用户名: 密码: 验证码:
地震作用下顺层岩质边坡变形破坏机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地震对边坡所造成的破坏影响巨大,顺层岩质边坡由于其结构的特殊性,在地震时更易发生变形破坏。本文以国家自然基金项目(青年科学基金)“强震作用下层状结构岩质边坡变形破坏机理与防治对策研究”为依托,结合唐家山滑坡实例,对地震作用下顺层岩质边坡的变形破坏特征进行研究。
     本文在综合考虑边坡成因、地质特征、水文状况、变形破坏形式等因素的基础上,总结归纳了顺层岩质边坡的分类方案;对地震荷载下岩石的力学特性、地震作用下顺层岩石边坡的影响因素、破坏机理和力学机制进行系统研究;应用离散元单法及UDEC程序对地震顺层岩质边坡的变形破坏规律进行数值模拟研究,通过逐一改变边坡的坡角、坡高、岩层倾角、材料组成、以及地震动荷载等条件来研究顺层节理边坡的变形破坏规律;在上述研究的基础上,对唐家山堰塞湖形成前滑坡稳定性进行离散元数值模拟,对地震作用下唐家山顺层岩质边坡的变形破坏机理进行研究。
Earthquake-induced rock slope failure is a common earthquake disaster, including sliding and collapse, especially in mountainous and hilly areas,which has characteristics of greatness of distribution, quantity, and hazard. In China, seismic activity has features of high degree of frequency, intensity, shallow focal, wide distribution; there are many earthquake examples of slope failure, which does serious harm to life and property security. China's recent large-scale earthquake was "5?12" Wenchuan earthquake, which induced tens thousands of landslide hazard, and formed relatively large-scale of 136 barrier lake, that brought huge injury to people of disaster area. So, Study on slope deformation and failure mechanism under earthquake action, can further evaluate of slope dynamic stability, meanwhile back-stepping seismic characteristic, can provide a good foundation for landslide prediction, above research allows us to take protective measures, nip in the bud, effectively reduce the economic loss caused by earthquake-induced slope failure, which is very important significance for Chinese socialist modernization construction.
     Landslide is usually formed by bedding rock slope. Bedding rock slopes can be classified into different kinds according different research purposes. Classifying according to parameters of structural slope: According to angle of slope ,bedding rock slopes can be divided into gentle slope, sloping ground,steep slope,steep gradient,hang slope,adverse slope. According to angle of slope can be divided into gentle inclined outward layer structure, medium dip outward layer structure, steep dip outward layer structure, nearly vertical layer structure, angle-tilt outward layer structure. According to slope height can be divided into ultra-high slope, high slope, middle slope, low slope; According to slope structure can be divided into single-layer structure, multi-layer structure, and inter-layer structure. According to layered rock-mass degree of broken , it can be divided into broken layered rock-mass, relatively complete layered rock-mass; According to formation lithology can be divided into extrusive rock slope, carbonatite slope, sedimentary rock slope with weak intercalated layers, incompetent bed slope, metamorfic rock slope. According to degree of rock weathering can be divided into completely weathered, highly weathered, weakly weathered, slightly weathered, non-weathered; According to groundwater dynamic condition can be divided into the motive mechanism of hydrodynamic pressure and dynamic pore pressure, the motive mechanism of excess pore pressure; According to deformation and failure characteristics , one of them can be divided into unloading resilience and slope creep by the mode of slope deformation, the other can be divided into caving(collapse), creep down (landslide), side displacement by type of slope failure.6 According to the geomechanical patterns of the slope deformation and failure can be divided into creep (sliding)and fracturing,sliding and compression cracking,bending and fracturing,plastic flowing and fracturing,sliding and bending; According to the velocity of gliding mass movement can be divided into high speed, fast, medium-speed, slow. We can set up structure model of rock bedded slopes and stability mathematical model according to classified scheme, This has laid foundations of bedding slopes stability analysis.
