用户名: 密码: 验证码:
玉米C_4光合酶基因转化超级杂交稻亲本及转基因水稻生物学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光合作用是作物产量形成的生理基础,光合作用的强弱一定程度上决定了作物产量的高低。当前,我国超级稻育种正面临着产量“爬坡”的窘境,为进一步挖掘水稻产量潜力,通过转移和表达C4型光合酶基因来提高光合生产能力的高光效基因工程育种已成为水稻超高产育种研究的重要策略和主要内容。
     为探讨以不同形式引入C4光合途径来改良主导恢复系光合特性的效果,本研究设置了3种不同光合酶基因互作表达形式,通过农杆菌介导法分别将C4型光合酶基因PEPC/PPDK和NADP-MDH/NADP-ME的双价cDNA转入超级杂交稻亲本湘恢299中,和通过转PEPC/PPDK和NADP-MDH/NADP-ME双价cDNA植株的杂交聚合形成四价转基因水稻为材料,较系统地研究了外源光合酶基因在湘恢299中的整合、转录与表达情况,分析了不同目的基因的表达对水稻光合生理、抗逆、品质和产量等基本生物学特性的影响,得出主要结论如下:
     (1) PEPC、PPDK、NADP-MDH和NADP-ME基因能在水稻叶片中转录与表达,转基因植株PEPC的表达量为对照的1.3-5.9倍,NADP-ME的表达量为对照的1.4-6.8倍。且外源光合酶基因在转基因植株后代中可稳定遗传和高效表达。
     (2)剔除选择标记的转目的基因植株平均分离频率为8.2%;PEPC、NADP-MDH酶活性与光合速率的相关系数为0.817和0.610,呈显著正相关。
     (3)在水稻孕穗期、始穗期、齐穗期,转PEPC/PPDK基因恢复系平均光合速率比对照分别提高12.05%、8.14%、13.83;转基因杂交稻平均光合速率比对照组合分别提高3.59%、7.17%、9.51%。
     (4)自始穗至成熟期,伴随着生育进程转基因株系叶绿素SPAD值呈下降趋势,对应于转基因水稻光合优势由强转弱的齐穗至乳熟期区段。
     (5)转基因水稻CO2补偿点和光补偿点降低,平均光饱和点提高167μmol photos.m2.m-1,平均光饱和光合速率提高10.97%。在正常生长状态下,转光合酶基因水稻一定程度上表现为蒸腾速率、气孔导度和胞间CO2浓度的提高;气孔导度与光合速率呈显著正相关,与蒸腾速率和胞间CO2浓度呈一定的正相关;推测转基因水稻光合速率得以提高的可能机理在于增强了气孔导度。
     (6)在干旱胁迫下,抽穗期转CO2光合酶基因水稻比对照具有较高的蒸腾速率、胞间CO2浓度和气孔导度,光合速率比对照提高75%-85%,水分利用效率比对照提高15%-85%。在高温胁迫下,苗期转C4光合酶基因水稻比对照具有较高的1级叶片比率。在干旱和高温胁迫下,转C4光合酶基因水稻均具有较高的PSⅡ最大光化学效率(Fv/Fm)和PSⅡ潜在活性(Fv/F0)。表明C4光合酶基因的表达对提高水稻的耐旱和耐高温能力有一定作用。
     (7)转基因植株稻米垩白粒率、垩白面积和垩白度等都有不同程度地减少,部分株系达到显著差异水平。
     (8)转基因恢复系和杂交稻普遍表现为株高增加,穗粒数和千粒重增多,但结实率降低;恢复系和杂交稻的理论单株产量增幅范围分别为-8.32%~19.10%和-19.34%~20.52%;转基因杂交稻测产结果显示,有3个组合产量增产幅度为7.45%、2.54%和1.13%。
     综合看来,转PEPC/PPDK基因水稻在酶表达量、光合速率、气孔导度、耐热性、穗粒数和单株产量较有优势,转NADP-MDH/NADP-ME基因在抗旱能力方面略有优势,而四价转基因水稻多数性状上介于转PEPC/PPDK基因和转NADP-MDH/NADP-ME基因水稻之间。至于导致这种结果的可能机理以及生育后期叶绿素降解和光合能力衰退加快、结实率下降和整体产量不高等问题还有待深入研究。
It has been proved that photosynthesis is the physiological basis in crop yield formation, and to some extent, the intensity of photosynthesis determines the level of crop production. At present, China is facing the dilemma to further increase yield in super hybrid rice breeding. In order to promote rice yield potentiality, the genetic engineering by which C4 photosynthetic enzyme genes are introduced and expressed to increase the photosynthetic efficiency has become an important strategy and the main content in super high-yield rice breeding.
     To explore the effects on improving photosynthetic characteristics by introducing C4 photosynthetic enzyme genes in different interactive forms,3 expression modules were set up, i.e., by Agrobacterium-mediated method, the maize cDNA of PEPC/PPDK and that of NADP-MDH/NADP-ME were transformed into Xianghui299 (R299), a super hybrid rice parental line, respectively, and through hybridization of two transgenic lines harbored with cDNA of PEPC/PPDK and that of NADP-MDH/NADP-ME, a new transgenic line combined with all four genes above was acquired. On this basis, the integration, transcription and expression of foreign C4 photosynthetic enzyme genes were systematically studied, and effects of the expression of different target genes were analyzed on the biological characteristics such as photosynthesis, stress tolerance, grain quality and yield. The major results were shown as below:
     (1) It was found that PEPC, PPDK, NADP-MDH and NADP-ME genes could be integrated, transcribed and expressed in rice leaves. The enzyme activity of PEPC and ME in transgenic rice plants were 1.3 to 5.9 and 1.4 to 6.8 times of those in wild type plants, respectively. The foreign C4 photosynthetic enzyme genes could be stably inherited and effectively expressed in progenies.
     (2) The average segregated percentage of the transgenic plants with target genes but selectable marker gene free (SMF) was 8.2%. Several selectable marker-free transgenic homozygous lines of T3 generation were obtained. The correlation coefficients of PEPC and NADP-MDH to Pn (photosynthetic rate) were 0.817 and 0.610, both of which are significant at the 5% level.
     (3) In the booting, heading, full heading stages, the average Pn of PEPC/PPDK transgenic restorer lines was higher than that of the control by 12.05%,8.14%,13.83%, respectively, while the average Pn of PEPC/PPDK transgenic rice hybrids was higher than that of the control by 3.59%,7.17%,9.51%, respectively.
     (4) From heading stage to mature stage, the SPAD value of chlorophyll in transgenic leaves declined gradually along with the reproductive process. The occurrence of turning point of chlorophyll SPAD (10DAF) was roughly consistent to the full heading stage, after which Pn declined dramatically.
     (5) Compared with the control, the transgenic restorer lines with PEPC/PPDK, NADP-MDH/NADP-ME or all four genes had a little bit lower CO2 compensation point and light compensation point but a higher light saturation point by 167μmol photos.m 2.m-1 and a higher light saturated photosynthetic rate by 10.97%. Under normal conditions, the transgenic plants displayed enhanced transpiration rate (VPD), stomatal conductance (Gs) and intercellular CO2 concentration (Ci) to some extent. Gs was positively and significantly correlated to Pn, and positively but not significantly correlated to VPD and Ci. It could be inferred that the enhanced stomatal conductance contributed a lot to its higher Pn.
     (6) Under drought stress, in heading stage the transgenic rice showed higher transpiration rate, intercellular CO2 concentration and stomatal conductance than the control; and compared with the control, the Pn and WUE (water use efficiency) of the transgenic rice were increased by 75%-85% and 15%-85%, respectively. Under high temperature stress, in seedling stage the transgenic rice showed higher ratio of 1st grade leaves. Under both drought and high temperature stress conditions, the transgenic rice had higher maximal photochemical efficiency of PSII (Fv/Fm) and higher PSII potential activity (Fv/F0). Therefore, it could be inferred that expression of the foreign C4 photosynthetic genes served a useful function for resistance to drought and high temperature.
