阶段、不同品系以及溴氰菊酯诱导条件下mRNA表达的稳定性,筛选出了适用于不同试验条件的嗜卷书虱基因表达转录分析的内参基因Lbp-Actin1。进一步利用绝对定量方法分析了嗜卷书虱经药剂诱导其体内Lbβ-Actin1 mRNA表达量的时间动态(8、12、24、36及48 h),验证了其作为嗜卷书虱基因表达转录分析中内参基因的稳定性。同时以最稳定的Lbβ-Actinl及最不稳定的18S rRNA分别作为内参对嗜卷书虱CYP6CE2在不同发育阶段、药剂诱导前后的相对表达量进行比较分析,结果发现无论是在不同的发育阶段,还是在药剂诱导的情况下以18S rRNA作为内参时CYP6CE2的表达模式均与以Lbp-Actin1作为内参基因时的表达模式差异极大,进一步证实了前人关于核糖体基因不适宜用作内参基因的推测,充分证明了基因表达转录分析中内参基因的选用对定量分析的结果具有重要的影响。
     2嗜卷书虱P450基因的克隆及其表达模式解析
     2.1 P450基因的克隆及序列分析
     结合RT-PCR与RACE等技术,首次成功地从嗜卷书虱体内分离克隆了5个全新的P450基因CYP6CE、CYP6CE2、CYP4CB1、CYP4CC1及CYP4CD1的cDNA全序列,GenBank登录号分别为EF421245、EF421246、EU979550、EU979549和EU979551。通过序列分析明确了上述5个P450基因的开放阅读框,并推导了其编码的氨基酸序列。进一步利用Protparam、Scanprosite、PSORT、TMHMM、SignalP3.0以及ProtFun等生物信息学软件分析了推导蛋白质的理化性质、保守基序、细胞内的定位、跨膜结构、信号肽序列以及潜在的生理功能。序列分析结果表明克隆获得的5个细胞色素P450基因均为细胞微粒体型P450,极有可能在嗜卷书虱体内参与外源化合物的代谢。在GenBank中选取了近40条已发布且功能己知的P450基因(主要为第四家族和第六家族成员)编码的氨基酸序列,使用Mega 4.01软件应用Neighbor Joining方法构建了系统发育树并明确了与其它物种P450基因的遗传距离。结果表明CYP6CE1、CYP6CE2与多个抗性相关的CYP6家族成员具有较高的同源性,据此推测CYP6CE1、CYP6CE2可能参与嗜卷书虱抗药性的形成。此外,应用蛋白质三维结构同源模拟工具SWISS-MODEL成功地构建了CYP6CE1及CYP6CE2的三维结构模型。然而,由于在蛋白质晶体结构数据库中还未有与CYP4CB1、CYP4CC1及CYP4CD1同源性达到20%以上的蛋白,因此无法对嗜卷书虱这3个细胞色素P450蛋白的三维结构进行模拟。
     2.2 P450在不同发育阶段的表达模式
     利用嗜卷书虱在27.5℃的条件下完成各个不同发育阶段所需要不同时间的这一生物学特性,通过时间上的控制,获得了处于不同发育阶段(卵、一龄、二龄、三龄、四龄若虫以及成虫)的书虱用于总RNA的提取。进而通过制作标准曲线、计算引物的扩增效率以及分析扩增产物的熔解曲线,成功建立了嗜卷书虱CYP6CE1、CYP6CE2、CYP4CB1、CYP4CC1和CYP4CD1等5个P450基因的qPCR反应体系。以Lbp-Actin1基因作为内参,对5个P450基因在嗜卷书虱不同发育阶段的mRNA表达水平进行了相对定量分析。结果表明,嗜卷书虱3个CYP4家族的P450基因均在成虫期表达量最高。其中,CYP4CB1在嗜卷书虱二龄若虫体内的相对表达量显著低于其它龄期,在成虫期表达量最高,其余4个龄期内的表达均无显著差异。CYP4CC1的相对表达量在成虫体内最高,在卵和二龄若虫中较低。其中成虫期表达量约为卵期的7倍,二龄若虫期表达量约为卵期的0.5倍,而其余3个龄期的相对表达量波动幅度不大均在2左右。CYP4CD1在卵期的表达量最低,成虫期的表达量约为卵期的7倍,其余各龄期间的相对表达量近乎恒定,维持在卵期表达量的2倍左右,且无显著差异。
     2.3 P450在药剂诱导后的表达模式
     在生物测定明确了嗜卷书虱对溴氰菊酯、甲基对氧磷和涕灭威毒力的基础上,建立了两种不同的诱导体系:即低剂量(LC10)长时间持续诱导和较高剂量(LC50)短时间诱导体系。利用qPCR技术,以Lbβ-Actin1为内参基因,分析了嗜卷书虱5个P450基因在低剂量(LC10)溴氰菊酯诱导前后其mRNA表达量的变化,明确了嗜卷书虱5个P450基因分别对低剂量溴氰菊酯的诱导反应。结果表明,低剂量(LC10)溴氰菊酯诱导可显著提高嗜卷书虱体内CYP6CE1、CYP6CE2、CYP4CB1、CYP4CC1基因的相对表达量。其中,CYP6CE1表达量上升最高大约为对照组的2.8倍;CYP6CE2、CYP4CB1、CYP4CC1相对表达量上升了2倍左右;然而,CYP4CD1的相对表达量经低剂量溴氰菊酯诱导后却显著地下降。
     此外,利用较高剂量(LC50)的溴氰菊酯、甲基对氧磷、涕灭威处理嗜卷书虱30 min后,采用qPCR技术分析了上述P450基因经药剂诱导后其mRNA表达的时间动态(8、12、24、36及48 h)。qPCR结果表明CYP6CE1、CYP6CE2、CYP4CB1及CYP4CC1可被溴氰菊酯、甲基对氧磷显著的诱导。其中,溴氰菊酯诱导后36 h CYP6CE1、CYP6CE2、CYP4CB1及CYP4CC1的相对表达量达到最高分别为对照的2.l、1.5、3.0以及1.8倍;甲基对氧磷诱导后24 h这4个P450基因的相对表达量达到最高峰分别为对照的3.9、1.5、6.6及2.6倍。涕灭威对嗜卷书虱4个可被溴氰菊酯、甲基对氧磷诱导的P450基因均无显著的诱导作用,而CYP4CD1的表达量在涕灭威的诱导后36 h达到高峰为对照的4.7倍。由此可见,CYP4CD1可能与其它4个P450基因具有不同的生理功能:CYP6CE1、CYP6CE2、CYP4CB1及CYP4CC1极有可能参与了溴氰菊酯、甲基对氧磷在嗜卷书虱体内的代谢过程,而CYP4CD1可能参与了涕灭威在嗜卷书虱体内的代谢过程。
     2.4 P450在不同品系中的表达模式
     利用qPCR技术,以Lbp-Actin1为内参基因,分析了嗜卷书虱5个P450基因在实验室选育并保存的嗜卷书虱DDVP、PH3抗性品系及敏感品系中的表达模式。结果表明,除CYP4CC1外其它4个P450基因在2个抗性品系中均有不同程度的过量表达,但上调表达的幅度不高(均未超过2倍),这一现象暗示这4个P450基因极有可能共同参与嗜卷书虱抗性的形成。由此可见,书虱抗性形成并非由单一的基因或酶类介导,而是其体内多种酶类协同作用的结果。
     3嗜卷书虱P450基因的原核表达
     基因异源表达技术是基因工程技术的核心,是功能基因组学研究中明确基因功能的一个基础研究。本研究采用Gateway(?)支术成功构建了嗜卷书虱CYP6CE1和Lbβ-Actin1基于pDestl7的原核表达载体,经Western Blot检测证实大肠杆菌中表达的重组蛋白就是CYP6CE1-pDestl7和Lbβ-Actinl-pDestl 7的重组蛋白,从而实现了这2个基因在大肠杆菌体内的异源表达。同时利用BamHI和Xhol的双酶切以及DNA重组技术构建了嗜卷书虱CYP6CE1、CYP4CB1、CYP4CC1及CYP4CD1基于pET4317.1a(+)的原核表达载体。为了提高P450基因异源表达产物的产量和产物的分离纯化等,通过对PCR上游引物5,的改造实现了对细胞色素P450蛋白的N端修饰。包括去除信号肽序列,将起始密码子ATG之后的第二个密码子替换为GCT,在该密码子之后引入4个连续的CAT编码组氨酸的标签等。最后,利用BamHI和XbaI的双酶切以及DNA重组技术,成功构建了嗜卷书虱CYP6CE1、CYP4CB1、CYP4CC1及CYP4CD1基于pCW的原核表达载体。异源表达的实现为将来深入研究表达产物的生化及毒理学特性奠定了坚实的基础。
     4嗜卷书虱CYP6CE1等位基因多态性
     P450等位基因的点突变对其蛋白结构、底物识别、催化活性及功能具有重要影响。本研究采用RT-PCR技术从嗜卷书虱敏感品系和2个抗性品系体内分离克隆了3个CYP6CE1的等位基因CYP6CE1v1、CYP6CE1v2和CYP6CE1v3(GenBank登录号分别为EF421245、EU266572及EU266573)。序列比对发现CYP6CE1v2与CYP6CE1v3核苷酸序列中有15个多态性位点及其所在的位置。序列分析明确了CYP6CE1v2的15处多态性位点仅导致了其编码的蛋白质1处氨基酸替换,而CYP6CE1v3编码的蛋白质却发生了5处氨基酸替换。利用Protparam软件对CYP6CE1v1-3所编码蛋白质的基本参数进行预测,发现CYP6CE1v2与CYP6CE1v1编码的蛋白质在性质上差异不大,但与CYP6CE1v3编码的蛋白质在性质上存在明显差异。进一步使用蛋白质三维结构同源模拟工具SWISS-MODEL对上述3个等位基因编码蛋白质的三维结构进行模拟,在理论上证实了CYP6CE1v3编码蛋白的3处氨基酸替换均对其三维结构产生一定的影响。
     综上所述,本研究克隆获得了嗜卷书虱体内的4个持家基因cDNA全序列,丰富了嗜卷书虱的遗传信息,并且为将来深入探讨啮目昆虫的进化关系提供了可能的分子标记;分离获得了5个细胞色素P450新基因的cDNA全序列,为深入研究嗜卷书虱P450酶系统的功能奠定了坚实的基础;利用分子生物学最新研究成果筛选出了基因表达转录分析中稳定表达的内参基因,搭建了书虱基因表达转录分析的研究平台;并在此基础上,利用实时定量PCR技术全面解析了这5个细胞色素P450基因在嗜卷书虱不同发育阶段、不同品系以及药剂诱导后的表达模式;此外,还进行了细胞色素P450的原核表达和重组蛋白离体研究。研究成果将促进对嗜卷书虱细胞色素P450基因生理功能的认识,为嗜卷书虱抗性相关P450基因的鉴定提供理论依据,并对阐释细胞色素P450介导嗜卷书虱代谢抗性的分子生物学机制具有重要的理论意义。
The psocid, Liposcelis bostrychophila Badonnel (Psocoptera:Liposcelidae), is an important stored-product insect. It is distributed worldwide and is commonly found in various processed and unprocessed dry foods in households, granaries, and warehouses. Outbreaks can lead to significant economic losses and rapid resistance to insecticides resulting in control failure have made L. bostrychophila a pest of interest to researchers globally. However, compared to other agricultural insect pests, stored products pest research (including psocids) was mainly focused on control aspects, while basic research was lacking. P450 enzymes (cytochrome P450 monooxygenases), an important enzyme system in insecticide detoxification, are a complex family of heme-binding enzymes found in most organisms. In insects, the diverse functions of P450 enzymes range from the synthesis and degradation of ecdysteroids and juvenile hormones to the metabolism of xenobiotics. P450 enzymes also play important roles in the adaptation of insects to toxic compounds in their host plants, and are involved in metabolism of almost all commonly used insecticides. Because of the diversity of their substrates, P450-mediated detoxification has the potential to confer cross-resistance to toxins independent of their target site, and thus P450-mediated resistance is now regarded as the most frequent type of metabolism-based insecticide resistance. Therefore, we initiated the study on the molecular characterizations and heterologous expression of P450s in L. bostrychophila. The purpose of the current study was to understand the physiological roles of psocid P450s; to explore the relationship between P450s and insecticide resistance in psocids; to identify P450 genes linked to resistance; and to reveal the molecular mechanisms of insecticide resistance in psocids. The research was supported by the National Natural Sciences Foundation (30871631),Program for New Century Excellent Talents in University (NCET-04-0854) and the Science and Technology Innovation Foundation for Graduate Students (kb2008001).The main results are as follows:
     1 Housekeeping genes cloning and reference selection
     1.1 Molecular cloning and sequences analysis of housekeeping genes
     Four housekeeping genes, Lbβ-Actinl,Lbβ-Actin2, Lba-Tubulin, and LbGapdh, were cloned from L. bostrychophila using the combined techniques of reverse transcriptase-PCR (RT-PCR) with rapid amplification of cDNA ends (RACE). The GenBank accession numbers were FJ196622, FJ447483,FJ595242, and FJ595241,respectively. Molecular characterizations of the putative proteins have been predicted by Protparam.The full-length cDNA of Lbβ-Actinl was a 1772 bp sequence with an open reading frame (ORF) encoding 376 amino acids, while Lbβ-Actin2 was 1350 bp in length containing an ORF encoding 376 amino acids. In addition, the 1565 bp cDNA of Lba-Tubulin had an ORF of 1350 bp encoding 450 amino acids and LbGapdh had an ORF of 333 amino acids. Furthermore, the bioinformatics software such as Scanprosite, PSORT, TMHMM, SignalP 3.0 and ProtFun were used to predict the conserved motif, membrane location, transmembrane structure, signal peptide and potential functions of the putative protein. Phylogenetic trees generated from the nucleotide sequences of their coding regions revealed a relationship that was closer to other insects than to mammals. In addition, their 3-D structure models were constructed by SWISS-MODEL. The housekeeping gene sequences obtained will be helpful to future studies of the psocid L. bostrychophila and related species.
     1.2 Evaluation and validation of reference genes for gene expression profiling