     Study on the rock mechanics characteristic by earthquake loading, In this paper, Factors analysis on stability of bedding slopes under earthquake,including geologic background, formation lithology of geological environment and their combinatory, terrain landform, rock mass structural plane, structure types, hydrology conditions, earthquake loading conditions and so on. Then system research on mechanism of rock bedded slopes deterioration under earthquake loading, which by slopes fluctuation oscillation cause sliding failure, the deformation and failure process will produce three effects: progressive failure effect, priming effect, starting accelerated effect; the slopes deformation process under earthquake loading can be divided into deformed slow action stage, severe loading stage, instability violent slide stage.
     Discrete element method is established by Cundall who is from the United States in the 20th century 70's.It is an important method for numerical analysis applied to solve problems of discontinuous body. Interface (such as Discontinuity) is introduced in this method which is based on the finite element method to be the boundary between continuous bodies (intact rock). Continuum mechanics method is used for describing the mechanics behavior of continuous body and non-continuum mechanics for interface. This paper gives an in-depth research on problems encountered in the application of discrete element method and UDEC program, such as damping treatment, constitutive model selection, Time-stepping choosing, mesh generation, seismic loading and boundary condition determination. Conclusion of the research is advantageous to solve practical problems and issues.
     Dynamic deformation and failure rule of slope is researched by the way of numerical simulating deformation and destruction rule of bedding rock slope under earthquake condition with UDEC program , taking into account discontinuous joints and changing slope angle, height, bed angle, materials components and the seismic load conditions separately .Then get the following conclusions: (1)The maximum speed and displacement increase with height, and when the slope is higher than 80m, slope deformation and destruction increased obviously. (2) Bedding dip aggravates slope deformation. When it increases from 20°to 80°, the maximum displacement appears rapid growth, while block maximum speed decreases when the angle is 80°. This demonstrates that earthquake plays an important part in destroying the slope when bedding dip is 40°.Yet when bedding dip is bigger than slope angle, seismic load reduce the damage on slope. At the same time, slope failure mode will transit from slippage to toppling. (3)With the increase of the slope Angle, slope deformation increases at first, and then decreases. When the Angle is smaller than 60°, slope deformation is influenced seriously by earthquake. When slope angle is bigger than 60°, seismic load effect decreases. (4) The maximal displacement of slope increases with the amplitude and the increasing degree increases with the amplitude. Slope displacement under the intensity of VI ~, VIII degrees are respectively 2.2, 6.3, 19.2 times to that under V degrees. When it is 0.8s, maximum speed of block increases with the amplitude, and the slip velocity changes from fast to top speed. (5) There is a critical value for the effect of dynamic load cycle on slope. (6) Duration has significant effects on slope deformation and destruction. The maximal displacement increases with duration. As a result, if earthquake lasts longer, slope will be destroyed more seriously. (7) Under earthquake, the rock mass strength has a great effect on slope deformation and failure. Slope made up of rock of lower strength is easier to destroy. Conversely, slope comprised of rock of higher strength is more difficult to destroy. Slope destruction by dynamic loads is inversely proportional to the strength of rock mass.
     Based on the above analysis and investigation, this paper did discrete element numerical simulation on slide slope I-I at Tangjiashan’s trailing edge which caused Tangjiashan barrier lake in "5?12" Wenchuan earthquake, completely simulated the 30s' whole process of landslide sliding from the slope to the Tongkou river and forming a weir dam,and obtained displacement vector graph, velocity vector graph and stress-strain diagram of landslide body after 29s’loading. From the velocity vector graph of landslide body we are told that there could be three stages in the process of slide deformation and failure: leading edge shearing, trailing edge cracking-rapid decline, forming air waves, leading edgeriver eroding riverbed-slope at the trailing edge collapse and damming, we could also calculate the downslide velocity of landslide body and the result is up to 30 m/s, belonging to typical superhigh-speed landslides. This is consistent with the actual formation process of Tangjiashan landslide in the "5?12" Wenchuan earthquake, therefore it is of important practical significance for the investigation of landslide process of bedding rock slope under the action of earthquakes, the dynamic stability analysis, and mechanism of landslides blocking river system.
