用户名: 密码: 验证码:
吉林省东南部山区地质环境及边坡稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国公路建设的迅猛发展,边坡工程问题也随之变得越来越突出。目前对于边坡工程灾害的研究,主要存在如下问题:(1)对边坡所赋存的地质环境认识不清;(2)对各类边坡的破坏机制研究不深入。本文依托吉林省交通厅科研项目“吉林省东南部山区公路边坡破坏类型及防治对策研究”,以吉林省东南部多条公路路堑边坡为依托工程,在深入研究吉林省东南部山区地质环境的基础上,针对缓倾角顺层边坡、层状反倾边坡、块裂结构边坡、碎裂结构崩塌等不同类型的边坡,进行了破坏模式及稳定性评价方法的研究。对于顺层岩质边坡,考虑到降雨对坡体稳定性的重要影响,采用极限平衡法与模糊综合评判法相结合,分析其破坏机制及稳定性;对于反倾层状岩质边坡,将组成边坡的各个岩块概化为受自重和水平向外力作用的悬臂梁,采用结构力学方法,建立其倾倒破坏判据,并定量给出各因素对边坡稳定性的影响;对于块裂结构岩质边坡,采用极限平衡法计算典型剖面的稳定性,利用灰色关联分析法,对工程地质条件相关的边坡进行关联分析,给出它们的稳定状态;对于碎裂结构岩质崩塌,对各类崩塌进行分类研究,结合实际工程,采用理论计算与危岩快速评价相结合的方法,分析其稳定性。本课题的研究,对吉林省内公路边坡工程具有十分重要的指导意义,同时具有推广价值。
Slope engineering problems play an important role in roadway construction, which, if not correctly dealt, would result in the increase of construction time and expense, and affect on the safety during construction. Two deficiencies existing in the current study on slope engineering are: (1) there is lack of recognition of the occurrence geological environment of slope, (2) researches on the failure modes of various types of slope haven’t go far enough. Supported by the research project of Jilin communications department—‘Research on failure type and prevention-control method of highway slope in southeastern mountain area of Jilin province’, this paper conducts in-depth study on the geological environment of Jilin province and analyzes the failure mechanism and analysis method of stability of various types of slope.
     Generally, the terrain of Jilin province is high in southeastern and low in northwestern, with the new Cathaysian System and Cathaysian System Formation which control the landform features, among which Changbai Mountain area in the southeastern mainly, controlled by northeast-southwest mountains, presents apparent basin-mountain landform with basin and mountain alternating distribution. Middle and low mountains are dominant in the southeastern, with wide distribution of volcanoes, karst and platform, there are lots of hills in the western, with extensive river valleys and plain, the overall terrain of Song-Liao plain is high in eastern and low in west, with relatively rugged platform in eastern and extensive alluvial plain and large-area dune.
     Stratigraphic regionalization is based on strata age, lithologic features, sedimentary thickness and contact relationship, so that the strata of Jilin province could divide into four subareas which are Liaodong, Jilin-Yanbian, Song-Liao plain and Xing’an. Thereinto, Liaodong subarea includes Hunjiang district, Jilin-Yanbian subarea includes Jilin district and Yanbian district, Song-Liao plain subarea includes Nong’an district and Changling district, Xing’an subarea includes Baicheng district. Liaodong subarea belongs to north China stratigraphic region and the other three subareas belong to Tianshan-Xing’an stratigraphic region. Magmatic rock is widely distributed in Jilin province, much more in the eastern, with the formation of a complex rock type made by plutonic intrusive rocks, hypabyssal intrusive rocks and extrusive rock. Acid rock is the most widely distributed, such as granite, and there are some distributions of basic rock and ultrabasic rock. Jilin province divides into two primary geotectonic structures of China-Korea metaplatform in the southern and Tianshan-Xing’an geosynclinal fold area, which are subdivided into three subareas, five secondary partitions and twelve third-level tectonic elements, according to different geological structure characteristics and development history.
     Based on the analysis of geological environment of southeastern mountain area in Jilin province, the failure mechanism and stability calculation are carried out for four types of slopes, low dip angle consequent rock slope, namely low dip angle consequent rock slope, anti dip layered rock slope, block-fracture slope and fragmental structural collapse.
     For low dip angle consequent rock slope, some studies have been done as followings:
     (1) Both internal and external causes affecting the stability of consequent slope are discussed, while internal causes include the geometrical characteristic of slope, formation lithology, strata inclination, and geological structure. The influence of structure plane on the slope stability is emphatically analyzed, which is classified into layered and non-layered structure planes, including different genetic and classification of layered structure planes, the thickness of filling materials, the filling factor, roughness and cementation degree. For external causes, earthquake, excavation unloading, groundwater have been discussed, among which groundwater has adverse effect on the slope stability with kinds of actions, such as erosion, dissolution, softening, physicochemical and mechanical effect, meanwhile, groundwater hydraulics model for slope has been built. At last, analyses inter restricted and connected relationship of various causes affecting the stability of consequent slope and obtain some useful conclusions.
     (2)Study the typical geological condition of slope, and then analysis the failure mechanism of low dip angle consequent slope, the failure modes of which can be divided into four stages, namely unloading rebound stage, pressure-induced tension crack extending stage, fracture plane cutting through stage and sliding-pressure-induced tension crack stage. Generally, the failure mechanism of this type of slope can be summarized that sliding plane creeping results in the strength of rock mass reduced and the joints, micro fissures increased and the permeating path of rain enlarged, and then the deformation of slope increases because of the decreased strength of structure plane and reduced friction. Therefore, for the formation of sliding plane of low dip angle consequent rock slope, weak structure plane is the internal cause while the precipitate water is the external cause.
     (3)Using the methods of SARMA and JANBU, calculate the stability coefficient of typical slope under the conditions of drainage ratio being 0, 20%, 50%, 80% and 100%, obtain the stability coefficient of linear-circular potential sliding plane, and analysis the location of the potential sliding plane. Then make the conclusion that the stability coefficient decreases first and then increases as the distance between the trailing edge of structure plane and the toe of slope.
     (4)Considering the importance of precipitate water to the stability of slope, build a two-level fuzzy comprehensive assessment model of the influence of precipitate water on the stability of slope under the condition of different weight. Adopt different forms to determine the membership degree for the influencing factors of both discrete and continuous types. Do the fuzzy evaluation after correcting the weight of various factors under pre and post precipitate water, and determine the stable state of slope according to maximum membership degree law. By the comparison of the traditional limit equilibrium method and fuzzy comprehensive assessment method, the results are in agreement.