     Several studies have shown that the reference genes used for the quantification of mRNA expression may be affected by the experimental design or cell type, however, this important aspect is often neglected in gene expression studies of insects. In the current study, the stabilities of five reference gene candidates (Lbβ-Actinl,Lbβ-Actin2, Lba-Tubulin, LbGapdh, and 18S rRNA) were systematically analyzed among the developmental stages and between different strains after deltamethrin induction. The aim of this study was to evaluate housekeeping genes of L. bostrychophila for their suitability as reference genes in quantitative real-time PCR (qPCR) using geNorm and NormFinder, thus provide appropriate reference genes to explore the gene expression patterns of the detoxifying and target enzymes in psocids to clarify the resistance mechanisms at a molecular level. According to the analysis by geNorm, we ranked the stability of the five psocid housekeeping genes after insecticide induction in the following order:Lbβ-Actinl>LbGapdh> Lba-Tubulin>Lbβ-Actin2>Lb18S rRNA. Furthermore, the mRNA expression of selected psocid genes at different life stages was ranked in the following order:Lbβ-Actinl>Lba-Tubulin> Lbβ-Actin2>LbGapdh>Lb18S rRNA.Additionally, the ranking for different strains was Lbβ-Actinl>LbGapdh>Lba-Tubulin>Lbβ-Actin2>18s rRNA. Although there were differences between NormFinder and geNorm, most the results were the same. Therefore, combined the analysis of NormFinder and geNorm, Lbβ-Actinl was selected as the most appropriate reference gene for accurate normalization, while the 18S rRNA is the least stable gene.
     Two representative reference genes (Lbβ-Actinl,the most stable one; Lb18S rRNA, the least stable one) were applied to determine the expression pattern of a P450 gene encoding CYP6CE2. For deltamethrin induction, the CYP6CE2 transcripts increased significantly normalized to Lbβ-Actinl and Lb18S rRNA, respectively. However, the increase was falsely amplified from 1.9 to 3.4 fold when normalized to Lb18S rRNA.Furthermore, the developmental expression profile of CYP6CE2 normalized to Lbβ-Actinl was different when normalized to Lb18S rRNA, suggesting that the stability of the reference gene had an effect on gene profiling. In addition, the expression stability of Lbβ-Actinl was further investigated in psocids after insecticide induction. These results found that there was no significant difference between the induced and control groups, suggesting that Libβ-actinl was an appropriate internal control for the gene expression profiling in this insect. Our study demonstrated that each candidate reference gene should be validated before use to make sure it is stably expressed under the given experimental manipulation to ensure accurate normalization.
     2 P450 gene cloning and gene expression profiling
     2.1 Molecular cloning and sequences analysis of P450 genes
     Five novel P450 genes, CYP6CE1,CYP6CE2, CYP4CB1,CYP4CC1 and CYP4CD1,were cloned from L. bostrychophila using the combined techniques of reverse transcriptase-PCR (RT-PCR) with rapid amplification of cDNA ends (RACE). GenBank accession numbers were EF421245, EF421246, EU979550, EU979549 and EU979551,respectively. Molecular characterizations of the putative proteins have been predicted by Protparam. The full-length cDNA of CYP6CE1 was a 2025 bp sequence with an open reading frame (ORF) encoded 527 amino acids, while CYP6CE2 was 1822 bp in length containing an ORF encoded 521 amino acids. Furthermore, the 1772 bp cDNA of CYP4CB1 had an ORF encoding 511 amino acids, while CYP4CCl.was 1853 bp with an ORF encoding 504 amino acids. Moreover, CYP4CD1 possessed an ORF of 512 amino acids. Furthermore, the bioinformatics software such as Scanprosite, PSORT, TMHMM, SignalP 3.0 and ProtFun were used to predict the conserved motif, membrane location, transmembrane structure, signal peptide and potential functions of the putative proteins. In addition, the 3-D structure models of CYP6CE1 and CYP6CE2 were constructed by SWISS-MODEL using CYP3A4 as template; however, we were unable to construct structure models for other P450s because the protein database does not currently have a sufficient number of template proteins.
     2.2 Developmental expression profiles of the five P450 genes
     In the current study, we analyzed the developmental expression patterns of the cloned P450 genes from L. bostrychophila to provide insights as to the protein physiological functions. We obtained L.bostrychophila in different, but uniform developmental stages including egg,1st stadium nymph,2nd stadium nymph,3rd stadium nymph,4th stadium nymph, and adult to extract total RNA for gene expression profiling. According to the results of qPCR, transcripts of the five P450 genes were detected at all the life stages tested and none were found to be stage specific. Higher expression levels of CYP6CE2 were observed at nymphal stages than at adulthood. The CYP6CE2 transcripts decrease progressively from early to late developmental stages. The relative quantity of CYP6CE2 was highest in 1st nymph and gradually decreased to the lowest in adults. However, there was no significant difference in expression among the 3rd,4th stadium and the adults (P>0.05). Additionally, as indicated by qPCR, the relative quantity for all life stages of CYP6CE1 was between 1 and 2 folds. The three CYP4 members (CYP4CB1,CYP4CC1 and CYP4CD1)were relatively stable. Similar to CYP6CE1,the relative quantity for all life stages was between 1 and 2 folds. Interestingly, all of them were more highly expressed at adulthood. These results imply that CYP6CE1,CYP4CB1,CYP4CC1 and CYP4CD1 may have important roles in adult psocids, while CYP6CE2 may be more crucial to nymphal psocids.
     2.3 Expression profiles of the five P450 genes induced by insecticides
     We determined the susceptibility of L. bostrychophila to deltamethrin, paraoxon-methyl and aldicarb using a survivorship bioassay. To determine the induction responses of P450s of the cloned P450s, three insecticides were used to induce the psocids. Based on the bioassay, the psocids were induced by the insecticides in two different regimes:LL, low dose (LC10)+long time (24 h) and HS, high dose (LC50)+short time (0.5 h). Real-time PCR with Lbβ-Actinl as the reference gene was used to determine the relative expression quantity of the P450 genes. As indicated by real-time RT-PCR, four P450 genes (CYP6CE1,CYP6CE2, CYP4CB1 and CYP4CC1)transcripts increased significantly after exposure to 2 mg/L deltamethrin for 24 h (P<0.05), while CYP4CD1 decreased a little. Compared to the control group, CYP6CE1,CYP6CE2, CYP4CB1 and CYP4CC1 transcripts increased 2.8,1.9,1.8 and 2.3 folds, respectively. However, the relative quantity of CYP4CD1 decreased significantly (P<0.05).
     In addition, we also investigated the time course effects of insecticides (deltamethrin, paraoxon-methyl and aldicarb) on the expression patterns of the five P450 genes following HS regime. With the exception of CYP4CD1,the other P450s expression was highest at 36 h after deltamethrin induction. Compared to the control, CYP6CE1,CYP6CE2, CYP4CB1 and CYP4CC1 transcripts increased 2.5,1.5,3.0 and 1.8 folds. Similar to deltamethrin, paraoxon-methyl showed good induction to CYP6CE1,CYP6CE2, CYP4CB1 and CYP4CC1,but had no obvious effect on CYP4CD1.Twenty four hours after the paraoxon-methyl induction, the relative quantity of CYP6CE1,CYP6CE2, CYP4CB1 and CYP4CC1 reached the 3.9,1.5,6.6 and 2.6 folds, respectively. CYP6CE1 transcripts increased 1.5 fold after 36 h of aldicarb induction, while CYP6CE2 and CYP4CB1 had no significant response. Additionally, the expression of CYP4CC1 was suppressed during the treatment. Interestingly CYP4CD1 transcripts, which had no response to deltamethrin and paraoxon-methyl, increased quickly 8 h after aldicarb induction and reached the peak 36 h later. These results suggest that CYP6CE1,CYP6CE2, CYP4CB1 and CYP4CC1 are inducible to deltamethrin and paraoxon-methyl, while CYP4CD1 was induced by aldicarb. Furthermore, CYP6CE2, CYP4CB1 and CYP4CC1 may be involved in the metabolism of deltamethrin and paraoxon-methyl in L.bostrychophila. Meanwhile, CYP4CD1 was related to aldicarb metabolism.