引文
[1]李海波,蒋会军,赵坚等.动荷载作用下岩体工程安全的几个问题.岩石力学与工程学报,2003,22(11),1887~1891
    [2]Keefer D K.Statistical analysis of an earthquake-induced landslide distribution-the 1989 Loma Prieta,California event [J].Engineering Geology,2000,58(3-4):231~249
    [3]Mario Parise,Randall W.Jibson.A seismic landslide susceptibility rating of geologic units based on analysis of characteristics of landslides triggered by the 17 January, 1994 Northridge, California earthquake[J].Engineering Geology,2000,58:251~270
    [4]Luzi L,Pergalani F.A correlation between slope failures and accelerometric parameters: the 26 September 1997 earthquake Umbria-Marche, Italy[J].Soil Dynamics and Earthquake Engineering,2000,20:301~313
    [5]李卫平,王科英,赵荣国.2002年全世界灾害性地震综述[J].国际地震动态,2003,(2):10~14
    [6]苏卫江,苏宗正.2003年12月26日伊朗巴姆地震[J].山西地震,2004,(2):47~49
    [7]陈颙,史培军.自然灾害[M].北京:北京师范大学出版社, 2007 p:47
    [8]祁生文伍法权严福章岩质边坡动力反应分析[M].科学出版社北京2007
    [9]李树德,任秀生,岳升阳,等.地震滑坡研究[J].水土保持研究,2001,8(2):24~25
    [10]Keh-Jian Shou, Cheng-Fung Wang. Analysis of the Chiufengershan landslide triggered by the 1999 Chi-Chi earthquake in Taiwan[J].Engineering Geology,2003,68:237~250
    [11]陈建君.复杂山区斜坡的地震动力响应分析:1~2
    [12]李亮辉.顺层岩质边坡软弱结构面原位剪切试验及其稳定性分析研究[D].武汉:华中科技大学,2005.p:1
    [13]谷德振.岩体工程地质力学基础[M].北京:科学出版社,1979
    [14]王冬珍,地下水对滑坡稳定评价的影响分析.水利水电快报.1999.Vol 20.22:13~15
    [15]杨全忠.西藏滑坡地质灾害及防治对策[J].中国地质灾害与防治学报2002,13(1):94~97
    [16]加拿大矿物和能源技术中心.边坡工程手册.祝玉学,邢修祥译.北京:冶金工业出版社,1984
    [17] E.Hoek, J.W.Bray.岩石边坡工程.卢世宗译.北京:冶金工业出版社,1983
    [18] K.太沙基, R.泼可.工程实用土力学[M].水利水电出版社,1960
    [19] A. W. BishoP. The use of the Slip Circle in the Stability Analysis of Slopes,Geotechnique. Vol.5, No.l, 1955
    [20] N. Janbu. Earth Pressure sand bearing capacity calculations by generalized Proeedure of slices. Proceedings of the fourth international conference on soil mechanics and foundation engineering, Vol.2, 1957
    [21] Janbu. N. Slope stability computations. Embankment Engineering,1973
    [22] Morgenstern, H. R. and Price, V. E. The analysis of the stability of general slip surfaces. Geo-technique, Vol. 15, 1965
    [23]张天宝.土坡稳定分析圆弧法的数值解研究[J].成都工学院学报,1978,l-2
    [24]潘家铮.建筑物的抗滑稳定和滑坡分析[M].水利出版社,1980
    [25]孙玉科,姚宝魁.我国岩质边坡变形破坏的主要地质模式[J].岩石力学与工程学报,1983.2(1):67~76
    [26]刘宝琛.矿山岩体力学概论[M].长沙:湖南科学出版社,1982
    [27]中国科学院地质研究所编.岩体工程地质力学问题[M].北京:科学出版社1985.4
    [28]周蒂.国际数学地质界的盛会—记IAMG第25周年大会[J].物探化探计算技术.1994, 16(1):89~92
    [29]张倬元,王士天,王兰生.工程地质分析原理[M].北京:地质出版社,1993
    [30]王兰生,张倬元.斜坡岩体变形破坏的基本地质力学模式[J].水文工程地质论从(1),北京:地质出版社,1985
    [31]赵其华,王兰生.边坡地质工程理论与实践.四川大学出版社,2001
    [32]R.E. Goodman. Methods of Geological Engineering in Discontinuous Rock[M].West Publishing Company,1976
    [33]Griffiths D.V,Lane PA. Slope stability analysis by finite elements[J]. Geotechnique,1999,49(3):387~403
    [34]黄润秋.中国西南岩石高边坡的主要特征及其演化[J].地球科学进展,2005,20(3):292-297.