     Based on the investigation of the engineering geological condition, analyze the failure process of anti dip layered rock slope, which is made of three stages, namely plate girder bending, tension crack surface extending and moving, and overall breaking. As to study the failure mechanism of slope, generalize the blocks of anti dip slope into cantilever beams under dead weight moment and force, study the failure mode by the bending-tension model, build mechanical model of plate girder for anti dip layered rock slope, calculate the resultant moment on each plate girder, and then gain the tension stress on the side of the plate girder. Based on the maximum tension stress theory, give the instability criterion of block toppling to judge the stability of slope. Quantitative analysis of each influencing factor has been done to obtain the relationship of toppling failure of anti dip slope and the shape of each plate girder, including the height, width, inclination of the bottom surface and rock weight, and the conclusions are: there exist inverse proportions between the stability coefficient of slope and rock weight, 2-th power relationship between the stability coefficient of slope and the height of plate girder, proportional relation between the stability coefficient of slope and the width of plate girder, the toppling failure would happen when the inclination of bottom surface is in a certain range relevant to the height and width of the block. Supported by the typical toppling slope of Jilin belt highway, calculate the stability of each block and result in agreement with actual situation.
     Taking Ji’an-Gumaling cutting slope for example, study the stability of block-fracture slope. The slope in research area is located at Hunjiang district of Liaodong subarea and belongs to China-Korea metaplatform and Tianshan-Xing’an geosynclinal fold area. There are outcrop of granite in early stage of Yanshan and violet red siltitestone with gultenite inclusion in Heiwaizi group of cretaceous period. Controlled by Ji’an-Songjiang fault, the magmatite in research area is granitoid inrusion. For the block-fracture slope, there exists apparent potential sliding plane underlying, weathered and crushed block overlying, and more joints and fractures. Adopt limit equilibrium method to calculate the stability of two typical slope under different drainage ratio, and draw the two conclusions: (1) the stability coefficient of slope during K6+646 segment is 1.03 under the condition of no water, (2) the slope during K7+606 segment is stable whether there is underground water or not. Based above works, adopt gray relational analysis method, select the two calculated slopes as mother sequence and 8 slopes to be studied as subsequence to carry out gray relational analysis. The results show that No. 16 and No. 18 slopes, similar as No. 4 and No.8, are stable, while other six slopes are unstable, which are well agreed with the situation on site.
     As for the study of fragmental structural collapse, make induction and summarization of the characteristics of various structures in the rock slope, including primary structure plane and secondary structure plane, classify the collapse into toppling collapse, sliding collapse, bulging collapse, pulling collapse and faulted collapse, and give each type a stability calculating formula for unstable rock. Combined with slope engineering of Ji’an-Gumaling highway, make the statistic of the situation of fractures and physico-mechanics parameters of rock, and then analysis the mechanism of collapse, with the calculation of stability. The conclusion shows that the dangerous rock is unstable under the action of underground water or earthquake. On the other hand, build rapid evaluation index system for dangerous rock stability and obtain the value of each parameter to evaluate the stability of unstable rock. The results are consistent with those calculated by theory formula.
     In conclusion, this paper conducts in-depth study on the geological environment of Jilin province and analyzes of the failure mechanism and analysis method of stability of various types of slope, which is of great significance to the similar project construction in Jilin province.
     The main innovative points of paper:
     1、This paper is strating with the geological environment of Jilin Province in southeastern mountain. The stratum structure of Jilin Province ,tectonic divisions, the distribution and scale of the important folds and fractures, the formation age and intrusive condition of rocks like magmatic rock, the types and distribution of the underground water have been deeply understanded. Form over various points to research the geological environment of every typical slope, it is seldom on the domestic slope engineering research to combine geology with the slope failure mechanism and stability analysis .
     2、In the study of the sustained angle maleic layer rock slope, it is systemic induced and summarized the factors which affect the stability of slope. It uses the method of secondary fuzzy comprehensive evaluation and the traditional limit equilibrium method to calculate the stability of bedding rock slope. Considering the signify effect of the soft maleic layer rock, the secondary fuzzy comprehensive evaluation is modified. Undering different weight conditions, the judging system of slope stability which is affected by rainfall is put forward. The slope stability grade is calculated by changing the weight conditions of different factors which are before and after rainfall. The calculations are agree well with the limit equilibrium method and actual situations.
     3、Each bands of the anti-dip layered of rock slope is simplified as cantilever beam which suffers the dead weight moment and exogenous process. Then researching the failure mechanism of anti-dip slope by establishing bent-fracture model. Mechanical model of each plate girders is built by using structural mechanics method. The stability of each plate girders is judged by using maximum normal stress theory. On this basis, the quantitative relationship between the stability of plate girder and the factors such as the height, width, dip angle and bulk density are analysed.
     4、For the split-block structure of rock slope, the current study is still based mainly on the limit equilibrium method. It calculates two typical slope stability by using this method. Then calculated the other slopes which have the similar geological conditions by using the gray relational analysis method. Selected two calclated slope and other similar slopes as the parent sequence and the other eight slopes as the subsequence carry out gray relational analysis. The calculated results coincide well with the actual situations.
     5、Combined with the collapse example of Jian-gumaling highway slope and on the basis of counting the main factors which are influence the stability of the dangerous rock body, the rapid-evaluation index system and the quantitative taken values of evaluation index are established by using interaction relation matrix method .Then establishing the calculation method of dangerous rock unstable index and stable degree grade of the dangerous rock to judge the stability of the collapse dangerous rock.