     However, we do not know which pathway is involved in controlling P450s transcriptional response to insecticides in psocids. We also do not know what triggers it and how. Further studies including the cloning and analyzing the nuclear receptors and the upstream regions of these P450 genes may provide some information.
     2.4 Expression profiles of the five P450 genes among different strains
     To verify whether P450s are over-expressed in resistant psocids, real-time PCR with the Lbβ-Actin1 as the reference gene was employed to determine the relative expression quantity of the P450 genes in three different strains of the psocids. Three strains, including susceptible strain (SS), DDVP resistant strain (DDVP-R) and PH3 resistant strain (PH3-R), were started at Southwest University Key Laboratory of Entomology and Pest Control Engineering and subjected to artificial selection to applied pesticides since the 1990s. As indicated by qPCR, four P450 genes (CYP6CE1, CYP6CE2, CYP4CB1 and CYP4CC1)transcripts in DDVP-R and PH3-R strains were significantly higher than SS strain (P<0.05), while the expression of CYP4CD1 was not significantly different (P>0.05), which implied that the overexpressed P450s were possibly involved in psocids resistance. However, the relative expression levels of the overexpressed P450s were relatively low (less than 2 fold). Moreover, as has been demonstrated by our previous studies several other key enzymes such as GSTs and AChE were related to pesticide resistance. Therefore, we assumed that the psocids resistance was a result of the cooperation of the enzymes mentioned above. However, we currently lack sufficient evidence to show that CYP6CE1 and CYP6CE2 are involved in deltamethrin metabolism in psocids. Future studies on substrate specificity of the recombinant proteins will provide direct evidence.
     3 Heterologous expression of psocids P450 in Escherichia coli
     Heterologous expression of foreign genes is the core field in functional genomics research, which will provide great insights to the gene function. Thus, biochemical and toxicological properties determination of the recombinant proteins based on the heterologous expression will provide direct evidence to the P450s function study. In the present study, on the basis of Gateway(?) technology, we constructed prokaryotic expression vectors (ligated to pDest 17) for CYP6CE1 and Lb(3-Actinl.Moreover, CYP6CE1 and Lbβ-Actin1 were successfully expressed in E. coli and the recombinant proteins were further confirmed by Western Blot analysis. Additionally, applying the double digestion of BamHI and Xhol restriction enzymes with the DNA recombination technology, we constructed expression vectors for CYP6CE1,CYP4CB1,CYP4CC1 and CYP4CD1 based on pET4317.1a (+)vector. In order to improve the heterologous expression efficiency and convenience to recombinant protein purification, N-terminus modification as suggested by previous researcher was performed for expression vector construction. Signal peptide sequences of the putative protein sequences were discarded, the second codon behind the start codon ATG was changed to GCT. If necessary, four continuous codons of CAT could be added to form a 4×His tag for recombinant protein purification. According to the N-terminus modification, we constructed expression vectors for CYP6CE1,CYP4CB1,CYP4CC1 and CYP4CD1 based on pCW plasmid. Our results formed a solid basis to express psocid P450s effectively in E. coli.
     4 Polymorphism of CYP6CE1 alleles
     It has been reported that mutations of P450 alleles could result in changes in protein structure, substrate recognition and catalytic activity. In this study, three alleles (GenBank accession numbers were EF421245, EU266572 and EU266573) of CYP6CE1 were cloned from 3 strains (DDVP, PH3 resistant strains and susceptible strain) of L.bostrychophila using the combined techniques of reverse transcriptase-PCR and sequenced. According to the sequences alignment, fifteen polymorphism sites were found in the nucleotide sequences of CYP6CElv2 and CYP6CElv3, respectively. We also determined their locations in the sequences. Based on the sequence analysis, the 15 nucleotide polymorphism sites of CYP6CE1v2 resulted in only one amino acid substitution, while five amino acid alterations were found in CYP6CElv3.Protein parameters of CYP6CElvl-3 were predicted by Proparam.As indicated by the prediction, there was no significant difference in properties of CYP6CE1v2 and CYP6CE1v1 protein, which were different from CYP6CE1v3 protein, especially in theoretical pⅠ.Furthermore,3-D structure homology modeling of these three proteins by SWISS-MODEL demonstrated that three amino acid substitutions in CYP6CE1v3 resulted in its structure alteration.
     In summary, in the present study we cloned the full-length cDNA of four housekeeping genes from L. bostrychophila, which extended sequence information for Psocoptera and provided potential molecular markers to investigate the evolutionary relationship between the Psocoptera and other insects. Five novel P450 genes were isolated form L. bostrychophila, which formed a solid basis to explore the physiological functions undertaken by P450 enzyme system.We systematically evaluated and validated the expression stability of housekeeping genes, and selected only those stably expressed as reference. This constructed a platform for the gene expression profiling in L. bostrychophila using real-time PCR. Based on the reference selection, we determined the developmental expression patterns of these P450s and their expression profiles in the adults after exposure to several insecticides, as well as the relative expression quantity in different strains showing different resistance to DDVP and PH3.Furthermore, we constructed different expression vectors for heterologous expression of psocid P450 in E. coli, in which CYP6CE1 and Lbβ-Actinl were successfully expressed. Our results will not only provide great insights into exploring the functions of the psocid P450s system in development and physiology, but also provide evidence for clarifying the adaptive mechanisms mechanism of psocids to environment. In the meantime, we may enrich and develop the scientific theoretical study system for the resistance mechanism of stored-product insect pests.
引文
1.Werck-Reichhart D, Feyereisen R.2000.Cytochromes P450:a success story. Genome Biol.1: 3003.1-3003.9
    2. Mansuy D.1998.The great diversity of reactions catalyzed by cytochromes P450.Comp. Biochem. Physiol. Part C Toxicol. Pharmcol.121:5-14
    3.Feyereisen R.2005.Insect cytochrome P450. In Comprehensive Molecular Insect Science, ed. LI Gilbert, K Iatrou, SS Gill, Amsterdam:Elsevier, pp.1-77.
    4. 冷欣夫,邱星辉.2001.细胞色素P450酶系的结构、功能与应用前景.北京:科学出版社
    5.Guzov VM, Unnithan GC, Chernogolov AA, Feyereisen R.1998.CYP12A1,a mitochondrial cytochrome P450 from the housefly. Arch. Insect Biochem. Physiol.359:231-240
    6.Graham-Lorence SE,Peterson JA.1999.How similar are P450s and what can their differences teach us? Arch. Biochem. Biophys.369:24-29
    7. Pernecky SJ,Coon MJ,Eric FJ,Michael RW.1996.N-terminal modifications that alter P450 membrane targeting and function. In Methods in Enzymology:Academic Press, pp.25-34.
    8.Nelson DR.2006.Cytochrome P450 Nomenclature. In Methods in Molecular Biology, New Jersey:Humana Press, pp.1-10.
    9. Nelson DR.1998.Metazoan cytochrome P450 evolution. Comp. Biochem. Physiol. Part C Toxicol. Pharmcol.121:15-22
    10. Agosin M.1985.Role of microsomal oxidations in insecticide degradation. In Comprehensive Insect Physiology, Biochemistry and Pharmacology, ed. GA Kerkut, LI Gilbert, Oxford: Pergamon, pp.647-712.
    11.WHO.1957.Expert Committee on Insecticides,7th report. In Technical report series, Geneva: World Health Organization.