     (7) The transgenic rice carrying C4 photosynthetic enzyme genes decreased in chalky rice percentage, chalky area and chalkiness to a different extent, and in some cases, the differences reached a statistically significant level between the transgenic rice and the control.
     (8) The transgenic restorer lines and their hybrids showed an increase in plant height, the number of spikelets per panicle and grain weight but a decrease in seed setting rate. Assessment of yield capacity test of the transgenic hybrids showed that three had a higher yield than the control hybrids by 7.45%,2.54% and 1.13%.
     On the whole, for PEPC/PPDK transgenic rice, it was superior to the others in enzyme expression, Pn, Gs, high temperature resistance, the number of spikelets per panicle and grain yield per plant. The NADP-MDH/NADP-ME transgenic rice had an advantage on drought resistance over the others. When it comes to the transgenic rice carrying all four genes, most traits had values between the PEPC/PPDK transgenic rice and the NADP-MDH/NADP-ME transgenic rice.The possible mechanism leading to this result and the problems such as faster degradation of chlorophyll and sharper decline of photosynthetic capacity in later growth stages, and lower spikelet fertility and yield advantage should be further studied.
引文
[1]曹树青,杨图南.水稻种质资源光合速率及光合功能期的研究[J].中国水稻科学,2001,15(1):29-34.
    [2]曹树青,翟虎渠,张红生.不同类型水稻品种叶源量及有关光合生理指标的研究[J].作物学报,1999,13(2)::91-94.
    [3]陈炳松,张云华,李霞,焦德茂.超级杂交稻两优培九生育后期的光合特性和同化产物的分配[J].作物学报,2002,28(6):777-782.
    [4]陈根云,肖元珍,李立人.高等植物Rubisco的组装及其中间产物的鉴定[J].植物生理学报,2000,26(1):16-22.
    [5]陈根云,叶济宇.草酰乙酸和苹果酸对菠菜叶片和完整叶绿体光合作用的影响[J].植物生理学报,2001,27.478-482.
    [6]陈根云.高光效作物基因工程中的几个问题[J].植物生理学通讯,2002,38(6):541.554.
    [7]陈景治,陈冬兰,吴敏贤等.高粱和小麦叶片苹果酸酶某些特性比较[J].植物生理学报,1981,7(4):345-350.
    [8]陈绪清,张晓东,梁荣奇,等.玉米C4型pepc基因的分子克隆及其在小麦的转基因研究[J].科学通报,49(19),2004:1976-1982.
    [9]陈温福,徐正进,张龙步.水稻超高产育种生理基础[M].沈阳:辽宁科学技术出版社,1995:69-94.
    [10]程玉祥,水稻NADP-苹果酸酶与逆境关系的研究[D];东北林业大学;2005年.
    [11]崔震海,张立军,李振华等.玉米C4型PEPC蛋白的生物信息学分析[J].玉米科学,2009,17(4):135-138.
    [12]丁在松,赵明,荆玉祥,等.玉米ppc基因过表达对转基因水稻光合速率的影响[J].作物学报,2007,33(5):717-722.
    [13]范淑秀,陈温福. 超高产水稻品种叶绿素变化规律研究初报[J].沈阳农业大学学报,2005,36(1):14-17.
    [14]冯道荣,许新萍,邱国华,等.多个抗病抗虫基因在水稻中的遗传和表达[J].科学通报,2000,45(15):1593-1599.
    [15]郭连旺,许大全,沈允钢.棉花叶片光合作用的光抑制与光呼吸的关系[J].科学通报,1995,40:1885-1888.
    [16]郭三堆,崔洪志,夏兰芹等.双价抗虫转基因棉花研究[J].中国农业科学,1999,32(3):1-7.
    [17]郝乃斌,谭克辉,那松青,等.C3植物绿色器官PEP羧化酶活性的比较研究[J].植物学报,1991,33(9):692-697.
    [18]何立斌,李平,向殉朝,等.转玉米pepc基因的水稻某些光合特性研究[J].植物生理学通讯,2005,41(4):461-464.
    [19]黄雪清,古森本.转C4光合酶基因水稻的CO2交换和荧光特性[J].植物 学报,2002,44(4):405-412.
    [20]黄耀祥.水稻丛化育种[M].广东农业科学.1983.(1):1-5.
    [21]季本华,焦德茂.光抑制条件下不同水稻品种叶片的PS Ⅱ光化学效率和C02交换特性的差异[J].中国水稻科学,1998,12(2):109-114.
    [22]季本华,焦德茂.光抑制条件下水稻籼粳亚种的PS II光化学效率和C02交换特点[J].植物学报,1999,41(5):508-514.
    [23]季本华,朱素琴,焦德茂.转玉米C4光合酶基因水稻株系中的光合C4微循环[J].作物学报,2004,30(6):536-543.
    [24]焦德茂,黄雪清.转C4光合酶基因水稻株系的抗光氧化特性[J].植物生理学报,2001,27(5):393-400.
    [25]焦德茂,季本华.光氧化条件下两个水稻品种光合电子传递和光合酶活性的变化[J].作物学报,1996,22(1):43-49
    [26]焦德茂,李霞,黄雪清等.转PEPC基因水稻的光合CO2同化和叶绿素荧光特性.科学通报,2001,46:414-418.
    [27]焦德茂,李霞,黄雪清,等.不同高产水稻品种生育后期叶片光抑制、光氧化和早衰的关系[J].中国农业科学,2002,35(5):487-492.
    [28]李宝健.应用农杆菌Ti质粒系统将外源基因转入釉稻细胞研究[J].中国科学(B辑),1990,20:144-149.
    [29]李宝健,许新萍,冯道荣.农作物改良的多基因策略研究[J].云南大学学报(自然科学版),1999,21:123-124.
    [30]李斌,陈冬兰,施教耐.高粱NADP-苹果酸脱氢酶的纯化及其分子特性[J].植物生理学报,1994,13(2):113-121.
    [31]李明,姚玉新,刘志等.苹果果实中细胞质型苹果酸酶基因(NADP-ME)的克隆与表达分析[J].中国农学通报,2007,23(7):95-100.
    [32]李木英,潘晓华,石庆华.两系杂交稻结实期茎鞘物质转运特性及其对籽粒灌浆影响的初步研究[J].江西农业大学学报.1998,20(3):298-302.
    [33]李培金,曾大力,刘新等.水稻散生突变体的遗传和基因定位研究[J].科学通报,2003,48(21):2271-2274.
    [34]李荣改,孟祥祯等.亚种间杂交稻干物质生产积累及转换与杆杜充实度的研究[J].河北农业大学学报.1999,22(1):29-32.
    [35]李卫华,卢庆陶,郝乃斌等.大豆叶片C4循环途径酶[J].植物学报,2001,43(8):805-808.
    [36]李霞,焦德茂,戴传超等.转育PEPC基因的杂交水稻的光合生理特性[J].作物学报,2001,27(2):1372143.
    [37]李霞,吴爽,焦德茂等.转pepc基因水稻的选育[J].江苏农业学报,2001b,17(3):143-147.
    [38]李霞,焦德茂,戴传超.转PEPC基因水稻对光氧化逆境的响应[J].作物学报,2005b,31(4):408-413.
    [39]李霞,焦德茂.转C4光合基因水稻及其在育种中的应用[J].分子植物育种,2005(3)4:550-556.
    [40]李霞,王超,陈晏等.PEPC酶活性作为水稻高光效育种筛选指标的研究。[J].江苏农业学报,2008,24(5):559-564.