引文
[1]迎接国际山地年,促进山区大发展[J].山地学报,2001,19(1):8。
    [2]中华人民共和国国家统计局编.中国统计年鉴-2005[M].北京:中国统计出版社,2005:12-22。
    [3]黄润秋.20世纪以来中国的大型滑坡及其发生机制[J].岩石力学与工程学报,2007,26(3):433-454。
    [4]吕庆.边坡工程灾害防治技术研究[D].杭州:浙江大学博士学位论文,2006。
    [5]李娜.云南省山崩滑坡堵江灾害及其对策[C].滑坡文集编辑委员会编.滑坡文集(第九集).北京:中国铁道出版社,1992:50–55。
    [6]吴玮江,王首颖.洒勒山滑坡机制[C].滑坡论文选集编辑委员会编.滑坡论文选集.成都:四川科学技术出版社,1989:184–189。
    [7]殷跃平.中国地质灾害减灾回顾与展望[J].国土资源科技管理,2001,18(3):26–29。
    [8]钟立勋.中国重大地质灾害实例分析[J].中国地质灾害与防治学报,1999,10(3):1–10。
    [9]陈自生,孔纪名.1991年9月23日云南省昭通市头寨沟特大滑坡[J].山地研究,1991,9(4):265–268。
    [10]金德山.云南元阳老金山滑坡[J].中国地质灾害与防治学报,1998,9(4):98–101。
    [11]孙德永.南昆铁路八渡滑坡工程整治[M].北京:中国铁道出版社,2000。
    [12]张倬元.滑坡防治工程的现状与发展展望[J].地质灾害与环境保护,2000,11(2):89–97。
    [13]吉林省地方志编纂委员会[M].吉林省志(卷四:自然地理志),2001。
    [14]王超.吉、黑东部古近纪地层序列及盆地演化[D] .长春:吉林大学硕士学位论文,2007。
    [15]黄清华,孔惠,金玉东.依兰-伊通地堑方正断陷孢粉组合及其地层层序[J].微体古生物学报,2002,19(2):193-198。
    [16]刘茂强等.伊通-舒兰地堑地质构造特征及其演化[M].北京:地质出版社,1993:29-78。
    [17]任建业,陆永潮,李思田等.伊舒地堑构造演化的沉积充填响应地质科学[J].地质科学,1999,34(2):196-203。
    [18]周晓东.吉林省中东部地区下石炭统-下三叠统地层序列及构造演化[D].长春:吉林大学博士学位论文,2009。
    [19]贾大成,卢炎,崔圣哲.吉林中部石炭系岩石建造及其构造环境[J].长春地质学院学报,1994(1):9-14。
    [20]彭玉鲸.吉林省石炭-二叠纪生物地理区的划分[J]吉林地质,1996,15(1):12-18。
    [21]彭玉鲸、王占幅吉林省中部A型花岗岩的确定及其构造意义[J]吉林地质1995(3)
    [22]彭玉鲸,王友勤,刘国良,孙革.吉林省及东北邻区三叠系[J]。吉林地质,1982,(3):1-19。
    [23]彭玉鲸、陈跃军、殷长建、李睿.吉黑造山带古生代地层及混杂岩[J].世界地质,2005,24(1):24-29。
    [24]苏养正中国东北区二叠纪和早三叠纪地层[J]吉林地质1996.(3、4):55-65。
    [25]季伟强.吉黑东部中生代晚期火山岩的年代学和地层化学[D].长春:吉林大学硕士学位论文,2007。
    [26]陈跃军.吉林省东-南部中生代火山事件地层研究[D].长春:吉林大学博士学位论文,2003。
    [27]靳克.延边地区中生代火山岩的岩石学和地球化学[D].长春:吉林大学博士学位论文,2004。
    [28]李锦轶.中国东北及邻区若干地质构造问题的新认识[J].地质论评,1998,44:339-347。
    [29]李锦轶,牛宝贵,宋彪,等.长白山北段地壳的形成与演化[M].北京:地质出版社.1999。
    [30]裴福萍,许文良,靳克.延边地区晚三叠世火山岩的岩石地球化学特征及其构造意义.世界地质,2004,23(1):6-13。
    [31]李川川.吉林长白山晚更新世以来火山作用与冰川演化的关系[D].沈阳:辽宁师范大学硕士学位论文,2008。
    [32]李超文.吉林省东南部晚中生代火山作用及其深部过程研究[D].北京:中国科学院博士学位论文,2006。
    [33]张炯飞,祝洪臣.延边地区花岗岩的成因类型及其形成的大地构造环境[J].辽宁地质,2000,17(1):25-33。
    [34]隋振民.吉林省中生代花岗岩成因系列及其构造环境[J].吉林地质,1995,14(1):15-22。
    [35]刘传深.吉林省矿山地质环境综合研究[D].长春:吉林大学硕士学位论文,2006。
    [36]刘默.吉林红旗岭铜镍硫化物矿床地质特征及成因研究[D].长春:吉林大学硕士学位论文,2005。
    [37]李碧乐,孙丰月,姚凤良.中生代敦化-密山断裂大规模左旋平移及其对金矿床形成的控制作用[J].大地构造与成矿学2002(4):390-395。
    [38]关键,李卫东,王来云,宁绍军.吉林省东部地区贵金属、有色金属控矿因素及成矿物质来源[J].吉林地质2003(1):14-22。
    [39]雷恩.吉林珲春杨金沟白钨矿床地质地球化学成因及特征[D].长春:吉林大学硕士学位论文,2009。
    [40]郭朝晖.甘肃省朱岔白钨矿床地质特征及成因探讨[J].甘肃冶金,2004,26(2):42-44。
    [41]张海龙.吉林省羊草沟盆地下白垩统含煤地层与聚煤规律研究[D].长春:吉林大学硕士学位论文,2004。
    [42]沈世伟,佴磊.吉林市绕城高速公路倾倒边坡破坏机制及稳定性评价[J].铁道建筑,2010,3:71-73。
    [43]DS Timothy, T Hisham. Performance of three-dimensional slope stability methods in practice[J] Journal of Geotechnical and Geoenvironmental Engineering,1998,124(11):1049~1060.
    [44] JG Zornberg, N Sitar,JK Mitchell. Performance of Geosynthetic Reinforced Slopes at Failure[J] Journal of Geotechnical and Geoenvironmental Engineering,1998,124(8):670~683.
    [45] JG Zornberg, N Sitar,JK Mitchell.Limit Equilibrium as Basis for Design of Geosythetic Reinforced Slopes[J] Journal of Geotechnical and Geoenvironmental Engineering,1998,124(8):684~698.
    [46] John T. Christian,Alfredo Urzua.Probabilistic Evaluation of Earthquake-induced Slope Failure[J] Journal of Geotechnical and Geoenvironmental Engineering,1998,124(11):1140~1143.
    [47] Shapiro A,Delport J L.Statistical Analysis of Jointed Rock Data[J]Intermational Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts ,1991,28(5):375~382.
    [48] D.Heliot. Generating a Blocky Rock Mass[J]Intermational Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1988,25(3):127~138.
    [49] David K.Keefer. Statistical analysis of an earthquake-induce landslide distribution-the 1989 Loma Prieta, California event[J]Engineering Geology,2000,58 (3/4):231~249.
    [50] CE Rodriguez,JJ Bommer,RJ Chandler. Earthquake-induced landslides:1980~1997[J]SoilDynamics and Earthquake Engineering,1999,18(3):325~346.
    [51] AW Bishop.The Use of the Slip Cirele in the Stability Analysis of Slopes[J]Geotechnique,1955,5(1):7~17.