    12. Scott JG.1999. Cytochromes P450 and insecticide resistance. Insect Biochem.Mol. Biol.29: 757-777
    13.Pimentel D, Acquay H, Biltonen M, Rice P, Silva M, Nelson J, Lipner V, Giordano S, Horowitz A, D'Amore M.1992. Environmental and economic costs of pesticide use:An assessment based on currently available US data, although incomplete, tallies $8 billion in annual costs. Bioscience 42:750-760
    14. Eldefrawi ME, Miskus R, Sutcher V.1960. Methylenedioxyphenyl derivatives as synergists for carbamate insecticides on susceptible, DDT- and parathion-resistant house flies. J. Econ. Entomol.53:231-234
    15.Feyereisen R, Koener JF, Farnsworth DE, Nebert DW.1989.Isolation and sequence of cDNA encoding a cytochrome P-450 from an insecticide-resistant strain of the housefly, Musca domestica. Proc. Natl. Acad. Sci. U.S. A.86:1465-1469
    16. Ranson H, Claudianos C, Ortelli F, Abgrall C, Hemingway J.2002.Evolution of supergene families associated with insecticide resistance. Science 298:179-181
    17.Claudianos C, Ranson H, Johnson RM,Biswas S, Schuler MA, Feyereisen R, Oakeshott JG. 2006. A deficit of metabolic enzymes:pesticide sensitivity and environmental response in the honey bee. Insect Mol. Biol.15:615-636
    18.Li X, Schuler MA, Berenbaum MR.2007. Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Annu. Rev. Entomol.52:231-253
    19. Liu N, Scott JG.1998.Increased transcription of CYP6D1 causes cytochrome P450-mediated insecticide resistance in house fly. Insect Biochem. Mol. Biol.28:531-535
    20.Kasai S, Scott JG.2001.Expression and regulation of CYP6D3 in the house fly, Musca domestica (L.).Insect Biochem. Mol. Biol.32:1-8
    21.Sabourault C, Guzov VM, Koener JF, Claudianos C, Jr FWP, Feyereisen R.2001. Overproduction of a P450 that metabolizes diazinon is linked to a loss-of-function in the chromosome 2 ali-esterase MdaE7 gene in resistant house flies. Insect Mol. Biol.10:609-618
    22. Zhu F, Feng JN, Zhang L, Liu N.2008.Characterization of two novel cytochrome P450 genes in insecticide-resistant house-flies. Insect Mol. Biol.17:27-37
    23.Ranasinghe C, Hobbs AA.1998. Isolation and characterization of two cytochrome P450 cDNA clones for CYP6B6 and CYP6B7 from Helicoverpa armigera (Hubner):possible involvement of CYP6B7 in pyrethroid resistance. Insect Biochem. Mol. Biol.28:571-580
    24. Yang Y, Yue L, Chen S, Wu Y.2008.Functional expression of Helicoverpa armigera CYP9A12 and CYP9A14 in Saccharomyces cerevisiae. Pestic. Biochem. Physiol.92:101-105
    25.Pittendrigh B, Aronstein K, Zinkovsky E, Andreev O,Campbell B, Dalyb J, Trowellb S, Ffrench-Constanta RH.1997. Cytochrome P450 genes from Helicoverpa armigera:expression in a pyrethroid-susceptible and resistant strain. Insect Biochem.Mol. Biol.27:507-512
    26. Zhu YC, Snodgrass GL.2003.Cytochrome P450 CYP6X1 cDNAs and mRNA expression levels in three strains of the tarnished plant bug Lygus lineolaris (Heteroptera:Miridae) having different susceptibilities to pyrethroid insecticide. Insect Mol. Biol.12:39-49
    27. Nikou D, Ranson H, Hemingway J.2003.An adult-specific CYP6 P450 gene is overexpressed in a pyrethroid-resistant strain of the malaria vector, Anopheles gambiae. Gene 318:91-102
    28.Amenya DA, Naguran R, Lo TCM, Ranson H, Spillings BL, Wood OR, Brooke BD, Coetzee M, Koekemoer LL.2008. Over expression of a Cytochrome P450 (CYP6P9) in a major African malaria vector, Anopheles funestus, resistant to pyrethroids. Insect Mol. Biol.17:19-25
    29. Maitra S, Dombrowski SM, Basu M, Raustol O, Waters LC, Ganguly R.2000.Factors on the third chromosome affect the level of Cyp6a2 and Cyp6a8 expression in Drosophila melanogaster. Gene 248:147-156
    30. Le Goff G, Boundy S, Daborn P, Yen J, Sofer L, Lind R, Sabourault C, Madi-Ravazzi L, ffrench-Constant R.2003.Microarray analysis of cytochrome P450 mediated insecticide resistance in Drosophila. Insect Biochem. Mol. Biol.33:701-708
    31.Festucci-Buselli RA,Carvalho-Dias AS,Oliveira-Andrade Md,Caixeta-Nunes C,Li H-M, Stuart JJ, Muir W, Scharf ME, Pittendrigh BR.2005.Expression of Cyp6g1 and Cyp12d1 in DDT resistant and susceptible strains of Drosophila melanogaster. Insect Mol. Biol.14:69-77
    32.Scharf ME, Parimi S, Meinke LJ, Chandler LD, Siegfried BD.2001.Expression and induction of three family 4 cytochrome P450 (CYP4) genes identified from insecticide-resistant and susceptible western corn rootworms, Diabrotica virgifera virgifera. Insect Mol. Biol.10: 139-146
    33.Sato ME, Tanaka T, Miyata T.2007. A cytochrome P450 gene involved in methidathion resistance in Amblyseius womersleyi Schicha (Acari:Phytoseiidae). Pestic. Biochem. Physiol. 89:337-345
    34.Amichot M, Tares S, Brun-Barale A, Arthaud L, Bride J-M, Berge J-B. 2004. Point mutations associated with insecticide resistance in the Drosophila cytochrome P450 Cyp6a2 enable DDT metabolism. Eur. J. Biochem.271:1250-1257
    35.Plapp FWJ, Casida JE.1969. Genetic control of house fly NADPH-dependent oxidases: relation to insecticide chemical metabolism and resistance. J. Econ. Entomol.62:1174-1179
    36.Hallstrom I, Grafstrom R.1981.the metabolism of drugs and carcinogens in isolated subcellular fractions of Drosophila melanogaster. Ⅱ. Enzyme induction and metabolism of benzo[a]pyrene. Chem-Biol. Interact.34:145-159
    37. Lee SST, Scott JG.1989. Microsomal cytochrome P450 monooxygenases in the house fly (Musca domestica L.):biochemical changes associated with pyrethroid resistance and phenobarbital induction. Pestic.Biochem. Physiol.35:1-10
    38.Schonbrod RD, Khan MAQ, Terriere LC, Plapp FWJ.1968. Microsomal oxidases in the house fly:a survey of 14 strains. Life Sci.7:681-688
    39.Wilkinson CF.1983.Role of mixed-function oxidases in insecticide resistance. In Pest Resistance to Pesticides, ed. GP Georghiou, Y Saito, New York:Plenum Press, pp.175-206.
    40. Catania F, Kauer MO,Daborn PJ,J. L. Yen,Ffrench-Costant RH,SchlOtterer C.2004. World-wide survey of an Accord insertion and its association with DDT resistance in Drosophila melanogaster. Mol. Ecol.13:2491-2504
    41.Carino FA, Koener JF, Plapp FWJ, Feyereisen R.1994. Constitutive overexpression of the cytochrome P450 gene CYP6A1 in a house fly strain with metabolic resistance to insecticides. Insect Biochem. Mol. Biol.24:411-418
    42.Kasai S, Scott JG.2001.A house fly gene homologous to the zinc finger proto-oncogene Gfi-1. Biochem. Biophys. Res. Commun.283:644-647
    43.Scott JG, Liu N, Wen Z, Smith FF, Kasai S, Horak CE.1999. House-fly cytochrome P450 CYP6D1:5'flanking sequences and comparison of alleles. Gene 226:347-353
    44.Scott JG, Zhang L.2003.The house fly aliesterase gene (MdaE7) is not associated with insecticide resistance or P450 expression in three strains of house fly. Insect Biochem. Mol. Biol.33:139-144
    45.Dombrowski SM, Krishnan R, Witte M, Maitra S, Diesing C, Waters LC, Ganguly R.1998. Constitutive and barbital-induced expression of the Cyp6a2 allele of a high producer strain of CYP6A2 in the genetic background of a low producer strain. Gene 221:69-77
    46. Maitra S, Price C, Ganguly R.2002.Cyp6a8 of Drosophila melanogaster. gene structure, and sequence and functional analysis of the upstream DNA. Insect Biochem. Mol. Biol.32: 859-870
    47. Spiegelman VS, Fuchs SY, Belitsky GA.1997. The expression of insecticide resistance-related cytochrome P450 forms is regulated by molting hormone in Drosophila melanogaster. Biochem. Biophys. Res. Commun.232:304-307
    48.Bogwitz MR, Chung H, Magoc L, Rigby S, Wong W, O'Keefe M, McKenzie JA, Batterham P, Daborn PJ.2005.Cyp12a4 confers lufenuron resistance in a natural population of Drosophila melanogaster. Proc. Natl. Acad. Sci. U. S.A.102:12807-12812
    49.Daborn PJ, Yen JL, Bogwitz MR, Le Goff G, Feil E, Jeffers S, Tijet N, Perry T, Heckel D, Batterham P, Feyereisen R, Wilson TG, ffrench-Constant RH.2002.A Single P450 Allele Associated with Insecticide Resistance in Drosophila. Science 297:2253-2256
    50. Schlenke TA, Begun DJ.2004. Strong selective sweep associated with a transposon insertion in Drosophila simulans. Proc. Natl. Acad. Sci. U. S. A.101:1626-1631
    51.Scott JG, Eric FJ, Michael RW.1996.Preparation of microsomes from insects and purification of CYP6D1 from house flies. In Methods in Enzymology:Academic Press, pp.287-292.
    52.Brattsten LB.1979. Biochemical defense mechanisms in herbivores against plant allelochemicals. In Herbivores, their Interaction with Secondary Plant Metabolites, ed. GA Rosenthal, DH Janzen, New York:Academic Press, pp.199-270.
    53.Agosin M, Dinamarca ML.1963.The effect of DDT on the level of Di-and triphosphopyridine nucleotides in Triatoma infestans.Exp. Parasitol.13:199-203
    54. Brattsten L, Wilkinson C.1977.Insecticide solvents:interference with insecticidal action. Science 196:1211-1213
    55.Terriere LC, Yu SJ.2002.Induction of detoxifying enzymes in insects. J. Agric. Food Chem.22: 366-373
    56. Hurban P, Thummel CS.1993.Isolation and characterization of fifteen ecdysone-inducible Drosophila genes reveal unexpected complexities in ecdysone regulation. Mol. Cell. Biol.13: 7101-7111