    [35]丁恩保.金沙江水电开发中的超高陡边坡问题[J].工程地质学报,2000,8(2):131-135
    [36]Michalowski R L. Slope stability analysis: a kinematical approach[J]. Geotechnique,1995,45(2):283~293
    [37]黄润秋,邓荣贵等著.高边坡物质运动全过程模拟[M].成都科技大学出版社,1993
    [38]黄润秋,张倬元,王士天.高边坡稳定性的系统工程地质研究[M].成都:成都科技大学出版社,1991
    [39]王泳嘉.离散单元法一种适用节理岩石力学分析的数值方法[A].第一届全国岩石力学数值计算及模型试验讨论会论文集,1986
    [40]秦四清,张倬元等.非线性工程地质学导[M].西南交通大学出版社,1993
    [41]Zhang,Ch. H. Application of distinct element method in dynamic analysis of high rock slopes and blocky structures. Soil Dynamics and Earthquake Eng.,1997,16:385~394
    [42]石根华.块体系统不连续变形数值分析新方法[M].科学出版社,1993
    [43]黄润秋,许强.显式拉格朗日差分分析在岩石边坡工程中的应用[J].岩石力学与工程学报,1995,14(4)
    [44]邓建辉.节理岩体自适应有限元分析方法及其工程应用[J].岩石力学与工程学报,1995,14(3)
    [45]李彰明.模糊分析在边坡稳定性评价中的应用[J].岩石力学与工程学报,1997,16(5):490~495
    [46]焦玉勇,葛修润.基于静态松弛法求解的三维离散单元法[J].岩石力学与工程学报.2001.19(4):453~458
    [47]寇晓东,周维垣,杨若琼.FLAC—3D进行三峡船闸高边坡稳定分析[J]岩石力学与工程学报,2001,20(l):6~10
    [48]祝玉学.边坡可靠性分析[M].北京:冶金工业出版社,1993
    [49]严春风,徐健.岩体强度准则概率模型及其应用[M].重庆大学出版社,1999
    [50]王家臣.边坡工程随机分析原理[M].北京:煤炭工业出版社,1996
    [51]黄志全,王思敬等,岩体力学参数取值的置信度及其可靠性[J].岩石力学与工程学报,1999,18(3):33~35
    [52]夏元友.基于神经网络的岩质边坡稳定性评估系统研究[J].自然灾害学报,1996,5(l):98~104
    [53]陈新民,罗国煌.基于经验的边坡稳定性灰色系统分析与评价[J].岩土工程学报,1999,21(5):638~641
    [54]靳茁.神经计算智能基础原理·方法[M].成都:西南交通大学出版社,2000
    [55]徐建平,胡厚田.摄动随机有限元法在顺层岩质边坡可靠性分析中的应用[J].岩土工程学报,1999,21(l):71~76
    [56]谢康和,周健.岩土工程有限元分析理论与应用[M].北京:科学出版社,2002
    [57]Cundall,P.A.. Formulation of a Three-dimensional Distinct Element Model-Part 1. A Scheme to Detect and Represent Contacts in System Composed of Many Polyhedral Blocks. International Journal Rock Mechanics Sciences and Geotechnology Abstract,1988,25(3):107~116
    [58]Cundall,P.A.. A Computer Model for Simulating Progressive Large Seale Movements in Blocky Rock System[A]. In: Proc. of the Symposium of the International Society of Rock Mechanics[C],Nancy,France,1971:1138.