    [52] E Spencer.A Method of Analysis of the Stability of Embankments Assuming Parallel Inter-Slice Forces[J]Geotechnique,1967,17(1):11~26.
    [53] NR Morgenstern,VE Price.The Analysis of the Stability of General Slip Surfaces[J]Geotechnique,1965,15(1):79~93.
    [54] SK Sarma.Stability Analysis of Embankments and Slopes[J]Geotechnique,1973,23(3):423~433.
    [55] Cundall PA.A Computer Model for Simulating Progressive Large Scale Movementsin Bloey Rock System[A]In:Proe.of the Symposium of the Intemational Society of Rock Mechanics[C]Nancy France,1971:1128.
    [56] Shi GH.Simplex Iniegration for Manifold Method,FEM and DDA.Discontinuous Deformation Analysis(DDA) and Simulations of Discontinuous Media[M]TSI Press,1996:205-262.
    [57] Deng Ronggui,Zhang Zhuoyuan.Stability of Fengdian high cutting Slope along the express way from Chengdu to Nanchong of China[A]2001 ISRM Symposium-2nd Asian Rock Mechanies Symposium[C]Beijing:A ABalkema,2001.569~572.
    [58] Wang Zhiyin,Yang Zhifa,Li Yunpen.Research on Displacemen Criterion of Struetural Deformation and Failure for Bedding Roek slope[J]Seienia Geologica Siniea,1998,7(2):217-223.
    [59] Li Qiang,Zhann Zhuoyuan. Mechanism of buckling and creep buckling failure of the bedding rock mass on the consequent slope[A]Proc of the 6th Intern Congr of IAIJG[C]Rotterdam:A A Balkema.1990.257~260.
    [60] Warm Z,Y Zhifa. Research on displacement criterion of struetural deformation and failure for bedding rock Slope[J]Seientia Geologica sinica,1998,7(2):217-224.
    [61] E Hoek,J Bray.Rock slope engineering[M]London:Inst.Min and Metall,1997.
    [62] RE Goodman. Introduetion to rock mechanics[M]NewYork:John Wiley and Sons,1980.
    [63] Cavers D S.Simple methods to analyze bulking of rock slopes[J]Rock Mechanies,1981,14:87-104.
    [64] Barton N,Bandis S and Bakhtar K.Strengtlh. Deformation and Conductivity Coupling Rock Joints[J]Int.J.Rock Mech Mech,Min.Sci,1985,22:121-40.
    [65] Bandis S.C.,Lumsden A.C.,Barton N.R.Fundamentals of Rock Joint Deformation[J]Int.J.RockMeeh.Min.Sei.&Geomeeh.1983,Abstr.,20(6):249-268.
    [66] Goodman RE,Taylor RL,Brekke TL.A Model for the Mechanies of jointed Rock[J]J of the Soil Mechanics and Foundations Division(SM3),ASME,1968,94(3):637-659.
    [67] Bandis SC.Mechanieal Properties of Rock Joints[A]In Proe.Int.Soc.Rock Mech.symp.on rock joints,Loen,Norway,(eds N.Barton and O.Stephansson),125-140.Rotterdam:Balkema.
    [68] Bandis SC,Lumsden AC,Barton NR.Fundamentals of Rock Joint Deformation[J]Int J Rock Mech Min Sci&Geomech Abstr,1983,20(6):249-268.
    [69] Goodman RE.Methods of Geologieal Engineering in Discontinuous Rock[M].NewYork:West Publishing Company,1976.
    [70] T.Sato,T.Kikuchi,K.Sugihara.In-situ experiments on an excavation disturbed zone induced by mechanical by mechanical excavation in Neogene sedimentary rock at Tono mine, centralJapan Engineering Geology,2000,36:97-108.
    [71] Fellenius W.Erdstatiche Berechnungen mit Reibung and Kohasion,Ernst,Berlin(in German),1927.
    [72] Bishop A.W.The use of the slip circle in the stability analysis of slopes Geotichnique,London,1955,5(1):7-17.
    [73] Janbu N.Earth pressures and bearing capacity calculations by generalized procedure of slices. Proceedings of the fourth international conference on soil mechanics and foundation engineering,1957,2.
    [74] Morgenstern N.R.,Price V.E.The analysis of the stability of general slip surfaces.Geotechnique,London,1965,15(1):79-93.
    [75] Spencer E.A.Method of analysis of the stability of embankments assuming parallel interslice forces.Geotechnique,London,1967,17(1):11-26.
    [76] Janbu N.Slope stability computions.Soil Mech.And Found.Engrg.Rep.,The technical unicersity of Norway,Trondheim,Norway,1968.
    [77] Hoek E.,Bray J.W.,Boyd J.M.The stability of a rock slope containing a wedge resting on two intersecting discontinuities. Quarterly J.Engineering Geology,1973,6(1).
    [78] Revilla J.Castillo E.The calculus of variation applied to stability of slope.Geotech,1977,27(1):1-11.
    [79] Sarma S.K.Stability analysis of embankments and slopes.J.Geotech.Engrg.Div.,ASCE,1979, 105(12):1511-1524.
    [80] Leshchinsky D.Slope stabiliyty analysis: Generalized approach. J. Geotech. Eng. 1990,116(5) :851-867.
    [81] Li K.S.,White W.Rapid evaluation of the critical surface in slope stability problems. International for Numerical and Analytical Methods in Geomechanics.1987,11(5):449-473.
    [82] Clough A.K.Variable factor of safety in slopes stability analysis by limit equilibrium method.J.,1stEng. India PartⅡ1988,69(3):149-155.
    [83] Milutin M Srbalov.Limit equilibrium method with local factors of safety for slope stability.Can.Geotech.J.,1987,24(4):652-656.
    [84] Chen Z.-Y.,Shao C.-M.Evaluation of minimum factor of safety in slope stability analysis. Can.Geotech.J.,1988,25(4):735-748.
    [85] Meiketsu Enoki,Mori,Yagi,Ryuichi,Yatabe. Generalized slice method for slope stability analysis.Soil.Found.J.,30(2):1-13.
    [86] Espinazo R.D,Bourdeau P.L.,Mahunthan B.Unified formaulation for analysis of slopes with general surface. Geotech. Eng.1994,120(7):185-204.
    [87] Baker R.Determination of the critical slip surtace in slope stability computations. International for Numerical and Analytical Methods in Geomechanics.1980,4:333-359.
    [88] Boutrup E,Lovell C.W.Search technique in slope stability analysis. Engrg. Geol.,1980,16(1):51-61.