    [41]李朝霞,赵世杰,孟庆伟等.光呼吸途径及其功能[J].植物学通报,2003,20(2):190-197.
    [42]凌启鸿,杨建昌.水稻群体粒叶比与高产途径的研究[J].中国农业科学,1986,19(3):1-8.
    [43]凌启鸿,作物群体质量[M].上海:上海科技出版社,2000.
    [44]林拥军.转基因抗虫水稻培育[C].湖北省遗传学会、江西省遗传学会2006年学术年会暨学术讨论会论文,2006年.
    [45]刘巧泉.基因工程技术提高稻米赖氨酸含量[D].扬州:扬州大学博士论文,1998
    [46]刘巧泉,张景六,王宗阳等.根癌农杆菌介导的水稻高效转化系统的建立[J].植物生理学报,1998,4(3):259-271
    [47]刘巧泉,陈秀花,王兴稳等.一种快速检测转基因水稻中潮霉素抗性的简易方法[J].农业生物技术学报,2001,9(3):264-264.
    [48]刘彦卓,黄农荣,黄秋妹等.晚季不同类型高产水稻品种光合速率和叶绿素含量变化研究初报[J].广东农业科学,2000,(1):2-4.
    [49]刘贞琦,刘振业,马达畴等.水稻叶绿素含量及其与光合连率关系的研究[J].作物学报,1984.10(1):57-61.
    [50]吕彦,王平荣,孙业盈等.农杆菌介导遗传转化在水稻基因工程育种中的应用[J].分子植物育种,2005,3(4):543-549.
    [51]罗小英,崔衍波,邓伟等.超量表达苹果酸脱氢酶基因提高苜蓿对铝毒的耐受性[J].分子植物育种,2004,2(5):621-626.
    [52]马文波,马均,明东风.不同穗重型水稻品种剑叶光合特性的研究.作物学报,2003,29(2):236-240.
    [53]孟军,陈温福,徐正进等.水稻剑叶净光合速率与叶绿素含量的研究初报[J].沈阳农业大学学报,2001,32(4):247-249.
    [54]欧志英,林桂珠,彭长连.超高产水稻培矮64S/E32和两优培九剑叶对高温的响应[J].中国水稻科学,2005a,19:249-254.
    [55]欧志英,彭长连,林桂珠等.田间条件下超高产水稻培矮64S-32及其亲本旗叶的光合特点[J].作物学报2005b,31:209-213.
    [56]欧志英,彭长连,林桂珠.超高产水稻培矮64S-32及其亲本叶片的光氧化特性和遗传特点[J].作物学报,2004,30(4):308-314.
    [57]潘瑞炽,董愚得.植物生理学[M].北京:高等教育出版社,1993,91-93.
    [58]邱国雄.植物光合作用的效率[A].见:采叔文.主编.植物生理学与分子生物学[M].北京科学出版杜.1992:236-238.
    [59]沈革志,王新其,殷丽青等.通过共转化和花药培养快速获得直链淀粉含量降低且无抗性标记的转基因水稻[J].植物生理与分子生物学学报2004,3(6):637-643.
    [60]苏祖芳,郭宏文,李永丰等.水稻群体叶面积动态类型的研究[J].中国农业科学,1994,27(4):23-30.
    [61]谭长乐,张洪熙,戴止元,等.优质釉稻扬稻6号库、源、流特性研究[J].中国农业科学,2003,36(1):26-30.
    [62]唐启源,邹应斌,米湘成,等.不同施氮条件下超级杂交稻的产量形成特点与氮肥利用[J].杂交水稻,2003,18(1):44-48.
    [63]武志海,徐克章,赵颖君等.吉林省47年来水稻品种遗传改良过程中某些农艺性状的变化[J].中国水稻科学,2007,21(5):507-512.
    [64]武志海,赵国臣,徐克章等.吉林省过去47年来水稻品种遗传改良过程中叶片光合指标的变化[J].中国水稻科学,2009,23(2):165-171.
    [65]汪家政,范明.蛋白质技术手册[M].北京:科学出版社,2001.166-183
    [66]王晨,尉亚辉,吴丽园.NADP-苹果酸酶活性变化及其在CAM运行中的调节[J].西北植物学报,1997,17(2):200-204.
    [67]王德正,焦德茂,吴爽,等.转玉米PEPC基因的杂交水稻亲本的选育[J].中国农业科学,2002,35(10):1165-1170.
    [68]王德正,王守海,吴爽等.玉米PEPC基因在杂交转育的转基因水稻后代中的传递和表达特征[J].遗传学报,2004,31(2):195-201.
    [69]王关林,方宏筠主编,2002,植物基因工程,第二版,科学出版社,中国:北京
    [70]王娜,陈国祥,吕川根.两优培九与其亲本剑叶光合特性的比较研究[J].杂交水稻,2004,19(1):51-54.
    [71]王强,卢从明,张其德等.超高产杂交稻两优培九的光合作用、光抑制和C4途径酶特性[J].中国科学(生命科学),2002,32(6):481-487.
    [72]王熹,陶龙兴,俞美玉.超级杂交稻协优9308生理模型的研究[J].中国水稻科学,2002,16(1):38-44.
    [73].魏爱丽,王志敏,翟志席,龚元石;土壤干旱对小麦旗叶和穗器官C_4光合酶活性的影响[J].中国农业科学;2003,36(5):508-512.
    [74]向殉朝,何立斌,孙建明等.玉米PEPC基因在籼型水稻保持系不同遗传背景下的效应及转PEPC基因后代的耐光氧化特性[J].中国水稻科学,2009,23(3):257-262.
    [75]向殉朝,李平,王世全.水稻基因工程育种及其进展[J].西南科技大学学报(自然科学版),2004,6:107-113.
    [76]翁晓燕,蒋德安,张峰.水稻抽穗后剑叶衰老过程中光合关键酶的基因表达[J].植物生理与分子生物学学报,2002,28(4):321-316.
    [77]翁晓燕,陆庆,郑炳松,蒋德安.超级稻培矮64/E32开花结实期间的叶片衰老[J].浙江大学学报,2001,27(2):169-173.
    [78]许大全.光合作用气孔限制分析中的一些问题[J].植物生理学通讯,1997,33(4):241-244.
    [79]许大全.光合作用效率[M].上海:上海科学技术出版社,2002.
    [80]许大全.气孔的非均匀关闭与光合作用的非气孔限制[J].植物生理学通 讯,1995,31(4):246-250.
    [81]徐晓玲,王志敏,张俊平等.灌浆期热胁迫对小麦不同绿色器官光合性能的影响[J].植物学报.2001,43(6):571-577.
    [82]徐晓明,张荣铣,唐运来等.低叶绿素含量对突变体水稻吸收光能分配特性的影响[J].中国农业科学2004,37:339-343.
    [83]许晓明,戴新宾,张荣铣.籼粳稻叶片老化过程中光抑制特性的差异[J].作物学报,2000,26(6):795-800.
    [84]徐正进,薛亚杰,东正昭.水稻超高产品种物质生产与产量分析[J].辽宁农业科学.1992,(3):1-4.
    [85]杨惠杰,李义珍,黄育民等.超高产水稻的产量构成和库源结构[J].福建农业学报.1999,14(1):1-5.
    [86]杨建昌,朱庆森.亚种间杂交稻光合特性及物质积累与运转的研究[J].作物学报.1997,23(1):82-88.
    [87]杨建昌,朱庆森,王志琴.土壤水分对水稻产量与生理特性的影响[J].作物学报,1995,21(1):110-114.
    [88]叶松青,储成才,曾守云等.提高水稻转化频率的几个因素的研究[J].遗传学报,2001,28,933-938.
    [89]易自力,曹守云,王力等.提高农杆菌转化水稻频率的研究[J].遗传学报,2001,28(4):352-358.