    57.Bassett MH, McCarthy JL, Waterman MR, Sliter TJ.1997. Sequence and developmental expression of Cyp18, a member of a new cytochrome P450 family from Drosophila. Mol. Cell. Endocrinol.131:39-49
    58. Bradfield JY, Lee YH, Keeley LL.1991.Cytochrome P450 family 4 in a cockroach:molecular cloning and regulation by regulation by hypertrehalosemic hormone. Proc. Natl. Acad. Sci. U. S.A.88:4558-4562
    59. Gielen JE, Goujon FM, Nebert DW.1972. Genetic regulation of aryl hydrocarbon hydroxylase induction. J. Biol. Chem.247:1125-1137
    60. Nebert DW, Gonzalez FJ.2003.P450 genes:structure, evolution, and regulation. Annu. Rev. Biochem.56:945-993
    61.Janosek J, Hilscherova K, Blaha L, Holoubek I.2006.Environmental xenobiotics and nuclear receptors--Interactions, effects and in vitro assessment. Toxicol. In Vitro 20:18-37
    62.Jennewein S, Wildung MR, Chau M, Walker K, Croteau R.2004. Random sequencing of an induced Taxus cell cDNA library for identification of clones involved in Taxol biosynthesis. Proc. Natl. Acad. Sci. U. S.A.101:9149-9154
    63.McDonnell CM, Brown RP, Berenbaum MR, Schuler MA.2004. Conserved regulatory elements in the promoters of two allelochemical-inducible cytochrome P450 genes differentially regulate transcription. Insect Biochem. Mol. Biol.34:1129-1139
    64. Poupardin R, Stephane R, Strode C, Ranson H, Vontas J, David J-P.2008.Cross-induction of detoxification genes by environmental xenobiotics and insecticides in the mosquito Aedes aegypti:Impact on larval tolerance to chemical insecticides. Insect Biochem. Mol. Biol.38: 540-551
    65.King-Jones K, Horner MA, Lam G, Thummel CS.2006. The DHR96 nuclear receptor regulates xenobiotic responses in Drosophila. Cell Metab.4:37-48
    66. Gilbert LI, Rybczynski R, Warren JT.2002.Control and biochemical nature of the ecdysteroidogenic pathway. Annu. Rev. Entomol.47:883-916
    67. Li X, Berenbaum MR, Schuler MA.2002.Plant allelochemicals differentially regulate Helicoverpa zea cytochrome P450 genes. Insect Mol. Biol.11:343-351
    68. 韦存虚,唐振华.1999.昆虫P450的诱导及其与抗药性的关系.农药译丛21:12,26-29
    69. Bautista MAM, Tanaka T, Miyata T.2007. Identification of permethrin-inducible cytochrome P450s from the diamondback moth, Plutella xylostella (L.) and the possibility of involvement in permethrin resistance. Pestic. Biochem.Physiol.87:85-93
    70.Bautista MA, Miyata T, Miura K, Tanaka T.2009.RNA interference-mediated knockdown of a cytochrome P450, CYP6BG1,from the diamondback moth, Plutella xylostella, reduces larval resistance to permethrin. Insect Biochem. Mol. Biol.39:38-46
    71.Bhaskara S, Dean ED, Lam V, Ganguly R.2006. Induction of two cytochrome P450 genes, Cyp6a2 and Cyp6a8, of Drosophila melanogaster by caffeine in adult flies and in cell culture. Gene 377:56-64
    72.Le Goff G, Hilliou F, Siegfried BD, Boundy S, Wajnberg E, Sofer L, Audant P, ffrench-Constant RH, Feyereisen R.2006. Xenobiotic response in Drosophila melanogaster: Sex dependence of P450 and GST gene induction. Insect Biochem. Mol. Biol.36:674-682
    73.Clegg RM.1995.Fluorescence resonance energy transfer. Curr. Opin. Biotechnol.6:103-110
    74.Kubista M, Andrade JM,Bengtsson M, Forootan A, Jonak J, Lind K, Sindelka R, Sjoback R, Sjogreen B, Strombom L, Stahlberg A, Zoric N.2006.The real-time polymerase chain reaction. Mol. Asp. Med.27:95-125
    75.Beillard E, Pallisgaard N, van der Velden VHJ, Bi W, Dee R, van der Schoot E, Delabesse E, Macintyre E, Gottardi E, Saglio G, Watzinger F, Lion T, van Dongen JJM,Hokland P, Gabert J. 2003.Evaluation of candidate control genes for diagnosis and residual disease detection in leukemic patients using 'real-time' quantitative reverse-transcriptase polymerase chain reaction (RQ-PCR)-a Europe against cancer program. Leukemia 17:2474-2486
    76. Wong ML, Medrano JF.2005.Real-time PCR for mRNA quantitation. BioTechniques 39: 75-85
    77. Giulietti A, Overbergh L, Valckx D, Decallonne B, Bouillon R, Mathieu C.2001.An overview of real-time quantitative PCR:Applications to quantify cytokine gene expression. Methods 25: 386-401
    78.Jones CD, Yeung C, Zehnder JL.2003.Comprehensive validation of a real-time quantitative bcr-abl assay for clinical laboratory use. Am. J. Clin. Pathol.120:42-48
    79. Ririe KM, Rasmussen RP, Wittwer CT.1997. Product Differentiation by Analysis of DNA Melting Curves during the Polymerase Chain Reaction. Anal. Biochem.245:154-160
    80. Kellogg DE, Rybalkin I, Chen S, Mukhamedova N, Vlasik T, Siebert PD, Chenchik A.1994. TaqStart Antibody:"hot start" PCR facilitated by a neutralizing monoclonal antibody directed against Taq DNA polymerase.BioTechniques 16:1134-1137
    81.Kutyavin IV, Afonina IA, Mills A, Gorn VV, Lukhtanov EA, Belousov ES, Singer MJ, Walburger DK, Lokhov SG, Gall AA, Dempcy R, Reed MW, Meyer RB,Hedgpeth J.2000. 3'-Minor groove binder-DNA probes increase sequence specificity at PCR extension temperatures. Nucleic Acids Res.28:655-661
    82.Tyagi S, Kramer FR.1996. Molecular beacons:probes that fluoresce upon hybridization. Nat. Biotechnol.14:303-308
    83.Tyagi S, Bratu DP, Kramer FR.1998.Multicolor molecular beacons for allele discrimination. Nat. Biotechnol.16:49-53
    84. Bonnet G, Tyagi S, Libchaber A, Kramer FR.1999. Thermodynamic basis of the enhanced specificity of structured DNA probes.Proc. Natl. Acad. Sci. U. S.tA.96:6171-6176
    85.Kaboev OK, Luchkina LA, Tret'iakov AN,Bahrmand AR.2000. PCR hot start using primers with the structure of molecular beacons (hairpin-like structure). Nucleic Acids Res.28:e94
    86.Nazarenko I, Bhatnagar S, Hohman R.1997. A closed tube format for amplification and detection of DNA based on energy transfer. Nucleic Acids Res.25:2516-2521
    87.Winn-Deen ES.1998.Direct fluorescence detection of allele-specific PCR products using novel energy-transfer labeled primers. Mol. Diagn.3:217-222
    88. Whitcombe D, Theaker J, Guy SP, Brown T, Little S.1999. Detection of PCR products using self-probing amplicons and fluorescence. Nat. Biotechnol.17:804-807
    89.Bustin SA.2000. Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J. Mol. Endocrinol.25:169-193
    90. Livak KJ, Schmittgen TD.2001.Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25:402-408
    91.Peirson SN, Butler JN, Foster RG.2003.Experimental validation of novel and conventional approaches to quantitative real-time PCR data analysis. Nucleic Acids Res.31:e73
    92. Goidin D, Mamessier A, Staquet MJ, Schmitt D, Berthier-Vergnes O.2001.Ribosomal 18S RNA prevails over glyceraldehyde-3-phosphate dehydrogenase and beta-Actin genes as internal standard for quantitative comparison of mRNA levels in invasive and noninvasive human melanoma cell subpopulations.Anal. Biochem.295:17-21
    93.Haque BU, Belecheanu RA, Barson RJ, Pawar KS, Revillion F, Pawlowski V, Hornez L, Peyrat JP.2000. Glyceraldehyde-3-phosphate dehydrogenase gene expression in human breast cancer. Eur. J. Cancer 36:1038-1042
    94. Kim S, Kim T.2003.Selection of optimal internal controls for gene expression profiling of liver disease. BioTechniques 35:456-458,460
    95.Lupberger J, Kreuzer KA,Baskaynak G, Peters UR, le Coutre P, Schmidt CA.2002. Quantitative analysis of beta-actin, beta-2-microglobulin and porphobilinogen deaminase mRNA and their comparison as control transcripts for RT-PCR. Mol. Cell. Probes 16:25-30
    96.Schmittgen TD, Zakrajsek BA.2000. Effect of experimental treatment on housekeeping gene expression:validation by real-time, quantitative RT-PCR. J. Biochem. Biophys. Methods 46: 69-81
    97. Thellin O, Zorzi W, Lakaye B, De Borman B, Coumans B, Hennen Q Grisar T, Igout A, Heinen E.1999.Housekeeping genes as internal standards:use and limits. J. Biotechnol.75:291-295
    98.Hunt I.2005.From gene to protein:a review of new and enabling technologies for multi-parallel protein expression. Protein Expr. Purif.40:1-22
    99.Nuc P, Nuc K.2006. Recombinant protein production in Escherichia coli. Postepy Biochem.52: 448-456
    100. Georgiou G, Segatori L.2005.Preparative expression of secreted proteins in bacteria:status report and future prospects.Curr. Opin. Biotechnol.16:538-545
    101.Baneyx F.1999.Recombinant protein expression in Escherichia coli. Curr. Opin. Biotechnol. 10:411-421
    102.Jonasson P, Liljeqvist S, Nygren P-A, Stahl S.2002. Genetic design for facilitated production and recovery of recombinant proteins in Escherichia coli. Biotechnol. Appl. Biochem.35: 91-105
    103.Chadd HE, Chamow SM.2001.Therapeutic antibody expression technology. Curr. Opin. Biotechnol.12:188-194
    104. Terpe K.2006. Overview of bacterial expression systems for heterologous protein production: from molecular and biochemical fundamentals to commercial systems Appl. Microbiol. Biotechnol.72:211-222
    105.Wilson CJ, Zhan H, Swint-Kruse L, Matthews KS.2007.The lactose repressor system: paradigms for regulation, allosteric behavior and protein folding. Cell. Mol. Life Sci.64:3-16
    106. Kobayashi F, Nakamura Y.2003.Recombinant protein production by Escherichia coli BL21 (DE3) [pET-12-STA1]using a bioreactor with cross-flow filtration. J. Chem. Eng. Jpn.36: 1480-1487
    107.Bowers LM, LaPoint K, Anthony L, Pluciennik A, Filutowicz M.2004. Bacterial expression system with tightly regulated gene expression and plasmid copy number. Gene 340:11-18