    [89] Cherubini C,Creco V.R.A probabilistic method for locating the critical slip surface in slope stability analysis.Proc.,5th I.C.S.A.P.,1987,2:1182-1187.
    [90] Yamagami T,Ueta Y.Search for noncircular slip surfaces by the Morgenstern-Price method. Proc.,6th Int. Conf. Numer. Methods in Geomech.,1988:1219-1223.
    [91] Chen Z,-Yu. Random trials used in determining global minimum factors of safety of slopes. Can.Geotech.J.,29:225-233.
    [92] Greco V.R. Efficient Monte Carlo technique for locating critical slip surface. Geotechl.Eng.1996,122(7):517-525.
    [93] Anagnosti P. Three dimensional stability of fill dams.Proc.7th Int. Conf. on Soil Mech. And Found. Engrg. ,A. A. balkema, Rotterdam, the Neterlands,1969.
    [94] Giger M.W.,Krizek R.J.Stability of veritical corner cut with concentrated sruchrge load.J. Geotech. Engerg. Div. ASCE,1976,102(1):31-40.
    [95] Baligh M.M.,Azzpouz A.S.,Ladd C.C.Line loads on cohesive slopes.Proc.,9th Int. Conf. on soil Mech. And Found. Engrg, Japan Soc.For Soil Mech. And Found. Engrg.,Tokyo,1977,2:13-17.
    [96] Chen R.H.,Chameau J.L.Three dimensional limit equilibrium analysis of slopes.Geotchnique,London,1983,33(1):31-40.
    [97] Dennhardt M.Forster W.Problems of three dimension slope stability.Proc.,11th Int. Conf. on Soil Mech. And Found. Engrg.,A.A.Balkema, Rotterndam.The Netherlands.2.1985,427-431.
    [98] Ugai K.Three-dimensional stability analysis of vertical cohesive slopes. Soils and Found.Tokyo,1985,25(3):41-48.
    [99] Seed R.B.,Mitchell J.K.,Seed H.B.Kettlemen Hills waste landfill slope failure∏:stability analysis.J.Geotech.Engrg.,ASCE,1990,116(4):699-690.
    [100] Benko B.Numerical Modelling of Complex Sope Deformayion. Department of Geological Science, University of Saskatchewan,Saskatoon,Canada,1997.
    [101] Eberhardt E&Stead D.Mechanisms of slope instability in thinly bedded surface mine slopes.In Moore&Hunger(eds.),Proceedings,3th International IAEG Congress,Vancouver. A. A. Balema,Rotterdam,1998:3011-3018.
    [102] Chen G.&Ohnishi Y.Solpe stability using discontinuous deformation analysis method.In Amadei et al.(eds.),Proceedings of the 37th U.S. Rock Mechanics Symposium,Vail. A. A. Balkma,Rotterdam,1999:535-541.
    [103] Stead D,Benko B,Eberhardt E&Coggan J.Failure mechanisms of complex landslides: A numerical modeling perspective.In Bormhead et al.(eds.),Landslides in Reasearch in Reasearch, Theory and Practice: Proceedings of the 8th International Symposium on Landslides, Cardiff. Thomas Telford,London,2000:1401-1406.
    [104] Eberhardt E&Stead D,Coggan J&Willenberg H. An integrated numerical analysis approach to the Randa rockslide. In Rybar et al/(eds.),Landslides in the Central Eruope, Proceedings of the 1st European Conference on Landslides, Prague. Swets&Zeitinger, The Netherlands(In Press),2002.
    [105] Zienkiewicz O.C.,Humpheson C,Lewis R.W.Associated and non-associated visco-plasticity and plasticity in soil mechnics.Geotechnique,1975.25(4):671-689.
    [106] Griffiths D V,Lane P A. Slope stability analysis by finite elements. Geotechnique,1999.49(3):387-403.
    [107] Dawsom E M,Roth W H,Drescher A.Slope stability analysis by strength reduction. Geotechnique,1999.49:835-840.
    [108] Matsui T,San K C.Finite element slope stability analysis by shear strength reduction technique. Soils and Foudations,1992,32(1):59-70.
    [109] Cundall P.A.A computer model for simulating progressive, large scale movements in block rock systems. In Rock Mechanics: Proceedings of the International Symposium on Rock Mechanics,Nacy.PaperⅡ-8,1971.
    [110] Trollope D H.The mechanics of discontinuous or elastic mechanics in rock problems. In rock mechanics in engineering practice, Zienkiewicz O C and Stagg K G(ed.),London:Wiley,1968,275-320.
    [111] Goodman R E.Methods of geological engineering in discontinuous rock,1976.
    [112] Kawal T,Toi Y.A new element in discrete analysis of planestrain to rock mechanics. Proceedings of international symposium on weak rock,1981,725-730.
    [113] Kawal T et al. New discrete models and their application to rock mechanics. Proceedings of international symposium on weak rock,1981:725-730.
    [114] Schofield A. N.Use of centrifugal model testing to assess slope stability. Canadian Geotechnical Journal.1978,15:14-31.
    [115] Schofield A. N.Cambridge geotechnical centrifuge operations. Geotechnique, 1980,30:227-268.
    [116] Bray J. W.,R. E. Goodman. The theory of base friction models. International Joural of Rock Mechanics and Mining Science&Geomechanical Abstracts 18,1981:453-468.