    [90]袁定阳,段美娟,谭炎宁等.共转化法获得无筛选标记的转PEPC、PPDK基因水稻恢复系纯合体[J].杂交水稻,2007,22(3):57-63.
    [91]袁莉民,仇明,王朋,等.C4转基因水稻秧苗叶片气孔与叶鞘维管束结构特征[J].中国农业科学,2006,39,902-909.
    [92]袁隆平.超级杂交稻研究[M].上海:上海科学出版社,2006.
    [93]袁隆平.杂交水稻超高产育种[J].杂交水稻.1997,(6):1-6.
    [94]翟虎渠,曹树青,万建民等.超高产杂交稻灌浆期光合功能与产量的关系[J].中国科学(C辑),2002,32(3):211-217.
    [95]翟文学,李晓兵,田文忠等.由农杆菌介导将白叶枯病抗性基因Xa21转入我国的5个水稻品种[J].中国科学(C辑),2000,30(2):200-206.
    [96]张方,迟伟,金成哲等.高粱C4型磷酸烯醇式丙酮酸羧化酶基因的分子克隆及其转基因水稻的培育[J].科学通报,2003,48(24):1542-1546.
    [97]张方.高粱C4型磷酸烯醇式丙酮酸羧化酶基因的分子克隆及其转基因水稻的培育[J].科学通报,2003,48(24):1542-1546.
    [98]张建福,SwapanK. Datta,王国英,谢华安.玉米高光效基因PPDK在籼稻IR64中的整合及其与光合作用相关的特性分析[J].分子植物育种,2006,4(6):797-804
    [99]张建福,谢华安,王国英等.玉米PEPC基因和PPDK基因在籼稻明恢63中的整合及与光合作用相关的特性分析[J].分子植物育种,2006,4(5):655-662.
    [100]张建新.水稻的光合特性与高产育种途径探讨[J].福建稻麦科技,1998, 16(4):7-9.
    [101]张荣铣,程在全,方志伟等.关于小麦叶片光合速率高值持续期的初步研究[J].南京师范大学学报,1992,15(增刊):76-86.
    [102]张边江,华春,周峰等.转PEPC+PPDK双基因水稻的光合特性[J].中国农业科学,2008,41(10):3008-3014.
    [103]张彬,丁在松,张桂芳等.根癌农杆菌介导获得稗草Ecppc转基因小麦的研究[J].作物学报,2007,33,(3):356-362.
    [104]张桂芳.稗草C4关键酶(PEPC、 PPDK)基因的克隆及PEPC基因对水稻和烟草的遗传转化[D].中国农业大学博士论文.北京,2005.
    [105]张丽.C3、C4不同作物光合生理特性比较的研究[D].北京:中国农业大学硕士学位论文,2004.
    [106]张平,左示敏,李爱宏等.提高农杆菌转化水稻频率几个因素的研究[J].中国水稻科学,2004,18(1):11-15.
    [107]张新梅,徐惠君,杜丽璞等.共转化法剔除小麦中的bar基因[J].作物学报,2004,30(1):26-30.
    [108]赵秀琴,赵明,肖俊涛等.栽野稻远缘杂交高光效后代及其亲本叶片的气孔特性[J].作物学报,2003,29(2):216-221.
    [109]郑霏琴,王宗阳,高继平,1993,水稻胚乳中核糖核酸的分离[J].植物生理学通讯,29(6):438-440.
    [110]郑广华.植物栽培生理[M].济南:山东科学技术出版社,1980:1-61.
    [111]郑乐娅,吴敬德,吴跃进等.离子束介导水稻转基因植株后代的维管束和光合速率的研究[J].作物学报,2002,28(3):401-405.
    [112]周玮,刘文真,张荣铣等.水稻T-DNA插入突变体库中Rubisco抗氧化胁迫株系的筛选[J].作物学报,2007,33(12):2063-2066.
    [113]周毅,郭世伟,’宋娜等.供氮形态和水分胁迫对苗期-分孽期水稻光合和水分利用效率的影响[J].植物营养与肥料学报,2006,12(3):334-339.
    [114]朱德峰,林贤青,曹卫星.水稻深层根系对生长和产量的影响[J].中国农业科学,2001,34(4):429-432.
    [115]朱雄涛,汪真.水稻高光效生理育种初探[J].福建稻麦科技,2003,21(2):14-17.
    [116]Abdul MK and Simon P (2006) Spectral filters and temperature effects on growth and development of chrysanthemum under low light integral. Plant Growth Regulation 49:61-68.
    [117]Abe K, Takahashi H and Suge H (1996) Lazy gene (la) responsible for both an agravitropism of seedlings and lazy habit of tiller growth in rice(Oryza sativa L). J. Plant Res.109(1096):381-386.
    [118]Abenes MLP, Tabien RE, McCouch SR, et al.(1994) Orientation and integration of the classical and molecular genetic maps of chromosome 11 in rice. Euphytica 76:81-87.
    [119]Asada K (1992) Photooxidative damage of plants:It's suppress and amplification. J. Pesticide Sci.10:729-747.
    [120]Bauwe H.Photosynthetic enzyme activities and immunofhorescence studies on the localization of ribulose-1,5-bisphosphate carboxylase/oxygenase in leaves of C3,C4,andC3-C4intermediate, species of Flaveria (Astera-ceae). Biochem Physiol Planzen 179:213-268.
    [121]Berry J and Bjo rkman O (1980) Photosynthetic response and adaptation to temperature in higher plants. Ann. Rev. Plant Physiol.31:491-453.
    [122]Beverly A, Rothermel and Timothy Nelso (1989) Primary Structure of the Maize NADP-dependent Malic Enzyme. Journal of Biological Chemistry 264:19587-19592.
    [123]Bjoukman O, Nobs M, Berry J A.(1971) Further studies on hybrids between C3 and C4 species of Atriplex.Carnegie Instit Wash YB.70:507-511.
    [124]Bjoukman O (1976) A daptive and genetic aspects of C4 photosynthesis.Tokyo, University Park Press:287-309.
    [125]Bowes G. and Salvucci ME (1989) Plasticity in the photosynthetic carbon metabolism of submersed aquatic macrophytes. Aquat.Bot.3:233-266.
    [126]Brown RH and Bouton JH (1993) Physiology and genetics of interspecific hybrids between Photosynthetic Types. Annual Review of Plant Physiology and Plant Molecular Biology 44:435-456.
    [127]Casati P, Lara M and Andreo C (2000) Induction of a C4-like mechanism of CO2 fixation in Egeria densa, a submerged aquatic species. Plant Physiol.123: 1611-1622
    [128]Chan MT, Chang HH, Ho SL, et al. (1993) Agrobacterium-mediated production of transgenic rice plants expressing a chimeric a-amylase promoter/β-glucuronidase gene. Plant Mol.Biol 22:491-506.
    [129]Chaves MM, Perelva JS, Marolo J, et al. (2002) How Plants cope with water stress in the field. Photosynthesis and Growth Annals of Botany 89:907-916.
    [130]Chen JZ, Chen DL, Wu MX and Shi JN (1981) Comparison of some characteristics of NADP-malic enzyme from sorghum and wheat leaves. Acta. Phytophysiol Sinica 4:345-350.
    [131]Cheng ZQ and Zhang WJ (1988) C3-C4 inetrmediate Plants. Plant Physiology Communication 2:72-76.
    [132]Chi W, Zhou JS, Zhang F and Wu NH (2004) Photosynthetic features of transgenic rice expressing Sorghum C4 type NADP-ME. Acta.Bot.Sin. 46:873-882.
    [133]Chollet R, Vidal J and O'Leary MH (1996) Phosphoenolpymvate carboxylase: a ubiquitous, highly regulated enzyme in plants. Ann. Rev. Plant Physiol. Plant Mol.Biol.47:273-293.