    [59]王泳嘉,邢纪波.离散元法及其在岩土力学中的应用[M].沈阳:东北工学院出版社,1991
    [60]魏群.散体单元法的基本理论,数值方法及程序[M].北京:科学出版社,1991
    [61]姚寿广等.边界元数值方法及其工程应用[M].北京:国防工业出版社,1995
    [62]殷有泉.固体力学非线性有限元引论[M].北京:北京大学出版社,1987
    [63]朱大勇,钱七虎.基于余推力法的边坡临界滑动场[J].岩石力学与工程学报,1999,18(6):667~670
    [64]张东日,陶连金等.拉格朗日元法及其应用软件FLAC[J].矿山压力与顶板管理,1997,3(4):224~226
    [65] Shi G. H.. Discontinuous Deformation Analysis a New Numerical Model for the Static and Dynamics of Deformable Blocks Structures[J].Engineering Computation,1992,9(2):157~168
    [66]石根华.数值流形方法与非连续变形分析[M].北京:清华大学出版社,1997
    [67]Shi G.H.. Simplex Integration for Manifold Method,FEM and DDA Discontinuous Deformation Analysis(DDA) and Simulations of Discontinuous Media[M]. TSI Press,1996:205~262
    [68]胡广韬,滑坡动力学,北京,地质出版社,1995;
    [69]薛守义.岩体边坡动力性研究.中国科学技术大学博士学位论文,1989.
    [70]毛彦龙,胡广韬,毛新虎,石耀武,地震滑坡启程剧动的机理研究及离散元模拟,工程地质学报,2001,9(l):74~80
    [71]祁生文,伍法权,刘春玲,丁彦慧,地震边坡稳定性的工程地质分析,岩石力学与工程学报,2004,23(16):2792~2797
    [72]陈志坚.层状岩质边坡工程安全监控建模理论及关键技术研究[D]河海大学,2001,11
    [73]湖南省水力水电勘测设计院.边坡工程地质[M].水利电力出版社,1982
    [74]王思敬,张菊明.岩体结构稳定性的块体力学分析.地质科学,1980,(1):19~33
    [75]王思敬,张菊明.边坡岩体滑动稳定的动力学分析.地质科学,1982,2:162~170
    [76]王思敬,薛守义.岩体边坡楔形体动力学分析.地质科学,1992,2:177~182
    [77]张菊明,王思敬.层状边坡岩体滑动稳定的三维动力学分析[J].工程地质学报,1994,(3).p:3~5
    [78]张咸恭,王思敬,张倬元等著.中国工程地质学.北京:科学出版社,2000
    [79]Wang S.J., Xue S.Y., Maugeri M., Motta E.. Dynamic stability of the left abutment in the Xiaolangdi Project On the Yellow River. Proc. Int. Symp. On Assessment and Prevention of Failure Phenomena in Rock Engrg.Ankara.April,5-7,1993
    [80]Wang S.J. and Zhang J. M.. On the dynamic stability of block sliding on rock slopes.Proc. Of the Int. Cont. on Recent Advances in Geotechnical Earthquake Engineering and Soil dynamics,St.Louis,431~434
    [81]Wang B.L.&Vinod K.Garga..A numerical method for modeling large displacement of jointed rocks.I.Fundamentals,Can.Geotech.J.,1993,30:P96~108
    [82]Brady B.H.G., Cramer M.L., Hart R.D.. Technical note preliminary analysis of a loading test on a large basalt block, Int. J. Rock Meck. Sc. & Geomech., Abstr.,1985 V01.22,No.5:P345~348.
    [83]Lorig L., Brady B.H.G. and Cundall P.A.. Hybrid distinct element-boundary element analysis of jointed rock. Int. J. Rock Mech.Min.Sci.&Geomech, Abstr.23(4),1986:P303~312
    [84]孙玉科,牟会宠,姚宝魁.边坡岩体稳定性分析,北京,科学出版社,1987
    [85]王存玉.地震条件下二滩水库库坡稳定性研究.岩体工程地质力学问题(七).北京:科学出版社,1987
    [86]张平,吴德伦.动荷载下边坡滑动的试验研究.重庆建筑大学学报,1997,19(2):80-86.