    108.Peti W, Page R.2007. Strategies to maximize heterologous protein expression in Escherichia coli with minimal cost. Protein Expr. Purif.51:1-10
    109.Gustafsson C, Govindarajan S, Minshull J.2004. Codon bias and heterologous protein expression. Trends Biotechnol.22:346-353
    110.Chen H, Xu Z, Cen P.2006.High-level expression of human beta-defensin-2 gene with rare codons in E. coli cell-free system. Protein Pept. Lett.13:155-162
    111.Chumpolkulwong N, Sakamoto K, Hayashi A, Iraha F, Shinya N, Matsuda N, Kiga D, Urushibata A, Shirouzu M, Oki K, Kigawa T, Yokoyama S.2006. Translation of'rare'codons in a cell-free protein synthesis system from Escherichia coli. J. Struct. Funct. Genom.7:31-36
    112.Yoon H, Hong J, Ryu S.2008. Effects of chaperones on mRNA stability and gene expression in Escherichia coli. J. Microbiol. Biotechnol.18:228-233
    113.Liang R, Liu X, Liu J, Ren Q, Liang P, Lin Z, Xie X.2007.A T7-expression system under temperature control could create temperature-sensitive phenotype of target gene in Escherichia coli. J. Microbiol. Methods 68:497-506
    114. 李志红,李法圣,曹阳.1995.中国虱啮属四新种.北京农业大学学报21:215-222
    115. 孙冠英,曹阳,姜永嘉.2000.储粮书虱综述.粮油仓储科技通讯4:28-35
    116. Nayak MK, Collins PJ, Kopittke RA.2003.Residual toxicities and persistence of organophosphorus insecticides mixed with carbaryl as structural treatments against three liposcelidid psocid species (Psocoptera:Liposcelididae) infesting stored grain. J. Stored Prod. Res.39:343-353
    117.Wang JJ, Zhao ZM.2003.Accumulation and utilization of triacylglycerol and polysaccharides in Liposcelis bostrychophila (Psocoptera, Liposcelididae) selected for resistance to carbon dioxide. J. Appl. Entomol.127:107-111
    118. 李春燕,蔡政俊,汪涛.1999.书虱综合防治技术研究.郑州粮食学院学报20:65-66
    119. 丁伟,王进军,赵志模.2001.书虱实验种群饲养技术研究.西南农业大学学报23:304-307
    120. 程伟霞.2006.嗜卷书虱和嗜虫书虱的比较毒理学研究.博士学位论文.西南大学,重庆
    121. 丁伟,赵志模,王进军,陶卉英,张永强.2004.嗜卷书虱气调抗性与熏蒸剂抗性的相互关系.中国农业科学37:1308-1315
    122.Ding W, Zhao ZM, Tao HY, Zhang YQ.2004.The relationship between resistance to controlled atmosphere and insecticides of Liposcelis bostrychophila Badonnel (Psocoptera: Liposcelididae). Agric. Sci. China 3:822-830
    123.Graver JV, Highly E, Johnson GP.2002.Maintaining the effectiveness of phosphine fumigation. ACIAR Post-harvest Newsletter 60:1-2
    124. Nayak MK, Collins PJ, Kopittke RA.2002.Comparative residual toxicities of carbaryl, deltamethrin and permethrin as structural treatments against three liposcelidid psocid species (Psocoptera:Liposcelididae) infesting stored commodities. J. Stored Prod. Res.38:247-258
    125.Wang JJ, Zhao ZM, Li LS.1999.Induced tolerance of the psocid, Liposcelis bostrychophila (Psocoptera:Liposcelididae) to controlled atmosphere. Int. J.Pest Manag.45:75-79
    126.Ding W, Wang JJ, Zhao ZM, Tsai JH.2002.Effects of controlled atmosphere and DDVP on population growth and resistance development by the psocid, Liposcelis bostrychophila Badonnel (Psocoptera:Liposcelididae). J. Stored Prod. Res.38:229-237
    127. Chai YX, Liu GY, Wang JJ.2007. Toxicological and biochemical characterizations of AChE in Liposcelis bostrychophila Badonnel (Psocoptera:Liposcelididae). Pestic. Biochem. Physiol.88: 197-202
    128.Ren Y, Wei XQ, Wu S, Dou W, Wang JJ.2008.Comparison of acetylcholinesterase from three field populations of Liposcelis paeta Pearman (Psocoptera:Liposcelididae):Implications of insecticide resistance. Pestic. Biochem. Physiol.90:196-202
    129. Dou W, Wang JJ, Zhao ZM.2006. Toxicological and biochemical characterizations of GSTs in Liposcelis bostrychophila Badonnel (Psocop., Liposcelididae). J. Appl. Entomol.130:251-256
    130. Wu S, Dou W, Wu JJ, Wang JJ.2009. Purification and patial characterization of glutathione S-transferase from insecticide-resistant field populations of Liposcelis paeta Pearman (Psocoptera:Lipscelididae). Arch. Insect Biochem.Physiol.70:136-150
    131. 唐培安.2009.3种书虱酯酶基因的克隆及其mRNA表达水平研究.博士学位论文.西南大学,重庆
    132. 柴玉鑫.2007.嗜卷书虱乙酰胆碱酯酶生化毒理学及其基因克隆与序列分析.硕士学位论文.西南大学,重庆
    133.Chen H, Morgan JA.2006. High throughput screening of heterologous P450 whole cell activity. Enzyme. Microb. Tech.38:760-764
    134. Luo G, Guenthner T, Gan LS, Humphreys WG.2004. CYP3A4 induction by xenobiotics: biochemistry, experimental methods and impact on drug discovery and development. Curr. Drug Metab.5:483-505
    135.Waxman DJ.1999. P450 gene induction by structurally diverse xenochemicals:central role of nuclear receptors CAR, PXR, and PPAR. Arch. Biochem. Biophys.369:11-23
    136.Eisenberg E, Levanon EY.2003.Human housekeeping genes are compact. Trends Genet.19: 362-365
    137.Kabsch W, Vandekerckhove J.1992.Structure and function of actin. Annu. Rev. Biophys. Biomol. Struct.21:49-76
    138. Amos L.2004. Bending at Microtubule interfaces. Chem. Biol.11:745-747
    139. 李洁,谢文光,沈倍奋,邵宁生.2006. GAPDH功能多样性研究进展.军事医学科学院院刊30:483-486
    140. Strube C, Buschbaum S, Wolken S, Schnieder T.2008.Evaluation of reference genes for quantitative real-time PCR to investigate protein disulfide isomerase transcription pattern in the bovine lungworm Dictyocaulus viviparus. Gene 425:36-43
    141.Scharlaken B, Graaf DCd, Goossens K, Brunain M, Peelman LJ, Jacobs FJ.2008.Reference gene selection for insect expression studies using quantitative real-time PCR:The head of the honeybee, Apis mellifera, after a bacterial challenge. J. Insect Sci.8:33
    142. Nolan T, Hands RE, Bustin SA.2006. Quantification of mRNA using real-time RT-PCR. Nat. Protoc.1:1559-1582
    143.Stiirzenbaum SR, Kille P.2001.Control genes in quantitative molecular biological techniques: the variability of invariance. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol.130: 281-289
    144.Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F.2002. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes.Genome Biol.3:research0034.1-research0034.11
    145.Cheng WX, Dou W, Chai YX, Wang JJ.2007.Comparison of biochemical and toxicological characterizations of glutathione S-transferases and superoxide dismutase between Liposcelis bostrychophila Badonnel and L. entomophila (Enderlein) (Psocoptera:Liposcelididae). Pestic. Biochem. Physiol.89:151-157
    146.Wang JJ, Tsai JH, Zhao ZM, Li LS.2000. Development and reproduction of the psocid Liposcelis bostrychophila (Psocoptera:Liposcelididae) as a function of temperature. Ann. Entomol. Soc. Am.93:261-270
    147.Cheng WX, Wang JJ, Ding W, Zhao ZM.2004. Inhibition kinetics on carboxylesterase and acetylcholinesterase of Liposcelis bostrychophila and Liposcelis entomophila (Psocop., Liposcelididae) of two insecticides. J. Appl. Entomol.128:292-297
    148.Abbott WS.1925.A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 18:265-267
    149. Andersen CL, Jensen JL,(?)rntoft TF.2004. Normalization of real-time quantitative reverse transcription-PCR data:A model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res.64:5245-5250
    150. Santos CRA, Power DM, Kille P, Llewellyn L, Ramsurn V, Wigham T, Sweeney GE.1997. Cloning and Sequencing of a Full-Length Sea Bream (Sparus aurata) P-Actin cDNA. Comp. Biochem.Physiol. Part B Biochem.Mol. Biol.117:185-189
    151.da Silva Vaz JI, Imamura S, Nakajima C, Cardoso FCd, Ferreira CAS, Renard G, Masuda A, Ohashi K, Onuma M.2005.Molecular cloning and sequence analysis of cDNAs encoding for Boophilus microplus, Haemaphysalis longicornis and Rhipicephalus appendiculatus actins. Vet. Parasitol.127:147-155
    152.Tobin SL, Zulauf E, Sanchez F, Craig EA, McCarthy BJ.1980.Multiple actin-related sequences in the Drosophila melanogaster genome. Cell 19:121-131
    153.Fyrberg EA, Mahaffey JW, Bond BJ, Davidson N.1983.Transcripts of the six Drosophila actin genes accumulate in a stage-and tissue-specific manner. Cell 33:115-123
    154. 安峰明,蒋红波,唐培安,徐永强,王进军.2008.赤拟谷盗β1-微管蛋白cDNA基因的克隆及序列分析.环境昆虫学报30:207-213
    155. 樊东,秦松柏,朴冬花,许艳丽.2008.二化螟β1微管蛋白基因cDNA序列的克隆与序列分析.生物技术通报4:130-135
    156. 李建农,蒋建东.2003.微管的生物学特性与药物研究.药学学报38:311-315
    157.Song L, Liu XX, Zhang YA, Zhang QW, Zhao ZW.2008.The cloning and expression of a-tubulin in Monochamus alternatus. Insect Mol. Biol.17:495-504
    158.Kirschner M, Mitchison T.1986. Beyond self-assembly:from microtubules to morphogenesis. Cell 45:329-342
    159. Libusova L, Draber P.2006.Multiple tubulin forms in ciliated protozoan Tetrahymena and Paramecium species. Protoplasma 227:65-76
    160. 吴德,吴忠道,胡旭初,何东苟,黄艳,余新炳.2005.华支睾吸虫3-磷酸甘油醛脱氢酶基因的克隆、表达和序列分析.中国寄生虫病防治杂志18:28-32
    161.Mazzola JL,Sirover MA.2003.Subcellular localization of human glyceraldehyde-3-phosphate dehydrogenase is independent of its glycolytic function. Biochim. Biophys. Acta 1622:50-56
    162.Waterham HR, Digan ME, Koutz PJ, Lair SV, Cregg JM.1997. Isolation of the Pichia pastoris glyceraldehyde-3-phosphate dehydrogenase gene and regulation and use of its promoter. Gene 186:37-44
    163. 刘秀霞,梁旭方,王琳,端金霞,李光照,廖婉琴.2009.鳜鱼(Siniperca chuatsi) β-肌动蛋白基因cDNA全序列与5’侧翼区的克隆与分析.海洋与湖沼40:102-108
    164. Olsvik PA, Lie KK, Jordal A-EO, Nilsen TO, Hordvik I.2005.Evaluation of potential reference genes in real-time RT-PCR studies of Atlantic salmon. BMC Mol. Biol.6:1-9