    [134]Christou P (1997) Rice transformation by bombardment. Plant Mol.Biol.35: 197-203.
    [135]Coward CR and Nicholls DJ (1994) Malate dehydrogenase:A model for structure, evolution, and catalysis. Portein Science 3:1883-1888.
    [136]Delloaporta SL, Wood J, Hicks JB (1983) A plant DNA mini-preparation:version Ⅱ. Plant Mol. Biol. Rep.1:19-21.
    [137]Dengler NG and WC Taylor (2000) Developmental aspects of C4 photosynthesis.In:Leegood R.C.,Sharkey T.D.and S.von Caemmerer (eds) Photosynthesis:471-495.
    [138]depicker A, Herman L, Jacobs A, et al. (1985) Frequencies of simultaneous transformation with diferent T-DNAs and their relevance to the Agrobacterium /plant cell interaction. Mol.Gen.Genet.201:477-484.
    [139]Dever LV, Pearson M, Ireland RJ, Leegood RC and Lea PJ (1998) The isolation and characterisation of a mutant of the C4 plant Amaranthus edulis deficient in NAD-malic enzyme activity. Planta 206:649-656
    [140]Dever LV, Bailey KJ, Leegood RC and Lea PJ (1997) Control of photosynthesis in Amaranthus edulis mutants with reduced amounts of PEP carboxylase. Aust.J.Plant Physiol.24:469-476.
    [141]Devi MT, Rajagopaian AV, Rajhavendra A S (1995) Predominant localization of mitochondria enriched with glycine-decarboxylating enzymes in bundle sheath cells of Alternanthera tenella, a C3-C4 intermediate species. Plant Cell Environ.18:589-594.
    [142]Drincovich MF, Casati P and Andreo CS (2001) NADP-malic enzyme from plants:a ubiquitous enzyme involved in different metabolic pathways. FEBS Letters 490:1-6.
    [143]Duffus CM and Rosie R (1973) Some enzyme activities associated with the chlorophyll containing layers of the immature barley pericarp. Planta 114:219-226.
    [144]Dwyer SA,Ghannoum O, Nicotra A,et al.(2007)High temperature acclmation of C4 photosynthesis is linked to changes in photosynthetic biochemistry. Plant Cell Environ.30:53-66.
    [145]Eds. (1987) The Biochemsitry of Plants. Academic Press.NewYork,275-325.
    [146]Edwads GE and Ku MSB (1987) Biochemisty of C3-C4 intermediates.In:Hatch MD, Bodarman NK, The Biochemistry of Plants. A Comprehensive Treatise. New York:Academic Press 275-325.
    [147]Edwards GE and Andreo CS (1992) NADP-malic enzyme from plants. Phytochemistry 31:1845-1857.
    [148]Enamy I, M Kitamura and T Tato (1994) Is the primary cause of thermal inactivation of oxygen evolution in spinach PS Ⅱ membranes release of the 33 kDa protein. Bio chim.Bio. phys.Acta.186:52-58.
    [149]Ferreyra MLF, Andreo CS, et al.(2003) Purification and physical and kinetic
    characterization of a photosynthetic NADP-dependentmal enzyme from the CAM plant Aptenia cordifolia. Plant Sci.164(1):95-102.
    [150]Franco F, Robert PW, Richard CL, et al. (2001) An immunohistochemical study of the compartmentation of metabolism during the development of grape (Vitis.viniferal) berry. J. Exp. Bot.51:675-682.
    [151]Fryer MJ, Andrews JR, Oxborough K, Blowers DA, Baker NR (1998) Relationship between CO2 assimilation, photosynthetic electron transport and active O2 metabolism in leaves of maize in the field during periods of low temperature. Plant Physiol.116:571-580.
    [152]Fukayama H, Agarie S, Nomura M, Tsuchida H and Ku MSB (1999) High level expression of maize C4-specific pyruvate, Pi dikinase and its light activation in transgenic rice plants. Plant Cell Physiol.40:s116 (abstract)
    [153]Fukayama H, Imanari E, Tsuchida H, et al. (2000) In vivo activity of maize phosphoenolpyruvate carboxylase in transgenic rice plants. Plant Cell physiol.41:s112.
    [154]Fukayama H, Tsuchida H, Agarie S, et al. (2001) Significant accumulation of C4-specific pyruvate,orthophosphate dikinase in a C3 plant, rice. Plant Physiol.127:1136-1146.
    [155]Fukayama H, Hatch MD,Tamai T, et al.(2003) Activity regulation and physiological impacts of maize C4-specific phosphoenolpyruvate carboxylase overproduced in transgenic rice plants. Photosynthesis Research 77:227-239.
    [156]Furbank RT, Chitty JA,Von Caemmerer S, Jenkins CLD (1996) Antisense RNA Inhibition of RbcS Gene Expression Reduces Rubisco Level and Photosynthesis in the in the C4 plant Flaveria bidentis. Plant Physiol.111(3):725-734.
    [157]Furbank RT, Chitty JA, Jenkins CLD, Taylor WC and Trevanion SJ (1997) Genetic manipulation of key photosynthetic enzymes in the C4 plant Flaveria bidentis. Aust.J.Plant Physiol.24:477-485.
    [158]Gehlen J, Pans truga R and Sme ts H (1996) Effects of altered phosphoenolpyruvate carboxylase activities on transgenic C3 plant Solanum tuberosum. Plant Mol. Biol.32:831-848.
    [159]Gonzalez DH, Iglesias AA, Andreo CS (1984) On the regulation of phosphoenolpyruvate carboxylase activity from maize leaves by L-malate. Plant Physiol.116:425-430.
    [160]Goodall GJ and Filipowicz W (1991) Different effects of intron nucleotide composition and secondary structure on prem RNA splicing in monocot and dicot plants. EMBO J.10:2635-2644.
    [161]Hata S and Matsuoka M (1987) Immunological studies on pyruvateorthophosphate dikinase in C3plants. Plant Cell Physiol.28:635-641.
    [162]Hatch M D and Slack C R (1975) Pyruvate.Pi dikinase from leaves.Meth. Enzymol.42:212-219.
    [163]Hatch MD and Slack CR (1966) Photosynthesis by sugar-cane leaves. A new carboxylation reaction and the pathway of sugar formation. Biochemical J.101:103-111.
    [164]Hatch MDand Burnell JN (1990) Carbonic anhydrase activity in leaves and its role in the first step of C4 photosynthesis. Plant Physiology 93:380-383.
    [165]Hatch MD (1976) The C4 pathway of photosynthesis:Mechanism and function[C].In:Burris RH, Black CC eds., CO2 Metabolism and Plant Productivity.Baltimore,University Park Press,59-81.
    [166]Havaux M.(1996) Short-term responses of Photosystem I to heat stress[J].Photosynth. Res.47(1):85-97.
    [167]Hiei Y, Ohta S, Toshilhro K, et al. (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J.6:271-282.
    [168]Hiei Y, Komari T and Kubo T (1997) Transformation of rice mediated by Agrobacterium tumefaciens. Plant Mol. Biol.35205-35218.
    [169]Hisatake Sabe, Tetsuya Miwa, Tsutomu Kodaki and Katsura Izui (1984) Molecular clong of the phosphoenol-pyruvate carboxylase gene, ppc, in Escherichia coli.Gene 31:279-283.
    [170]Honda H, Akagi H and Shimada H (2000) An isozyme of the NADP-malic enzyme of a CAM plant, Aloe arborescens,with variation on conservative amino acid residues.Gene 243:85-92
    [171]Huang XQ, Jiao DM, Chi W and Ku M SB (2002) Characteristics of CO2 exchange and chlorophyll fluorescence of transgenic rice with C4 genes. Acta. Bot. Sin.44:405-412.