    [87]何蕴龙,陆述远,段亚辉.岩石边坡地震作用计算方法研究.长江科学院院报,1998,15(4):35~38
    [88]陶连金等.节理岩体边坡的动力稳定性分析.工程地质学报,2001,9(1):23~38
    [89]黄永林,顾小宁.层状块体结构岩坡崩塌过程的数值模拟.水文地质工程地质,2002,3:10~13
    [90]赵坚等.用UDEC模拟爆炸波在节理岩体中的传播.中国矿业大学学报,2002,31(2):111~115
    [91]刘小丽.三峡库区泄滩滑坡滑带土抗剪强度特性与稳定性分析.武汉:中国科学院武汉岩土力学研究所博士后出站报告,2005
    [92] BRAY JONATHAN D. REPETTO PEDRO C. Seismic de-sign considerations for lined solid waste landfills [J].Geotextiles and Geomembranes. Elsevier Applied Science Publ Ltd 1994, 13 (8): 497~518
    [93]林宗元.岩土工程勘察设计手册.北京:中国建筑工业出版社,1996
    [94]Seed H B. Consideration in the earthquake design of earth and rockfill dams[J]. Geotecknique,1979,29(3):215~263
    [95] Makdisi F I,Seed H B.Simplified procedure for estimating dam and embankment earthquake induced deformations[J]. J. Geotech. Engrg. ASCE 1978,104(GT7):849~867
    [96]刘汉东.考虑地震历时影响的岩质边坡楔体稳定性分析与计算[J].华北水利水电学院学报,1991,4:35~40
    [97]薛守义,王思敬,刘建中.块状岩体边坡地震滑动位移分析[J].工程地质学报,1997,5 (2):131~136
    [98]龚晓南.土工计算机分析.北京:中国建筑工业出版社.2000
    [99]STEVENL, KVAMER. Geotechnical Earthquake Engineering [M]. Prentice HallInc., U.S.A, 1996.423~462
    [100] FINNWDL. YOGENDRAKUMARM. TARA 3FL Program for Analysis of Liquefaction Induced Flow Deformations[M]. Department of Civil Engineering, University of British Columbia, Vancouver, British Columbia 1989
    [101]李晓红,卢义玉,康勇等.岩石力学实验模拟技术[M].北京:科学出版社,2007:1~4
    [102]尹祥础,尹灿.非线性系统失稳前兆与地震预测中国科学(B),1993,No.1:21~27
    [103]许强,黄润秋.用加卸载响应比理论探讨斜坡失稳前兆[J].中国地质灾害与防治学报,1995,(2).p:25~30
    [104]姜彤,马莎,许兵等.边坡在地震作用下的加卸载响应规律研究.岩石力学与工程学报,2004,23(22):3803~3807
    [105]姜彤,马莎,许兵.基于加卸载响应比理论的边坡动力稳定分析方法.岩石力学与工程学报,2007,26(3):626~635
    [106]HALATCHEV ROSSEN A.Probabilistic Stability Analysis of Structure Considering Tensile Failure.12WCEE,2000
    [107]李桂荣,余成学.层状岩体边坡的弯曲变形破坏试验及有限元分析[J].岩石力学与工程学报.1997,16(4):305~311
    [108]聂德新,任光明,陈海军,尚岳全等.溃屈型滑坡滑面强度特征及在稳定性预测中的意义[J].地质灾害与环境保护.1997,8(3):l~5
    [109]畅清廷,马衍泉,李朗国.层状岩体高边坡溃屈失稳研究[J].四川水力发电,1993,l:29~35
    [110]李树森,任光明,左三胜,层状结构岩体顺层斜坡失稳机理的力学分析[J].1995,6(2):24~29
    [111]廖小平.类土质路堑边坡变形破坏类型及其稳定性分析[J].岩石力学与工程学报,2003,(S2)
    [112]中华人民共和国建设部.中华人民共和国国家标准·岩土工程勘察规范[M].中国建筑工业出版社,1994
    [113]金德濂.水利水电工程边坡的工程地质分类(上)[J].西北水电,2000,(1)
    [114]孙玉科,徐义芳.引洮渠道土质(岩石)边坡的工程地质分类[J].地质科学,1959,(11)
    [115]孙广忠.工程地质与地质工程[M].地震出版社,1993
    [116]徐卫亚.层状坝基岩体结构分类的三角多项式模式图方法[J].武汉水利电力大学(宜昌)学报,1999,(4):253~286
    [117]金德濂.水利水电工程边坡的工程地质分类(中)[J].西北水电,2000,(2)
    [118]金德濂.水利水电工程边坡的工程地质分类(下)[J].西北水电,2000,(4)
    [119]晏同珍,杨顺安,方云.滑坡学.武汉:中国地质大学出版社.2000
    [120]姜德义,王国栋.高速公路工程边坡的工程地质分类[J].重庆大学学报(自然科学版),2003,(11)
    [121]陈红旗,赵华.水电工程高边坡的地质工程分类研究[J].水利水电技术,2004,35(4):9~12
    [122]白云峰.顺层岩质边坡稳定性及工程设计研究[D].西南交通大学:西南交通大学,2005
    [123]冷景岩.顺倾层状岩石路堑边坡失稳与加固的应用研究[D].铁道科学研究院硕士论文,2005
    [124]尹志东.边坡生态防护工程中的边坡分类和调查工作[J].西部探矿工程,2007,(7).