    [117] Hencher S.R,Liao Q. H.,B. G.. Monaghan.Modelling slope behavior for open pits.Trans. Inst. Min. Metall(Sect. A:Mining Industry),105:A37-47
    [118]潘瑞林,李秉生,蒋爵光。板裂结构岩体顺层边坡溃曲破坏的研究[J].西南交通大学学报,1990,77(3):82-88。
    [119]秦四清、张卓元、王士天。顺层斜坡失稳的突变理论分析[J].中国地质灾害与防治学报,1993,4(1):38-46。
    [120]李树森,任光明,左三胜。层状结构岩体顺层斜坡失稳机理的力学分析[J].地质灾害与环境保护,1995,6(2):25-29。
    [121]李天扶。层状岩体边坡顺层破坏机理研究[J].水利发电,1996,8(2):46-50。
    [122]刘钧。顺层边坡弯曲破坏的力学分析[J].工程地质学报,1997,5(4):335-340。
    [123]芮永琴,徐小荷,杨天鸿等。露天矿顺层蠕动边坡稳定性动力分析探讨[J].中国矿业,1999,8(6):54-57。
    [124]巫锡勇,王效宁。岩质顺层滑坡运动特征的研究[J].西南交通大学学报,1990,77(3):89-98。
    [125]邓荣贵、周德培、李安红等。顺层岩质边坡不稳定岩层临界长度分析[J].岩土工程学报,2002,24(2):178-182。
    [126]李守定,李晓,吴疆。大型基岩顺层滑坡滑带形成演化过程与模式[J].岩石力学与工程学报,2007,26(12):2473-2480。
    [127]程胜国,方坤河,罗先启。基于岩体刚度的顺层岩质边坡破坏特性研究[J].岩土力学,2006,27(supp):1141-1144。
    [128]杨涛,周德培,罗阳明。考虑层间作用的多层滑坡分析方法[J].岩石力学与工程学报,2005,24(7):1129-1133。
    [129]孟刚,余志雄。顺层岩质边坡稳定性影响因素分析[J].岩土力学,2005,26(supp):51-55。
    [130]龚文慧,王平,陈峰。顺层岩质路堑边坡稳定性的敏感性因素分析[J].岩土力学,2007,28(4):812-816。
    [131]柴波,殷坤龙。顺向坡岩层倾向与坡向夹角对斜坡稳定性的影响[J].岩石力学与工程学报,2009,28(3):628-634。
    [132]黄润秋,赵建军,巨能攀等。汤屯高速公路顺层岩质边坡变形机制分析及治理对策研究[J].岩石力学与工程学报,2007,26(2):239-246。
    [133]刘才华,徐建,曹传林等。岩质边坡水力驱动型顺层滑移破坏机制分析[J].岩石力学与工程学报,2005,24(19):3529-3533。
    [134]童治怡。岩质边坡滑动面力学参数的取值理论和方法研究[D].武汉:中国科学院博士学位论文,2009。
    [135]周应华。红层路堑边坡失稳机理及加固防护技术研究[D].成都:西南交通大学博士学位论文,2006。
    [136]寸江峰。喀斯特地区层状岩质边坡破坏机理及其稳定性评价理论研究[D].贵州大学硕士学位论文,2007。
    [137]胡启军。长大顺层边坡渐进失稳机理及首段滑移长度确定的研究[D].西南交通大学博士学位论文,2008。
    [138]雷远见。顺层边坡稳定性分析[D].武汉:中国科学院硕士学位论文,2006。
    [139]卢增木。顺层岩石高边坡的稳定性研究[D].武汉:中国科学院硕士学位论文,2005。
    [140]唐浩。顺层岩质边坡稳定性影响因素分析[D].武汉:武汉理工大学硕士学位论文,2009。
    [141]冯君。顺层岩质边坡开挖稳定性及其支护措施研究[D].成都:西南交通大学博士学位论文,2005。
    [142]程国建。层状岩质边坡稳定性分析[D].重庆:重庆大学硕士学位论文,2008。
    [143]黄洪波。层状岩质边坡的稳定性分析[D].杭州:浙江大学硕士学位论文,2003。
    [144]岳斌。金川露天矿边坡倾倒变形特征及倾倒变形的简单力学机制和应用[C].华东岩土工程学术大会论文集。
    [145]白占平,曹兰柱等。矿山层状反倾边坡岩体移动规律的试验研究[J].工程地质学报,1997,5(1):80-85。
    [146]邹成杰。天生桥水电站厂房南边坡倾倒破坏分析及工程治理[J].岩石力学与工程学报,1991,10(1):23-32。
    [147]汪小刚,张建红,赵毓芝等。用离心模型研究岩石边坡的倾倒破坏[J].岩土工程学报,1996,18(5):14-21。
    [148]汪小刚,贾志新,陈祖煜。岩质边坡倾倒破坏的稳定性分析方法[J].水利学报,1996.3:7-13。
    [149]陈祖煜,张建红,汪小刚。岩石边坡倾倒稳定分析的简化方法[J].岩土工程学报,1996,18(6):92-95。
    [150]韩传贝,王思敬。边坡倾倒变形的形成机制与影响因素分析[J].工程地质学报,1999,7(3):213-217。
    [151]尹锡杰,晏鄂川,孙兆来。某反倾页岩边坡破坏面确定及其稳定性分析[J].岩土力学,2007,28(supp):595-598。
    [152]卢增木,陈从新,左宝成等。对影响逆倾层状边坡稳定性因素的模型试验研究[J].岩土力学,2006,27(4):629-633。
    [153]邹丽芳,徐卫亚,宁宇等。反倾层状岩质边坡倾倒变形破坏机理综述[J].长江科学院学报,2009,26(5):25-30。
    [154]位伟,段绍辉,姜清辉等。反倾边坡影响倾倒稳定的几种因素探讨[J].岩土力学,2008,29(supp):431-434。
    [155]孙东亚,彭一江,王兴珍。DDA数值方法在岩质边坡倾倒破坏分析中的应用[J].岩石力学与工程学报,2002,21(1):39-43。
    [156]任光明,夏敏,李果等。陡倾顺层岩质斜坡倾倒变形破坏特征研究[J].岩石力学与工程学报,2009,28(supp1):3193-3200。
    [157]陈红旗,黄润秋。反倾层状边坡弯曲折断的应力及挠度判据[J].工程地质学报,2004,12(3):243-247。
    [158]蒋良潍,黄润秋。反倾层状岩体斜坡弯曲-拉裂两种失稳破坏之判据探讨[J].工程地质学报,2006,14(3):289-295。
    [159]左宝成。反倾岩质边坡破坏机理研究[D].武汉:中国科学院硕士学位论文,2004。
    [160]苏立海。反倾层状岩质边坡破坏机制研究—以锦屏一级水电站左岸边坡为例[D].西安:西安理工大学硕士学位论文,2008。
    [161]李爱民。突变理论在反倾岩质边坡稳定性评价中的应用研究[D].长沙:中南大学硕士学位论文,2004。