    [172]Hudspeth RL, Grula JW, Dai Z, Edwards GE and Ku MSB (1992) Expression of maize phosphoenolpyruvate carboxylase in transgenic tobacco. Plant Physiology(2):458-464.
    [173]HuxmanTE, Monson RK (2003) Stomatal responses of C3,C3-C4 and C4 Flaveria species to light and intercellular CO2 concentration:implications for the evolution of stomatal behaviour[J].PlantCell Environ.26:313-322.
    [174]Hybon CM, Rawsthorne S, Smith AM, etal. (1988) Glycine decarboxylase is confined to the bundle-sheath cells of leaves of C3-C4 intermediate species. Plants 175:452-459.
    [175]Imaizum iN, Usuda H, Nakamo to H and Ishihara K (1990) Changes in the rate of Photosynthesis during grain filling and the enzymatic activities associated with photosynthetic carbon metabolism in rice panicles. Paint Cell Physiol.31:835-843.
    [176]Imaizumi N, Samejima M and Ishihara K (1997) Characteristics of photosynthetic carbon metabo-lism of spikelets in rice. Photosynth. Res.52:75-82.
    [177]Imaizumi N, Ku MS, Ishihara K, Samejima M, Kaneko S and Matsuoka M (1997) Characterization of the gene for pyruvate, orthophosphate dikinase from rice, a C3 plant, and a comparison of structure and expression between C3 and C4 gens for this protein. Plant Mol.Biol.34:701-716.
    [178]Ingelbrecht ILW, Heman LMF, Dekeyser RA, et al.(1989) Different 3'end regions strongly influence the level of gene expression in plant cells.Plant Celll:671-680.
    [179]Ishimaru K, Ohkawa Y, Ishige T, Tobias DJ and Ohsugi R (1998) Elevated pyruvate, orthophosphate dikinase (PPDK) activity alters carbon metabolism in C3 transgenic potatoes with a C4 maize PPDK gene. Plant Physiol.103: 340-346.
    [180]Ishimaru K, Ishikawa I, Matsuoka M, et al.(1997) Analysis of a C4 maize pyruvate,orthophosphate dikinase expressed in C3 transgenic Arabidopsis plants. Plant Sci.129:57-64.
    [181]Jenkins CLD, Furbank RT and Hatch MD (1989) Mechanism of C4 photosynthesis.A model describing the inorganic carbon pool in bundle sheath cells. Plant Physiol.91:1372-1381
    [182]Jessica KBell, Hemant P, Yennawar S, Kirk Wrisht, et al. (2001) Structural Analyses of a Malate Dehydrogenase with a Variable Active Site. J. Biol. Chem.276(33):31156-31162.
    [183]Jiao DM, Kuang TY, Li X, et al. (2003) Physiological characteristics of the primitive CO2 concentrating mechanism in PEPC transgenic rice. Sci. China C Life Sci.46:438-446.
    [184]Jiao DM, Huang XQ, Li X, et al. (2002) Photosynthetic characterstics and tolerance to photo-oxidation of transgenic rice expressing C4 photosynthesis enzymes, Photosynthesis Res.72:85-93.
    [185]Kai Y, Matsumura H and Izui K (2003) Phosphoenolpyruvate carboxylase: three-dimensaional structure and molecular mechanism. Arch. Biochem. Biophy.414:170-179.
    [186]Karen J, Bailey, Alberto Battistelli, Louisa V, Dever, Peter J.Lea and Richard C. Leegood (2000) Control of C4 photosynthesis:effects of reduced activities of phosphoenolpyruvate carboxylase on CO2 assimilation in Amaranthus edulis L. J. Exp. Bot.51:339-346.
    [187]Khanna R and Sinha SK(1973) Change in predominance from C4 to C3 pathway following anthesis in Sorghum. Biochem.Biophys.Res.Commun. 52:121-124.
    [188]Kisaki TS, Hirabayshi S,Yano N (1973) Effect of the age of tobacco leaves on photosynthesis and photorespiration. Plant Cell Physiol.14(3):505-514.
    [189]Komari T, Hiei Y, Saito Y, Murai N, Kumashiro (1996) TVectors carrying two separate T-DNAs for co-transformation of higher plants mediated by Agrobacterium tumefaciens and segregation of transformations free from selection marker. Plant J.10:165-174
    [190]Kopriva S, Chu CC and Bauwe H (1996) Molecular phylogeny of Flaveria as deduced from the analysis of nucleotide sequences encoding the H protein of the glycine cleavage system. Plant Cell Environ.19:1028-1036.
    [191]Ku MSB, Cho DH, Li X, et al.(2001) Introduction of genes encoding C4 photosynthesis enzymes into rice plants:physiological consequences. Rice Biotechnology:Improving Yield, Stress Tolerance and Grain Quality 236:100-116.
    [192]Ku MSB, Kano-Murakami Y, Matsuoka M (1996) Evolution and expression of C4 photosynthesis genes. Plant Physiol.111:949-957.
    [193]Ku MSB, Agarie S, Nomura M, et al.(1999) High-level expression of maize phosphoenolpyruvate carboxylase in transgenic rice plants. Nat. Biotechnol.17:76-80.
    [194]Ku M S B, Monson R K, Littlejohn JR. (1983) Photosynthetic characteristics of C3-C4 intermediate Flaveria species:Leaf anatomy,photosynthetic responses to O2 and CO2,and activities of key enzymes in the C3 and C4 pathways[J]. PlantPhysiol 71:944-948.
    [195]Kung SD, Chollet R, Marsho TV (1980) Crystallization and assay procedures of tobacco ribulose 1,5-bisphosphate carboxlyase-oxygenase[M].In:Pietro A S,ed. Method Enzymology. New York:Academic Press Inc.69:326-335.
    [196]Lai LB, Tausta SL, Nelson TM (2002) Differential regulation of transcriptsen-coding cytosolic NADP-malic enzymes in C3 and C4 Flaveria species. Plant Physiol.128:140-149.
    [197]Langdale JA and Nelson T (1991) Spatial regulation of photosynthetic development in C4 plants. Trends Genet.7:191-196.
    [198]Laporte MM, Shen B and Tarczynski MC (2002) Engineering for drought aviodance:expression of maize NADP-malic enzyme in tobacco results in alterdstomatal function. Journal of Experimental Botany 53(369):699-705.
    [199]Leonardos ED, Grodzinski B (2000) Photosynthesis,immediate export and carbon partitioning insource leaves of C3,C3-C4 intermediate,and C4 Panicum and Flaveria species at ambient and elevated CO2 levels. Plant Cell Environ.23:839-851.
    [200]Lepiniec L, J Vidal, R Chollet, P Gadal and C Cretin (1994) Phosphoenolpyruvate carboxylase:structure, regulation and evolution. Plant Science 99:111-124.
    [201]Lepiniec L, Keryer E and Philippe H (1993) Sorghum phosphoenolpyruvate carboxylase gene family:structure,function and molecular evolution. Plant Molecular Biology 21:487-502.
    [202]Li B, Chen DL and Shi JN (1987) Purification and molecular properties of NADP dependent malate dehydrogenase from sorghum leaves. Acta. Photophysiol Sin.13:113-121.
    [203]Li LR (1996) Structure, properties and assembly of Rubisco. In:Posssarakali M (ed). Handbook of Photosynthesis, New York,USA:Marcel Deckker Inc.281-293.
    [204]Lin L, Liu YG, Xu XP, et al.(2003) Efficient linking and transfer of multiple genes by a multi-gene assembly and transfomation vector system. PNAS 100(10):5962-5967.
    [205]Li Wang, Zhen Wang,Yunyuan Xu,et al. (2009) OsGSR1 is involved in crosstalk between gibberellins and brassinosteroids in rice. The Plant Journal 57:498-510.