    165.Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP.2004. Determination of stable housekeeping genes, differently regulated target genes and sample integrity:BestKeeper-Excel-based tool using pair-wise correlations. Biotechnol.Lett.26:509-515
    166. Radonic A, Thulke S, Mackay IM, Landt O, Siegert W, Nitsche A.2004. Guideline to reference gene selection for quantitative real-time PCR. Biochem. Biophys. Res. Commun.313:856-862
    167.Piana C, Wirth M, Gerbes S, Viernstein H, Gabor F, Toegel S.2008.Validation of reference genes for qPCR studies on Caco-2 cell differentiation. Eur. J. Pharm. Biopharm.69:1187-1192
    168.Taylor DL, Thomson PC, de Silva K, Whittington RJ.2007. Validation of endogenous reference genes for expression profiling of RAW264.7 cells infected with Mycobacterium avium subsp. paratuberculosis by quantitative PCR. Vet. Immunol. Immunopathol.115:43-55
    169.Tang T, Liu FS, Ren GD.2008.Cloning, characterization and expression detection of the P-actin cDNA from Mantichorula semenowi (Coleoptera:Tenebrionidae). Acta Entomol. Sin. 51:1210-1215
    170.Horigane M, Ogihara K, Nakajima Y, Honda H, Taylor D.2007.Identification and expression analysis of an actin gene from the soft tick, Ornithodoros moubata (Acari:Argasidae). Arch. Insect Biochem. Physiol.64:186-199
    171.Afonina I, Zivarts M, Kutyavin I, Lukhtanov E, Gamper H, Meyer R.1997.Efficient priming of PCR with short oligonucleotides conjugated to a minor groove binder. Nucleic Acids Res.25: 2657-2660
    172.Li XC, Schuler MA, Berenbaum MR.2002.Jasmonate and salicylate induce expression of herbivore cytochrome P450 genes. Nature 419:712-715
    173. 邱星辉李冷.2001.棉铃虫不同发育阶段微粒体p450酶系组成和活性的比较.昆虫学报2:142-147
    174.Li W, Berenbaum MR, Schuler MA.2001.Molecular analysis of multiple CYP6B genes from polyphagous Papilio species. Insect Biochem. Mol. Biol.31:999-1011
    175.Mittapalli O, Neal JJ, Shukle RH.2005.Differential expression of two cytochrome P450 genes in compatible and incompatible Hessian fly/wheat interactions. Insect Biochem. Mol. Biol.35: 981-989
    176.Yang P, Tanaka H, Kuwano E, Suzuki K.2008.A novel cytochrome P450 gene (CYP4G25) of the silkmoth Antheraea yamamai:Cloning and expression pattern in pharate first instar larvae in relation to diapause. J. Insect Physiol.54:636-643
    177. Chung H, Sztal T, Pasricha S, Sridhar M, Batterham P, Daborn PJ.2009. Characterization of Drosophila melanogaster cytochrome P450 genes. Proc. Natl. Acad. Sci. U.S. A.106: 5731-5736
    178.Ding W, Wang JJ, Zhao ZM, Tsai JH.2002. Effects of controlled atmosphere and DDVP on population growth and resistance development by the psocid, Liposcelis bostrychophila Badonnel (Psocoptera:Liposcelididae). J. Stored Prod. Res.38:229-237
    179.Huang S, Sun D, Brattsten LB.2008.Novel cytochrome P450s, CYP6BB1 and CYP6P10, from the salt marsh mosquito Aedes sollicitans (Walker) (Diptera:Culicidae). Arch. Insect Biochem. Physiol.67:139-154
    180. Adams MD, Celniker SE, Holt RA, Evans CA, Gocayne JD, Amanatides PG, Scherer SE, Li PW, Hoskins RA, Galle RF, George RA,Lewis SE, Richards S, Ashburner M, Henderson SN, Sutton GG, Wortman JR, Yandell MD, Zhang Q, Chen LX, Brandon RC, Rogers Y-HC, Blazej RG, Champe M, Pfeiffer BD, Wan KH,Doyle C, Baxter EG, Helt G, Nelson CR, Gabor Miklos GL, Abril JF, Agbayani A, An HJ, Andrews-Pfannkoch C, Baldwin D, Ballew RM,Basu A, Baxendale J, Bayraktaroglu L, Beasley EM, Beeson KY, Benos PV,Berman BP, Bhandari D, Bolshakov S, Borkova D, Botchan MR, Bouck J, Brokstein P, Brottier P, Burtis KC, Busam DA, Butler H, Cadieu E, Center A, Chandra I, Cherry JM, Cawley S, Dahlke C, Davenport LB, Davies P, Pablos Bd, Delcher A, Deng Z, Mays AD, Dew I, Dietz SM, Dodson K, Doup LE, Downes M, Dugan-Rocha S, Dunkov BC, Dunn P, Durbin KJ, Evangelista CC, Ferraz C, Ferriera S, Fleischmann W, Fosler C, Gabrielian AE, Garg NS, Gelbart WM,Glasser K, Glodek A, Gong F, Gorrell JH, Gu Z, Guan P, Harris M, Harris NL, Harvey D, Heiman TJ, Hernandez JR, Houck J, Hostin D, Houston KA, Howland TJ, Wei MH,Ibegwam C, Jalali M, Kalush F, Karpen GH, Ke Z, Kennison JA, Ketchum KA, Kimmel BE, Kodira CD, Kraft C, Kravitz S, Kulp D, Lai Z, Lasko P, Lei Y, Levitsky AA, Li J, Li Z, Liang Y, Lin X, Liu X, Mattei B, McIntosh TC, McLeod MP, McPherson D, Merkulov G, Milshina NV, Mobarry C, Morris J, Moshrefi A, Mount SM, Moy M, Murphy B, Murphy L, Muzny DM, Nelson DL, Nelson DR, Nelson KA, Nixon K, Nusskern DR, Pacleb JM, Palazzolo M, Pittman GS, Pan S, Pollard J, Puri V, Reese MG, Reinert K, Remington K, Saunders RDC, Scheeler F, Shen H, Shue BC, Inga S-K, Simpson M, Skupski MP, Smith T, Spier E, Spradling AC, Stapleton M, Strong R, Sun E, Svirskas R, Tector C, Turner R, Venter E, Wang AH, Wang X, Wang ZY, Wassarman DA, Weinstock GM, Weissenbach J, Williams SM, Woodage T, Worley KC, Wu D, Yang S, Yao QA, Ye J, Yeh R-F, Zaveri JS, Zhan M, Zhang G, Zhao Q, Zheng L, Zheng XH,Zhong FN, Zhong W, Zhou X, Zhu S, Zhu X, Smith HO, Gibbs RA, Myers EW, Rubin GM, Venter JC.2000.The genome sequence of Drosophila melanogaster. Science 287:2185-2195
    181.Holt RA, Subramanian GM, Halpern A, Sutton GG, Charlab R, Nusskern DR, Wincker P, Clark AG, Ribeiro JMC, Wides R, Salzberg SL, Loftus B, Yandell M, Majoros WH,Rusch DB, Lai Z, Kraft CL, Abril JF, Anthouard V, Arensburger P, Atkinson PW, Baden H, de Berardinis V, Baldwin D, Benes V, Biedler J, Blass C, Bolanos R, Boscus D, Barnstead M, Cai S, Center A, Chatuverdi K, Christophides GK, Chrystal MA, Clamp M, Cravchik A, Curwen V, Dana A, Delcher A, Dew I, Evans CA, Flanigan M, Grundschober-Freimoser A, Friedli L, Gu Z, Guan P, Guigo R, Hillenmeyer ME, Hladun SL, Hogan JR, Hong YS, Hoover J, Jaillon O, Ke Z, Kodira C, Kokoza E, Koutsos A, Letunic I, Levitsky A, Liang Y, Lin J-J, Lobo NF, Lopez JR, Malek JA, McIntosh TC, Meister S, Miller J, Mobarry C, Mongin E, Murphy SD, O'Brochta DA, Pfannkoch C, Qi R, Regier MA, Remington K, Shao H, Sharakhova MV, Sitter CD, Shetty J, Smith TJ, Strong R, Sun J, Thomasova D, Ton LQ, Topalis P, Tu Z, Unger MF, Walenz B, Wang A, Wang J, Wang M, Wang X, Woodford KJ, Wortman JR, Wu M, Yao A, Zdobnov EM, Zhang H, Zhao Q, Zhao S, Zhu SC, Zhimulev I,Coluzzi M, della Torre A, Roth CW, Louis C, Kalush F, Mural RJ, Myers EW, Adams MD, Smith HO, Broder S, Gardner MJ, Fraser CM, Birney E, Bork P, Brey PT, Venter JC, Weissenbach J, Kafatos FC, Collins FH, Hoffinan SL. 2002.The genome sequence of the malaria mosquito Anopheles gambiae. Science 298: 129-149
    182. Tribolium Genome Sequencing Consortium.2008.The genome of the model beetle and pest Tribolium castaneum. Nature 452:949-955
    183.Strode C, Steen K, Ortelli F, Ranson H.2006. Differential expression of the detoxification genes in the different life stages of the malaria vector Anopheles gambiae. Insect Mol. Biol.15: 523-530
    184.Wang XP, Hobbs AA.1995.Isolation and sequence analysis of a cDNA clone for a pyrethroid resistance in the housefly, Musca domestica. Insect Mol. Biol.4:135-140
    185. He H, Chen AC, Davey RB, Ivie GW.2002.Molecular cloning and nucleotide sequence of a new P450 gene, CYP319A1, from the cattle tick, Boophilus microplus. Insect Biochem. Mol. Biol.32:303-309
    186. 徐生才,赵华强,李兵,沈卫德.2009.野桑蚕细胞色素P450基因CYP9A20V1的克隆与序列分析.蚕业科学35:295-301
    187. 季海涛,张万年,周有骏.1999.细胞色素P450超家族蛋白质基于结构知识的序列联配.生物物理学报15:360-368
    188.Graham-Lorence SE, Peterson JA.1996.Structural alignments of P450s and extrapolations to the unknown. Methods Enzymol.272:315-325
    189. Jiang HB,Wang JJ, Liu GY, Dou W.2008.Molecular Cloning and Sequence analysis of a novel P450 gene encoding CYP345D3 from the red flour beetle, Tribolium castaneum (Herbst) (Coleoptera:Tenebrionidae). J. Insect Sci.8:55
    190. Feyereisen R, Andersen JF, Carino FA, Cohen MB,Koener JF.1995.Cytochrome P450 in the house fly:Structure, catalytic activity and regulation of expression of CYP6 A1 in an insecticide-resistant strain. Pestic.Sci.43:233-239
    191.Ranasinghe C, Headlam M, Hobbs AA.1997. Induction of the mRNA for CYP6B2, a pyrethroid inducible cytochrome p450, in Helicoverpa armigera (Hubner) by dietary monoterpenes. Arch. Insect Biochem. Physiol.34:99-109
    192. Markussen MDK, Heiberg A-C, Fredholm M, Kristensen M.2008.Identification of cytochrome P450 differentiated expression related to developmental stages in bromadiolone resistance in rats (Rattus norvegicus). Pestic. Biochem. Physiol.91:147-152
    193.Lu KH,Bradfield JY, Keeley LL.1999.Juvenile hormone inhibition of gene expression for cytochrome P4504C1 in adult females of the cockroach, Blaberus discoidalis. Insect Biochem. Mol. Biol.29:667-673
    194. Davies L, Williams DR, Aguiar-Santana IA, Pedersen J, Turner PC, Rees HH.2006.Expression and down-regulation of cytochrome P450 genes of the CYP4 family by ecdysteroid agonists in Spodoptera littoralis and Drosophila melanogaster. Insect Biochem. Mol. Biol.36:801-807
    195.Helvig C, Koener JF, Unnithan GC, Feyereisen R.2004. CYP15A1,the cytochrome P450 that catalyzes epoxidation of methyl farnesoate to juvenile hormone III in cockroach corpora allata. Proc. Natl. Acad. Sci. U. S. A.101:4024-4029
    196. Maibeche-Coisne M, Jacquin-Joly E, Fran(?)ois MC, Meillour PN-L.2002. cDNA cloning of biotransformation enzymes belonging to the cytochrome P450 family in the antennae of the noctuid moth Mamestra brassicae. Insect Mol. Biol.11:273-281