    [162]刘卡丁,张玉军。层状岩体剪切破坏面方向的影响因素[J].岩石力学与工程学报,2002,21(3):335-339。
    [163]金仁祥,任光明。陡倾角反倾层状岩质边坡变形特征数值模拟验证[J].中国地质灾害防治学报,2003,14(2):35-38。
    [164]程东幸,刘大安,丁恩保。层状反倾岩质边坡影响因素及反倾条件分析[J].岩土工程学报,2005,27(11):1362-1366。
    [165]刘红岩,秦四清。层状岩石边坡倾倒破坏过程的数值流形方法模拟[J].水文地质工程地质,2006,5:22-25。
    [166]任光明,聂德新,刘高。反倾向岩质斜坡变形破坏特征研究[J].岩石力学与工程学报,2007,22(supp2):2707-2710。
    [167]田卿燕。块裂岩质边坡崩塌监测预报理论及应用研究[D].长沙:中南大学博士学位论文,2003。
    [168]蒋良潍。松散斜坡体锚、桩加固作用机理与工程应用研究[D].成都:成都理工大学博士学位论文,2006。
    [169]唐树明。碎裂结构岩体路堑边坡锚固机理分析及其应用研究[D].重庆:重庆大学博士学位论文,2003。
    [170]曹兴松。碎裂岩体路堑高边坡失稳机理及防治技术研究[D].成都:西南交通大学博士学位论文,2006。
    [171]祁宁。碎裂岩体高边坡稳定性评价与防治措施研究[D].西安:长安大学硕士学位论文,2006。
    [172]戚德强。杭金衙高速公路K103破碎岩质边坡稳定性分析[D].杭州:浙江大学硕士学位论文,2007。
    [173]张吉庆。石忠高速公路松散堆积体路堑边坡稳定性分析及处治技术研究[D].重庆:重庆交通大学硕士学位论文,2009。
    [174]赋鹤林。块裂岩质边坡稳定性理论分析模型及工程应用研究[D].长沙:中南大学博士学位论文,2000。
    [175]胡高社。巨厚松散层高陡斜坡的形成机理及其纺织工程效应研究[D].西安:长安大学博士学位论文,2006。
    [176]祝建。巨厚层松散高陡边坡的形成机理及稳定性研究[D].西安:长安大学硕士学位论文,2005。
    [177]赵建军。公路边坡稳定性快速评价方法及应用研究[D].成都:成都理工大学博士学位论文,2007。
    [178]高海伟。危岩崩塌的链式演变过程及信息跟踪技术应用[D].成都:重庆交通大学硕士学位论文,2008。
    [179]陈秀琼。内昆铁路K249+159右侧岩质边坡崩塌形成机理及整治措施[D].成都:西南交通大学硕士学位论文,2007。
    [180]刘卫华。高陡边坡危岩体稳定性、运动特征及防治对策研究[D].成都:成都理工大学博士学位论文,2008。
    [181]张管宏。交河故城崖体稳定性及崩塌机理研究[D].兰州:兰州大学硕士学位论文,2007。
    [182]王廷贵。冲击河流暗滩崩塌机理的理论分析及试验研究[D].北京:中国水利水电科学研究院博士学位论文,2003。
    [183]李枫。金安桥水电站左岸边坡崩塌体稳定性研究[D].南京:河海大学硕士学位论文,2005。
    [184]高正。块体理论在岩体边坡稳定性分析中的应用[D].西安:长安大学硕士学位论文,2005。
    [185]谢其勇,饶杨安,吴立。印山越国王陵破碎岩质边坡稳定性分析[J].土工基础,2004,18(4):7-9。
    [186]晏鄂川,戴光忠,刘昌雄。碎裂岩石路堑边坡稳定性评价与安全防护设计[J].岩土力学,2005,26(supp):257-260。
    [187]全凤文。碎裂结构岩质边坡滑坡机理与防治[J].公路,2004,6:8-12。
    [188]段海澎,赵建军,巨能攀。碎裂结构岩质边坡变形过程及变形机制分析[J].路基工程,2008,139(4):170-172。
    [189]余子华,晏鄂川,戴光忠等。碎裂结构路堑岩质边坡稳定性评价与治理设计[J].公路交通科技,2005,22(9):137-140。
    [190]霍宇翔,黄润秋,巨能攀等。碎裂结构边坡变形机理及治理对策研究[J].工程地质学报,2009,17(3):317-321。
    [191]凌必胜,郑建中。高陡碎裂结构千枚岩路堑边坡稳定性分析与支护设计[J].地质灾害与环境保护,2009,20(2):33-36。
    [192]林育梁。岩土与结构工程中不确定性问题及其分析方法[M].北京:科学出版社,2009。
    [193]温世亿,李建林,杨学堂等。卸荷高边坡稳定性分析的多级模糊综合评判[J].岩土力学,2006,27(11):2041-2044。
    [194]徐卫亚,蒋中明,石安池。基于模糊集理论的边坡稳定性分析[J].岩土工程学报,2003,25(4):409-413。
    [195]刘杰,李建林,胡海浪。基于有限元分析的岩质边坡稳定性模糊评判方法研究[J].岩石力学与工程学报,2007,26(supp1):3438-3445。
    [196]王振伟。模糊数学与极限平衡在边坡评价中的综合应用[J].辽宁工程技术大学学报(工程科学版),2008,27(4):529-531。
    [197]蒋中明,冯树荣,陈胜宏。向家坝水电站岩石高边坡模糊数值分析[J].岩石力学与工程学报,2008,29(supp2):3968-3972。
    [198]刘章军,陈飞,周宜红。岩质路堑深边坡稳定性评价的模糊概率方法[J].岩土力学,2008,28(supp):368-372。
    [199]黄建文,李建林,周宜红。基于AHP的模糊评判法在边坡稳定性评价中的应用[J].岩石力学与工程学报,2007,26(supp1):2627-2632。
    [200]王旭华,陈守煜,陈雄。边坡稳定性主客观权重模糊模式识别分析[J].岩石力学与工程学报,2005,24(supp1):5243-5247。
    [201]叶万军,折学森,陈志新等。基于工程模糊集理论的边坡治理方案优化[J].公路交通科技,2008,25(6):30-34。
    [202]谭晓慧,王建国,胡晓军等。边坡稳定的模糊随机有限元可靠度分析[J].岩土工程学报,2009,31(7):991-997。
    [203]吕玺琳,钱建固,吕龙等。边坡模糊随机可靠性分析[J].岩土力学,2008,29(12):3437-3442。
    [204]贾厚华,贺怀建。边坡稳定模糊随机可靠度分析[J].岩土力学,2003,24(4):657-660。
    [205]曹文贵,张永杰。基于区间组合法的边坡稳定非概率模糊可靠性分析方法[J].土木工程学报,2007,40(11):64-69。
    [206]王广月,刘健,王有志。岩质边坡平面滑动的模糊可靠度分析[J].岩土力学,2005,26(supp):283-286。