    [206]Li WH, and Hao NB (1999) Advances in study on C4 pathway in C3plants[J].Chin. Bull. Bot.16(2):97-106 (in Chinese with English abstract).
    [207]LipkaV, Hausler RE, Rademacher T, et al. (1999) Solanum tuberosum double transgenic expressing Phosphoenolpyruvate carboxlase and NADP-malic enzyme display reduced electron requirement for CO2 fixation. Plant Sci.144:93-105.
    [208]Long SP, Humphries S, Folkowski PG (1994) Photoinhibition of photosynthesis in nature. Annu. Rev. Plant Physiol. Plant Mol. Biol.45:633-662.
    [209]Luehrsen KR, Walbot V. (1991) Intron enhancement of gene experssion and the the splicing effieieney of introns in maize cells. Mol. Gen. Genet. 225:81-93.
    [210]Madern D(2002) Molecular evolution within the L-malate and L-lactate dehydrogenase superfamily. J. Mol. Evol.54:825-840.
    [211]Magnin NC, Cooley BA, Reiskind JB and Bowes G (1997) Regulation and localization of key enzymes during the induction of Kranz-less,C4 photosynthesis in Hydrilla verticilata. Plant Physiol.115:1681-1689.
    [212]Mariel C, Wheeler G, Marcos A,et al. (2005) Maurino.A comprehensive analysis of the NADP-malic enzyme gene family of Arabidopsis. Plant Physiology 139:39-51.
    [213]Matsuoka M, Furbank RT, Fukayama H, Miyao M (2001) Molecular engineering of C4 photosynthesis. Annu.Rev.Plant Physiol.Plant Mol.Biol. 52:297-314.
    [214]Matsuoka M and MinamiE (1989)Complete structure of gene for phosphoenolpyruvate carboxylase from maize.Eur. J. Bio. Chem.181:593-598.
    [215]Matsuoka M (1990) Structure,genetic mapping and expression of the gene for pyruvateorthophosphatedikinasefrommaize.J.Biol.Chem265(28):16772-16777
    [216]Matthews PR, Wang MB, W aterhouse PM, et al. (2001) Marker gene elimination from transgenic barley using co-transformation with adjacent 'twin T-DNAs'on a standard Agrobacterium transformation vector. Mol. Breeding 7(3):195-202.
    [217]Mayak SK (1978) Effect of photosynthetic intensity and quality to photosynthetic efficiency in rice, high photosynthetic efficiency and high production of crop. Chongqing Branch of Science and Technology Literature Publishing Company,Chongqing 146-148.
    [218]McCormac AC, Fowler MR, Chen DF and Elliott MC (2001) Efficient co-transformation of Nicotiana tabacum by two independent T-DNAs, the effect of T-DNA size and implications for genetic separation. Transg. Res.10:143-155.
    [219]McKown AD, Moncalvo JM, Dengler NG (2005) Phylogeny of Flaveria (Asteraceae) and inference of C4 photosynthesis evolution. Amer J. Bot. 92:1911-1928.
    [220]Merkelbach, Gehlen J, Denecke M, Hirsch HJ and Kreuzaler F (1993) Cloning, sequence analysis and expression of a cDNA encoding activephosphoenolpyruvate carboxylase of the C3 plant Solanum tuberosum. Plant Molecular Physiol.23:881-888.
    [221]Meyer AO, Kelly GJ and Latzko E (1982) Pyruvate orthophosphate dikinase from the immature grains of cereal grasses. Plant Physiology 69:7-10.
    [222]Miller M, Tagliani L, Wan g N, et al.(2002) High eficiency transgene segregation in co-transformed maize plants using an Agrobacterium tumefaciens 2 T-DNA binary system. Transgenic Res.ll(4):381-396.
    [223]Miller SS, Driscoll BT, Gregerson RG, et al. (1998) Alfalfa malate dehydrogenase (MDH):molecular cloning and characterization of five five different forms reveals a unique nodule-enhanced MDH. The Plant Journal 15:173-184.
    [224]Minari P, Tomaskova N, Kollarova M and Antalik M (2002) Malate dehydrogenase-structure and function.Gen.Physiol.Biophys.3:257-265
    [225]Murray MG and Thompson WF (1980) Rapid isolation of high molecular weight plant. DNA.Nuc.Acids Res.8:4321-4325.
    [226]Musrati RA, Kollarova M, Mernik N and Mikulasova D (1998) Malate dehydrogenase:Distribution, function andproperties. Gen.Physiol. Biophys.17 (3):193-210.
    [227]Nimmo HG (2000) The regulation of phosphoenolpyruvate carboxylase in CAM plants. Trends in Plant Science 5:75-80
    [228]Nori K, Kazumaru M, Ken-Ichi N, Yukiko Y and Yukihiro I (2005) Rice mutants and genes related to organ development, morphogenesis and physiological traits[J].Plant Cell Physiol.46:48-62.
    [229]Nutbeam AR and CM Duffus (1976) Evidence for C4 photosynthesis in barley pericarp tissue.Biochem. Biophys. Res. Commun.70:1198-1203.
    [230]Odell J, Caimi P, Sauer B and Russell S (1990) Site-directed recombination in the genome of transgenic tobacco. Mol. Gen. Genet.223(3):369-378.
    [231]Park YI, Chow WS and Anderson JM (1995) Light inactivation off unctional photosystem Ⅱ in leaves of peas grown in moderate light depends on photonexposure. Park Planta 196 (3):401-411.
    [232]Powell AM (1978) Systematics of Flavaria. Ann. Missou. Bot. Gard.65(2):590-636.
    [233]Rajagopalan, MT Devi and AS Raghavendra (1994) Molecular biology of C4 phosphoenolpyruvate carboxylase:Structure, regulation and genetic engineering. Photosynthesis Research 39:115-135.
    [234]Rashid L, Yokoi S, Toriyama K,et al.(1996) Transgenic plant production mediated by Agrobacterium in indica rice. Plant Cell Rep.15:727-730.
    [235]Resikind JB, Madsen TV, van Ginkel LC, et al.(1997) Evidence that inducible C4-type photosynthesis is a chloroplastic CO2-concentrating mechamism in Hydrilla, a submersed monocol. Plant Cell and Environment 20:211-220.
    [236]Rawsthorne S (1992) C3-C4 intermediate photosynthesis:Linking Physiology to gene expression. Plant J.2:267-274.
    [237]Richard L.Hudspeth and John W.Grula (1989) Structure and expression of a phosphoenol-pyruvate carboxylase isoenzyme involved in C4 photosynthesis [J].Plant Molecular Physiol.12:579-589.
    [238]Rickers J, Cushman JC, Michalowski CB, Schmitt JM and Bohnert HJ (1989) Expression of the CAM-form of phosphoenolpyruvate carboxylase and nucleotide sequemce of a full lenth cDNA from Mesembryanthemum crystallimuum. Mol.Gen.Genet.215:447-454.
    [239]Sambrook J, Fritsch EF and Maniatis T (1995) Translated by Jin DY, Li MF, et al. Molecular Cloning:A Laboratory Manual.2 nd.Beijing:Science Press.
    [240]Sasaki H and Ishii R (1992) Cultivar different in leaf photosynthesis of rice bred in Japan. Photosyn.Res.32:139-146.
    [241]Sato S, Xing AQ,Ye XG, et al. (2004) Production of linolenic acid and stearidonic acid in seeds of marker-free transgenic soybean. Crop Sci.44:646-652.
    [242]Schaeffer GW and Sharpe FT (1997) Electrophoretic profiles and amino acid composition of rice endosperm proteins of a mutant with enhanced lysine and total protein after backcrosses for germplasm improvements. Theor.Appl.Genet.95(1-2):230-235.
    [243]Schagger H and Von Jagow G (1987) Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100kDa. Anal. Biochem.166:368-379.