    [125]白云峰,周德培.渝怀线顺层边坡的工程地质特征与类型划分[A].中国岩石力学与工程学会.中国科学技术出版社[C]:中国科学技术出版社,2002
    [126]冯君.顺层岩质边坡开挖稳定性及其支护措施研究[D].西南交通大学:西南交通大学,2005
    [127]刘剑飞,胡时胜,胡元育,等.花岗岩的动态压缩实验和力学性能研究[J]岩石力学与工程学报,2000,19(5):618~621
    [128]周维垣.高等岩石力学[M].北京:水利电力出版社,1990
    [129]何蕴龙,陆述远.岩石边坡地震作用近似计算方法.岩土工程学报,1998,20(2):66~68
    [130]蒋溥,戴丽思.工程地震学概论.北京:地震出版社,1993
    [131]肖克强.地震荷载作用下顺层岩体边坡变形特征及稳定性研究:[学位论文].北京:中国科学研究生院,2006
    [132]祁生文,伍法权.边坡动力响应规律研究.中国科学E辑2003,33(s):22~40
    [133]周本刚,张裕明.中国西南地区地震滑坡的基本特征.西北地质学报,1994,16(1):95~103
    [134]丁彦慧,王余庆,孙进忠等.地震崩滑与地震参数的关系及其在边坡震害预测中的应用.地球物理学报,42(s):101~106
    [135]唐川,黄楚兴,万晔.云南省丽江大地震及其诱发的崩塌滑坡灾害特征.自然灾害学报,1997,6(3):76~84
    [136]梁庆国,韩文峰,马润勇等.强地震作用下层状验体会破坏的物理模拟研究.岩土力学,2005,26(8):1307~1311
    [137]蔡美峰.岩石力学与工程.北京:科学出版社,2002
    [138]姜德义,朱合华,杜云贵.边坡稳定性分析与滑坡防治.重庆:重庆大学出版社,2005.3
    [139] Cundall P.A.. The measurement and analysis of acceleration in rock slopes. London: University of London Imerial College of Science and Technology, Ph.D. Dissertation dissertation,1971
    [140] Itasca Consulting Croup, Inc. UDEC (Universal Distinct Element Code) user's manual[R]. Version 4.0, Minneapolis, Minnesota,2004
    [141]冷先伦,盛谦,廖红建.反倾层状岩质高边坡开挖变形破坏机理研究[J].岩石力学与工程学报,2004,23(增1):4468~4472
    [142]张玉军,朱维申.小湾水电站左岸坝前堆积体在自然状态下稳定性的平面离散元与有限元分析[J].岩石力学与工程学报,1999,18(5);497~502
    [143]刘亚群,李海波,李俊如.爆破荷载作用下黄麦岭磷矿岩质边坡动态响应的UDEC模拟研究[J].岩石力学与工程学报,2004,23(21):3659~3663
    [144]王贵君.节理裂隙岩体中大断面隧洞围岩与支护结构的施工过程力学状态[J].岩石力学与工程学报,2005,24(8):1329~1334
    [145]王泳嘉.离散单元法—一种适用于节理岩石力学分析的数值方法[A].第一届全国岩石力学数值计算机模型实验讨论会会议论文集[C].[s.1]:[s.n.],1986.32~37
    [146]刘连峰,王泳嘉. Cundall离散单元法的计算复杂性研究[J].有色金属(矿山部分),1995,(3): 6~19
    [147]焦玉勇.三维离散单元法及其应用[D].武汉:中国科学院武汉岩土力学研究所,1998.