    [207]杨坤,周创兵,张昕等。边坡块状结构岩体模糊随机可靠性分析[J].岩石力学与工程学报,2006,25(2):407-413。
    [208]黄伟,杨仕教,曾晟等。雪峰砂岩矿多滑面边坡稳定模糊可靠度分析[J].矿业研究与开发,2007,27(3):22-24。
    [209]魏星,虎旭林,郑璐石。考虑复合指标的边坡岩体稳定性灰色系统类比预测[J].宁夏农学院学报,2001,22(4):34-37。
    [210]唐天国,陈春华,刘浩吾。基于改进灰色模型的高边坡稳定性研究[C].第八次全国岩石力学与工程大会论文集,576-580。
    [211]杨静,陈剑平,王吉亮。均匀设计与灰色理论在边坡稳定性分析中的应用[J].吉林大学学报(地球科学版),2008,38(4):654-658。
    [212]陈志波,简文斌。边坡稳定性影响因素敏感性灰色关联分析[J].防灾减灾工程学报,2006,26(4):473-477。
    [213]朱玉平,莫海鸿。灰关联分析法在岩质边坡稳定性评价中的应用[J].岩石力学与工程学报,2004,23(6):915-919。
    [214]宁少晨,戚蓝。灰色斜率关联模型在堤防岸坡稳定影响因素分析中的应用[J].江西农业学报,2007, 19(3): 89~91。
    [215]孙强,张振文,李玲。基于距离与灰色关联分析原理的边坡稳定性[J].辽宁工程技术大学学报(自然科学版),2009,28(supp):85-87。
    [216]周雪亭。露天矿边坡稳定性影响因素的灰关联分析[J].安徽冶金科技职业学院学报,2005,15(2):67-69。
    [217]吉林省地质矿产局。吉林省区域地质志[M].北京:地质出版社,1988。
    [218]孙广忠。岩体力学基础[M].北京:科学出版社,1983。
    [219]段福州。地质体三维模型数据结构的研究与实现[D].北京:首都师范大学硕士学位论文,2004。
    [220]陈振。综合地质数据模型研究与管理系统开发[D].长沙:中南大学硕士学位论文,2008。
    [221]张林。基础地质数据管理与三维地质模型构建方法研究[D].西安:西安科技大学硕士学位论文,2007。
    [222]穆福森。煤矿地质三维可视化模型研究与实现[D].合肥:安徽理工大学硕士学位论文,2007。
    [223]赵阶晨。地图矢量化及地质结构建模技术研究[D].西安:西安科技大学硕士学位论文,2008。
    [224]龚文惠,王平,陈峰等.顺层岩质路堑边坡稳定性的敏感性因素分析[J].岩土力学2007.28(4):812-816。
    [225]牛双建,东兆星,李顺波等.顺层岩质边坡稳定性影响因素综合分析[J].岩土工程与地下工程,2007.28(5):81-83。
    [226]李维光,楼建国.降雨条件下顺层滑坡影响因素和稳定性分析[J].采矿与安全工程学报,2006.23(4):498-501。
    [227]李维光,张继春.地震作用下顺层岩质边坡稳定性的拟静力分析[J].山地学报,2007.25(2):184-199。
    [228]郭学彬,张继春,刘泉等.爆破振动对顺层岩质边坡稳定性的影响[J].矿业研究与开发,2006.26(2):77-80。
    [229]李道明。顺层岩质边坡稳定性分析与防治研究[D].武汉:武汉理工大学硕士学位论文,2007。
    [230]李远耀。三峡库首区顺层基岩岸坡变形机制与稳定性研究[D].北京:中国地质大学硕士学位论文,2007。
    [231]汪益敏,陈页开等。降雨入渗对边坡稳定影响的实例分析[J].岩石力学与工程学报,2004,23(6):920-924。
    [232]刘小伟,刘高,谌文武等。降雨对边坡变形破坏影响的综合分析[J].岩石力学与工程学报,2003,22(supp2):2715-2718。
    [233]戚国庆,黄润秋。降雨引起的边坡位移研究[J].岩土力学,2004,25(3):379-382。
    [234]张卓元,王士天,王兰生。工程地质分析原理[M].北京:地质出版社,1997。
    [235]刘建磊。三峡库区仁沱新街库岸边坡稳定性分析与库岸再造预测[D].长春:吉林大学硕士学位论文,2009。
    [236]肖位枢.模糊数学基础及应用[M].北京:航空工业出版社,1992。
    [237]王伟,张永波,叶浩等.内蒙古砒砂岩的模糊聚类分析[J].吉林大学学报(地球科学版),2009,39(6):1168-1172。
    [238]方樟,肖长来,梁秀娟等.松嫩平原地下水脆弱性模糊综合评价[J].吉林大学学报(地球科学版),2007,37(3):546-550。
    [239]陈水利,李敬功,王向公。模糊集理论及其应用[M].北京:科技出版社,2005。
    [240]彭祖赠,孙韫玉。模糊数学及其应用[M].武汉:武汉大学出版社,2002。
    [241]杨伦标,高英仪。模糊数学原理及应用[M].广州:华南理工大学出版社,2005。
    [242]孙杰,牟在根,张晓.基于隶属函数选取的岩土工程模糊可靠度分析[J].岩土工程技术,2006,20(4):200-203。
    [243]李胡生。岩土参数随机模糊统计中的隶属函数形式[J].同济大学学报,1993,21(3):316-369。
    [244]孙广忠。岩体结构力学[M].北京:科学出版社,1988。
    [245]周训军。集丹公路路堑边坡破坏机制分析及治理研究[D].长春:吉林大学硕士学位论文,2005。
    [246]陈春。灰色系统理论在堤防岸坡稳定性分析中的应用[D].南宁:广西大学硕士学位论文,2004。
    [247]朱玉平,莫海鸿。灰关联分析法在岩质边坡稳定性评价中的应用[J].岩石力学与工程学报,2004,23(6):915-919。
    [248]傅鹤林,等.岩土工程数值分析新方法[M].长沙:中南大学出版社,2006。
    [249]贾洪彪,唐辉明,刘佑荣等。岩体结构面三维网络模拟理论与工程应用[J].科学出版社,2008。
    [250]石豫川。山区高等级公路层状岩质边坡稳定性HSMR快速评价体系研究[D].成都:成都理工大学博士学位论文,2007。
    [251]黄达,黄润秋,周江平,裴向军,刘卫华.雅碧江锦屏一级水电站坝区右岸高位边坡危岩体稳定性研究[J],岩石力学与}程学报,2007,26(l):175-181。
    [252]张晓晖,王辉,戴福初,等.基于关系矩阵和模糊集合的斜坡稳定性综合评价[J1.岩石力学与工程学报,2000,19(3):346-351。
    [253]丁继新,周圣华,陈梦熊,等.基于多因素相互作用关系矩阵的边坡稳定性定量评价[J].工程勘察,2006(7):5-8。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700