    197. Pridgeon JW, Zhang L, Liu N.2003.Overexpression of CYP4G19 associated with a pyrethroid-resistant strain of the German cockroach, Blattella germanica (L.). Gene 314: 157-163
    198.Zhou H, Chen K, Yao Q, Gao L, Wang Y.2008.Molecular cloning of Bombyx mori cytochrome P450 gene and its involvement in fluoride resistance. J. Hazard. Mater.160:330-336
    199.Zhou X, Song C, Grzymala TL, Oi FM, Scharf ME.2006.Juvenile hormone and colony conditions differentially influence cytochrome P450 gene expression in the termite Reticulitermes flavipes. Insect Mol. Biol.15:749-761
    200. Sun W, Margam VM, Sun L, Buczkowski G, Bennett GW, Schemerhorn B, Muir WM, Pittendrigh BR.2006. Genome-wide analysis of phenobarbital-inducible genes in Drosophila melanogaster. Insect Mol. Biol.15:455-464
    201.Li X, Berenbaum MR, Schuler MA.2002.Cytochrome P450 and actin genes expressed in Helicoverpa zea and Helicoverpa armigera:paralogy/orthology identification, gene conversion and evolution. Insect Biochem. Mol. Biol.32:311-320
    202.Brown D, Zhang L, Wen Z, Scott JG.2003.Induction of P450 monooxygenases in the German cockroach, Blattella germanica L. Arch. Insect Biochem. Physiol.53:119-124
    203.Sousa-Polezzi RdC, Bicudo HEMdC.2004. Effect of phenobarbital on inducing insecticide tolerance and esterase changes in Aedes aegypti (Diptera:Culicidae). Genet. Mol. Biol.27: 275-283
    204. Willoughby L, Chung H, Lumb C, Robin C, Batterham P, Daborn PJ.2006. A comparison of Drosophila melanogaster detoxification gene induction responses for six insecticides, caffeine and phenobarbital. Insect Biochem. Mol. Biol.36:934-942
    205.Li X, Berenbaum MR, Schuler MA.2000. Molecular cloning and expression of CYP6B8:a xanthotoxin-inducible cytochrome P450 cDNA from Helicoverpa zea. Insect Biochem. Mol. Biol.30:75-84
    206. Vontas J, Blass C, Koutsos AC, David JP, Kafatos FC, Louis C, Hemingway J, Christophides GK, Ranson H.2005.Gene expression in insecticide resistant and susceptible Anopheles gambiae strains constitutively or after insecticide exposure. Insect Mol. Biol.14:509-521
    207.Zhu F, Li T, Zhang L, Liu N.2008.Co-up-regulation of three P450 genes in response to permethrin exposure in permethrin resistant house flies, Musca domestica. BMC Physiol.8:18
    208.Londono DK, Siegfried BD, Lydy MJ.2004. Atrazine induction of a family 4 cytochrome P450 gene in Chironomus tentans (Diptera:Chironomidae). Chemosphere 56:701-706
    209. Chen J, Raymond K.2006. Roles of rifampicin in drug-drug interactions:underlying molecular mechanisms involving the nuclear pregnane X receptor. Ann. Clin. Microbiol. Antimicrob.5:3
    210. Petersen RA, Zangerl AR, Berenbaum MR, Schuler MA.2001.Expression of CYP6B1 and CYP6B3 cytochrome P450 monooxygenases and furanocoumarin metabolism in different tissues of Papilio polyxenes (Lepidoptera:Papilionidae). Insect Biochem.Mol. Biol.31: 679-690
    211.Sasabe M, Wen Z, Berenbaum MR, Schuler MA.2004.Molecular analysis of CYP321A1,a novel cytochrome P450 involved in metabolism of plant allelochemicals (furanocoumarins) and insecticides (cypermethrin) in Helicoverpa zea. Gene 338:163-175
    212.Korashy HM, El-Kadi AOS.2005.Regulatory mechanisms modulating the expression of cytochrome P450 1A1 gene by heavy metals. Toxicol. Sci.88:39-51
    213.Whitlock JP.1986. The regulation of cytochrome P-450 gene expression. Annu. Rev. Pharmacol. Toxicol.26:333-369
    214. Terriere LC.1984. Induction of detoxication enzymes in insects. Annu. Rev. Entomol.29: 71-88
    215.Baek JH, Clark JM, Lee SH.2010.Cross-strain comparison of cypermethrin-induced cytochrome P450 transcription under different induction conditions in diamondback moth. Pestic. Biochem. Physiol.96:43-50
    216. 邱星辉,冷欣夫.1999.昆虫细胞色素P450研究:P450酶系的可诱导性.昆虫知识36:48-53
    217.Kasai S, Scott JG.2000. Overexpression of Cytochrome P450 CYP6D1 is associated with monooxygenase-mediated pyrethroid resistance in house flies from Georgia. Pestic. Biochem. Physiol.68:34-41
    218. Amichot M, Brun A, Cuany A, Helvig C, Salaun JP.1994.Expression study of CYP genes in Drosophila strains resistant or sensitive to insecticides. In Cytochrome P450, ed. MC Lechner, Paris:John Libbey Eurotext, pp.689-692.
    219. Brandt A, Scharf M, Pedra JH, Holmes G, Dean A.2002. Differential expression and induction of two Drosophila cytochrome P450 genes near the Rst(2)DDT locus. Insect Mol. Biol.11: 337-341
    220. Kasai S, Weerashinghe IS, Shono T, Yamakawa M.2000. Molecular cloning, nucleotide sequence and gene expression of a cytochrome P450 (CYP6F1)from the pyrethroid-resistant mosquito, Culex quinquefasciatus Say. Insect Biochem. Mol. Biol.30:163-171
    221.Shen B, Dong HQ, Tian HS, Ma L, Li XL, Wu GL, Zhu CL.2003.Cytochrome P450 genes expressed in the deltamethrin-susceptible and-resistant strains of Culex pipiens pallens. Pestic. Biochem. Physiol.75:19-26
    222. Landy A.1989. Dynamic, structural, and regulatory aspects of lambda site-specific recombination. Annu. Rev. Biochem.58:913-941
    223. 陈其军,安瑞,周海梦,陈珈,王学臣.2004.使用与Gateway技术兼容的T载体获得入门克隆.生物化学与生物物理进展31:951-954
    224. Barnes HJ, Arlotto MP, Waterman MR.1991.Expression and enzymatic activity of recombinant cytochrome P450 17 alpha-hydroxylase in Escherichia coli. Proc. Natl. Acad. Sci. U.S.A.88:5597-5601
    225.Andersen JF, Utermohlen JG, Feyereisen R.1994. Expression of house fly CYP6A1 and NADPH-cytochrome P450 reductase in Escherichia coli and reconstitution of an insecticide-metabolizing P450 system. Biochemistry 33:2171-2177
    226. Guengerich FP, Martin MV, Guo Z, Chun Y-J, Eric FJ, Michael RW.1996.Purification of functional recombinant P450s from bacteria. In Methods in Enzymology:Academic Press, pp. 35-44.
    227. Sutherland TD, Unnithan GC, Andersen JF, Evans PH, Murataliev MB,Szabo LZ, Mash EA, Bowers WS, Feyereisen R.1998.A cytochrome P450 terpenoid hydroxylase linked to the suppression of insect juvenile hormone synthesis. Proc.Natl. Acad. Sci. U. S.A.95: 12884-12889
    228.Helvig C, Tijet N, Feyereisen R, Walker FA, Restifo LL.2004.Drosophila melanogaster CYP6A8, an insect P450 that catalyzes lauric acid (omega-1)-hydroxylation. Biochem. Biophys. Res. Commun.325:1495-1502
    229. Guengerich FP, Hosea NA, Martin MV.1998.Purification of cytochromes P450:Products of bacterial recombinant expression systems. In Cytochrome P450 Protocols 77-84.
    230. 郝大程,肖培根.2009.人细胞色素P450在大肠杆菌中的功能表达.中国生物工程杂志29:94-101
    231.Ahn T, Yun CH.2004. High-level expression of human cytochrome P450 3A4 by co-expression with human molecular chaperone HDJ-1 (Hsp40). Arch. Pharm. Res. (Seoul) 27:319-323
    232.Yim SK, Ahn T, Jung HC, Pan JG, Yun CH.2005.Temperature effect on the functional expression of human cytochromes P450 2A6 and 2E1 in Escherichia coli. Arch. Pharm. Res. (Seoul) 28:433-437
    233.Yamazaki H, Shimada T.2006. Cytochrome P450 reconstitution systems. In Cytochrome P450 Protocols 61-71.
    234. Mast N, Andersson U, Nakayama K, Bjorkhem I, Pikuleva IA.2004. Expression of human cytochrome P450 46A1 in Escherichia coli:effects of N-and C-terminal modifications. Arch. Biochem. Biophys.428:99-108
    235.Kim DH, Kim KH, Isin EM, Guengerich FP, Chae HZ, Ahn T, Yun CH.2008.Heterologous expression and characterization of wild-type human cytochrome P450 1A2 without conventional N-terminal modification in Escherichia coli. Protein Expr. Purif.57:188-200
    236. 华梓婷,郭养浩,孟春,刘晓楠.2007.细胞色素P450的基因多态性与药物代谢.中国新药杂志16:510-515
    237. 徐田雪,杨信怡,赵昆,张喜川,游雪甫.2009.药物代谢酶细胞色素P450 2D6的遗传多态性研究进展.中国抗生素杂志34:385-391
    238.Gotoh O.1992.Substrate recognition sites in cytochrome P450 family 2 (CYP2) proteins inferred from comparative analyses of amino acid and coding nucleotide sequences. J. Biol. Chem.267:83-90
    239.Domanski TL, Halpert JR.2001.Analysis of mammalian cytochrome P450 structure and function by sitedirected mutagenesis. Curr. Drug Metab.2:117-137
    240.Berenbaum MR, Favret C, Schuler MA.1996.On defining key innovations in an adaptive radiation-cytochrome P450s and Papilionidae. Am. Nat.148:S139-S155
    241.Li X, Baudry J, Berenbaum MR, Schuler MA.2004. Structural and functional evolution of insect CYP6B proteins:from specialist to generalist P450. Proc. Natl. Acad. Sci. U. S.A.101: 2939-2944
    242.Chen JS, Berenbaum MR, Schuler MA.2002.Amino acids in SRS1 and SRS6 are critical for furanocoumarin metabolism by CYP6B1v1,a cytochrome P450 monooxygenase. Insect Mol. Biol.11:175-186
    243.Pan L, Wen Z, Baudry J, Berenbaum MR, Schuler MA.2004. Identification of variable amino acids in the SRS1 region of CYP6B1 modulating furanocoumarin metabolism. Arch.Biochem. Biophys.422:31-41
    244. Li W, Schuler MA, Berenbaum MR.2003.Diversification of furanocoumarin-metabolizing cytochrome P450 monooxygenases in two papilionids:specificity and substrate encounter rate. Proc. Natl. Acad. Sci.U. S.A.100:14593-14598
    245.Berge JB, Feyereisen R, Amichot M.1998.Cytochrome P450 monooxygenases and insecticide resistance in insects. Philos. Trans. R. Soc. Lond. B Biol. Sci.353:1701-1705

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700