    [244]Sheen J (1991) Molecular mechanisms underlying the differential expression of maize pyruvate,orthophosphate\dikinase genes. Plant Cell 3:225-245.
    [245]Sheriff A, Meyer H, Riedel E, Schmitt JM and Lapke C (1998) The influence of plant pyruvate,orthophosphate dikinase on a C3 plant with respect to the intracellular location of the enzyme. Plant Sciencel36:43-57.
    [246]Shigeseburo T. (1972) Photosynthetic efficiency in rice and wheat.Rice Breeding. International Rice Research Institute, Manila, Philippines,471-479.
    [247]Srinath K.Rao, Noel C.Magnin, et al. (2002) Photosynthetic and Other Phosphoenolpyruvate Carboxylase Isoforms in the Single-Cell, Facultative C4 System of Hydrilla verticillata. Plant Physiology 130:876-886.
    [248]Sugimoto (1992) DNA sequence and expression of a phosphoenolpyruvate carboxylase gene from soybean. Plant Molecular Biology 20:743-747.
    [249]Suzuki S, Murai N, Bumell JN, et al.(2000) Changes in photosynthetic carbon flow in transgenic rice plants that express C4-type phosphoenolpyruvate carboxykinase from Urochloa panicoides. Plant Physiol.124:163-172.
    [250]TA Rees and SA Hill (1994) Metabolic control analysis of plant metabolism. Plant Cell Environ.17:587-599.
    [251]Takahashi M, Kinoshita T and Takeda K (1968) Character expression and caudal genes of some mutants in rice.Fac. Agric. Hokkaido Univ.,54: 496-512.
    [252]TakeuchiY, Akagi H, Kamasawa N, et al.(2000) Aberrant chloroplasts in transgenic rice plants expressing a high level of maize NADP-dependent malic enzyme. Planta 211:265-274.
    [253]Tanaka A, Mita S,Ohata S,et al (1990) Enhancement of foreign gene expression by a dicot inrtron in rice but not in tobacco is correlated with an increased level of mRNA and effieiet splicing of the intorn.Nucleic acids. Res.18:6767-6770.
    [254]Tanabe M, Izui K and Toriyama K (2000) Production and analysis of transgenic C3-C4 intermediate Moricandia arvensis expressing a maize C4 phosphoenolpyruvate carboxylase gene. Plant Biotechnol.17:93-98.
    [255]Tang Y, Wen X and Lu C (2005) differential changes in degradation of chlorophyll-protein complexes of photosystem I and photosystem Ⅱ during flag leaf senescence of rice. Plant physiology and biochemistry 43:193-201.
    [256]Tees P (1995) Interspecific variation for CO2 compensation point and differential growth among variants in a C3-C4 intermediater plant. Oecologia 102:371-376.
    [257]Ting IP and CB Osmond (1973) Photosynthetic phosphoenolpyruvate carbocylass charactertics of all enzymes from leaves of C3 and C4 plants. Plant Physiol.51:439-447.
    [258]Trevanion SJ, Furbank RT and Ashton AR (1997) Nadp-malate dehydrogenase in the C4 plant Flaveria bidentis:Cosense suppression of activity in mesophyll and bundle-sheath cells and consequences for Photosynthesis. Plant Physiol.113.1153-1165.
    [259]Uemara K and Miyachi S (1997) Ribulosel,5-bisphosphate carboxylase oxygenase from the malilic red algae with a strong specificity for CO2 fixation. Biochem Biophys. Re. Comm.233(2):568-571.
    [260]Ueno O and Takeda T (1992) Photosynthetic pathways, ecological characteristics and the geographical distribution of the Cyperaceae in Japan. Oecologia 89:195-03.
    [261]Ueno O (1998) Induction of Kranz Anatomy and C4-like Biochemical Characteristics in a Submerged Amphibious Plant by Abscisic Acid. Plant Cell 10:571-583.
    [262]Veronica G, Mariana S and Carlos S (2001) Non-photosynthetic malic enzyme frommaize:A constituvely expressed enzyme that responds to plant defense inducers. Plant Mol. Biol.45:409-420.
    [263]Wang Q, Lu C and Zhang Q (2005) Middy photoinhibition of two newly developed super-rice hybrids. Photosynthetica 43:277-281.
    [264]Westhoff P, Svensson P, Ernst K, Blasing O, Burscheidt J and Stockhaus J (1997) Molecular evolution of C4 phosphoenolpyruvate carboxylase in the genus Flaveria. Australian J. Plant physiol.24:429-436.
    [265]Westhoff P and Gowik U(2004) Evolution of C4 phosphoenolpyruvate carboxylase. Genes and proteins:A case study with the genus Flaveria. Ann. Bot.93:13-23.
    [266]Wettstein DV, Kahn A, Nielesn OF and Goush S (1976) Genetic regulation of chlorophyll analyzed with mutant in barely. Science184:800-802.
    [267]Whitney SM, Baldet P, Hudson GS, et al.(2001) Form I rubiscos from non-green algae expressed abundantly but not assembled in tobacco chloroplasts. Plant J.26(5):535-547.
    [268]Wright SK and Viola RE (2001) Alteration of the specificity of malate dehydrogenase by chemical modulation of an active site arginine. J.Biol.Chem.276:31151-31155.
    [269]YamamotoT (1997) Genetic analysis of spreading stub using indica/japonica backcossed progenies in rice. Breeding Sci.47:141-144.
    [270]Yamane Y, Kashino Y, Koike H and Satoh K (1998) Effects of high temperatures on the photosynthetic systems in spinach:oxygen-evolving activities, fluorescence characteristics and the denaturation process. Photosynth.Res.57:51-59.
    [271]Yeo ME, Yeo AR, and-Flowers TJ (1994) Photosynthesis and photorespiration in the genus Oryza. J.of Experimnet Botany 45:553-560.
    [272]Ye XD, Al_babili S, Klti A, et al (2000) Engineering the provitamin A (β_carotene) biosynthetic pathway into(carotenoidfree) rice endosperm. Science,2000,287:303-305.
    [273]Yolanda JL and Das LDV (1995) Correlation and path analysis in rice. Madras Agricultural Journal.1995,82(11):576-578.
    [274]Yoshiko Miyagawa, Masahiro Tamoi, Shigeru Shigeoka (2001) Over expression of a cyanobacterial-fructose-1,6-/sedoheptulose-1,7-bisphosphatase in tobacco enhances photosynthesis and growth.Nature Biotechnology 19: 965-969.
    [275]Yu BS, Lin ZW, Li HX, et al.(2007) TAC1, a major quantitative trait locus controlling tiller angle in rice.Plant J.52(5):891-898.
    [276]Yu Ding and Ma Qing (2004) Characterization of a cytosolic malate dehydrogenase cDNA which encodes all isozyme toward oxaloacetate reduction in wheat. Biochimi.86:509-518.
    [277]Zhang BJ, Ling LL, Jiao DM (2009) Photosynthetic characteristics and effect of ATP in transgenic rice with phosphoenolpyruvate carboxylase and pyruvate orthosphophate dikinase genes. Photosynthetica 47:133-136.
    [278]Zhao M (2001) Selecting and characterizing high photosynthesisPlants of O.sativa × O. rufipogon progenies. Rice Science f or a Better World,4th Conference of the Asian Crop Science Association (ACSA),24-27, Manila, Philippine.
    [279]Zheng WJ and Li XJ (2001) Evolutionary pattern in the C4 metabolic phenotype[C]//Li CS. Advances in Plant Sciences Vol.4.Beijing:China higher Education Press; Heidelberg:Springer-Verlag,:15-24.
    [280]Zhou HY, Chen SB, Li XG, et al.(2003) Generating marker-free transgenic tobacco plants by Agrobacterium-mediated transformation with double T-DNA binary vector. Acta. Botanica Sinica 45(9):1103-1108.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700