    [148]鲁军,张楚汉,王光纶等.岩体动静力稳定分析的三维离散元数值模型[J].清华大学学报(自然科学版),1996,36:98~104
    [149]谭云亮,姜福兴等.锚杆对节理围岩稳定性影响的离散元研究[J].工程地质学报,1999,7(4):361~365
    [150]金峰,贾伟伟,王光纶.离散元一边界元动力耦合模型[J].水利学报,2001,(2):24~28
    [151]詹志峰,谢强,赵文.龙塘山2号大桥岸坡破坏模式的离散元模拟[J].地质灾害与环境保护,2001,(4)
    [152]金仁祥,任光明.陡倾角反倾层状岩质边坡变形特征数值模拟验证[J].中国地质灾害与防治学报.2003,14(2):35-38
    [153]朱焕春.锦屏I级水电站左岸雾化区IV-VI梁高边坡稳定性与加固处理研究报告[R]. Itasca(武汉)咨询有限公司,2007
    [154]刘凯欣,高凌天.离散元法研究的评述[J].力学进展,2003,33(4):483~490
    [155]沈宝堂,王泳嘉.边坡破坏机制的离散元法研究[J].东北工学院学报,1989,10(4):349~354
    [156]卓家寿,赵宁.离散单元法的基本原理、方法及应用[J].河海科技进展,1993,13(2):1~11
    [157]朱浮声,王泳嘉,斯蒂芬森O.露天矿山高陡岩石边坡失稳的三维离散元分析[J].东北大学学报,1997,8(3):234~237
    [158]侯克鹏,王龙,邓义声.大变形离散无法模拟边坡稳定性研究[J].中国矿业,2000,9(3):68~71
    [159] An G F, Yin K L, Tang H M. Discrete element analysis of Huangtupo landslide[J]. Journal of China University of Geosciences,2002,13(1):83~85
    [160]俞良群,邢纪波,徐建等.岩质高陡边坡失稳的离散元法与非连续变形法的对比分析[J].烟台大学学报(自然科学与工程版),1999,12(1):63~66
    [161]Bhasin R, Kaynia A M. Static and dynamic simulation of a 700 m high rock slope in western Norway[J]. Engineering Geology,2004,71:213~26
    [162]Eberhardt E, Stead D, Coggan J S. Numerical analysis of initiation and progressive failure in natural rock slopes-the 1991 Randa rockslide[J]. International Journal of Rock Mechanics and Mining Sciences,2004,41:69~87
    [163]张志勇.高陡岩石边坡加固技术研究[D].北京工业大学:2006:64~68
    [164]Itasca Consulting Group. UDEC Manual,2005
    [165]Biggs, J.M.(1964) Introduction to Structural Dynamics. New York: McGraw-Hill.
    [166]雷远见,王水林.基于离散元的强度折减法分析岩质边坡稳定性[J].岩土力学,2006,27(10) p:1694~1695
    [167] Kuhlmeyer R L, J. Lysmer. Finite Element Method Accuracy for Wave Propagation Problems. J. soil Mech & Foundations Div, ASCE, 1973, 99:421~427
    [168]Cundall P.A.UDEC—A generalized District Element Program for Modeling Jointed Roc. European Research Office,U.S.Army.1980
    [169]刘波,韩彦辉. FLAC原理、实例与应用指南[M].北京:人民交通出版社,2005
    [170]J. Lysmer and R. L. Kulemeyer. Finite Dynamic Model for Infinite Media. Journal of Engineering Mechanics Division, ASCE.1969, 95(4):759~877
    [171]R. R. Kunar and J. Marti. A Non-reflecting Boundary for Explicit Calculations. Computational Methods for Infinite Domain Media-Structure Interaction, ASME.AMD46,1981,183~204
    [172]李宁等.岩体节理刚度系数的现场声波测试,应用力学学报,1998,15(3):119~123
    [173]胡卸文,黄润秋,施裕兵,吕小平,朱海勇,汪雪瑞.唐家山滑坡堵江机制及堰塞坝溃坝模式分析[J].岩石力学与工程学报,2009,28(1):181~189

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700