用户名: 密码: 验证码:
基于分功率传动原理的旋转机械调速技术与装置研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国基础工业能源利用率低的问题亟待解决,其中重要的影响因素是生产过程中普遍使用的大型旋转机械(如泵与风机等)能耗过高。研究表明,合理的变速调节方式是此类设备系统节能运行的关键,但迄今国内仍多采用传统的定速节流调节方式,缺乏高效和可靠的传动技术支持,是变速调节这一节能运行主要技术途径难以实施的主要原因。在此背景下,本文围绕大型旋转机械的节能问题,借鉴国外近年提出的功率分流传动技术概念,开展了相关的先进调速传动原理与技术研究。
     通过对分功率调速传动的机理分析和可行技术方案分析,本文系统研究了此类调速传动系统的总体设计原理;结合一种采用高效机械传动与液力调速相结合的混合调速传动技术装置的研制,开展了相关的关键技术和试验研究;基于所研究的分功率调速传动原理和技术装置,探索研究了一种适用于大型风机水泵系统节能的流量调节方法。
     本文的主要研究工作和成果包括以下三个方面:
     1、研究了一种适用于大型旋转机械调速传动的新技术
     通过建立有效的系统传动分析模型,研究了分功率传动系统的总体方案和传动机理,掌握了功率流的分析方法及其与传动过程的关系。解决了传动系统调速特性、功率分流与耦合系统的机构学、功率分配原则及传动效率等关键问题,形成了较完整的系统总体传动设计理论与方法。
     2、研制了一种采用机-液复合传动调速(HMVD)的技术装置
     根据总体功能的设计要求,研究了调速部件、多自由度差动轮系传动机构和结构的设计依据与设计方法等问题。针对调速部件的设计需求,探索了液粘离合器逆向调速的问题,并研制成功新型调速单元部件;研究并设计了具有功率流切断和锁止功能的多自由度差动轮系调速机构;成功研制了具有自主知识产权的原型样机并开展了相关试验研究。
     3、提出了一种针对风机水泵系统流量调节的调速与节流复合调节方法
     基于所研究HMVD传动装置的功率流可分特性,针对大型风机、水泵系统的流量调节与节能问题,提出了一种调速与节流协调的流量调节机理。通过对分功率液力调速功耗特性和系统管路节流特性的研究,提出了调速与节流相结合的调节流量方法。以系统能耗最低为目标,建立了调速与节流协调优化模型,可根据系统运行工况确定最佳调速与节流分界点。该方法的应用可进一步降低分功率部分液力调速技术不可避免的功率损耗,为风机水泵的节能技术研究提供了一个新的方法。
In the production process of China's basic industries, fans, water pumps and other rotating machinery are the power equipments which have wide range of applications, have the largest number, and take the largest share of energy consumption. However, for the lack of efficient and reliable transmission technology, the applications of major technology method of large equipments'energy-saving operation--the variable-speed control is severely restricted. Thus, the traditional fixed-speed, throttle adjustment method is still widely used in large fans and water pumps system, resulting in great waste of energy.
     In this context, this paper presents a new research thought that is substituting for the traditional full power speed-control by part power speed-control, using the existing mature, reliable, small and medium-power speed-control technology to achieve the purpose of high-power rotating machinery's speed control. It aims to meet the demand of large-scale rotating machinery's energy-saving operation, and refers to the power split transmission technology concepts put forward by foreign countries in recent years.
     This paper starts with the analysis of the power split speed-control transmission mechanism and possible technical solutions, carries out the research of a typical transmission system apply theory and technology; by the development of a mixed speed-control transmission device, with high efficient mechanical transmission and hydraulic speed control, it carries out the related design theory and method, key technology, prototype development and experimental research. The research based on power split speed-control transmission technology and equipment, leads to the research of new methods of large fans and water pumps system's flow control, and explores a new method of energy-efficient technologies.
     Major research work and achievements of this paper include the following three aspects:
     1. Study a new technology which applies to large-scale rotating machinery's speed control transmission. It researches and analyzes the technology solutions and drive mechanism of power split transmission system, establishes an effective system transmission model, masters the analysis method of power split and its relationship with the transmission process. It researches key issues such as the speed characteristics, power split, coupling mechanisms, power distribution mechanism and transmission efficiency, forming a reletively complete system overall transmission design theory and method.
     2. Develope a hydro-mechanical variable-speed drive (HMVD) device. According to the functional requirements of the overall design, this paper researches some issues, such as the transmission mechanism's assembly programs of speed control components and multi-degree of freedom differential gear, the design basis and design methods of the mechanism and structural design. It explors the issue of reverse speed control and develops a new type of speed control unit components for the first time, carries out a research about cutting off and locking the power flow in the design of multi-degree of freedom differential gear, and successfully developes a prototype with independent intellectual property rights and carries out a pilot study.
     3. Research and present a new complex flow control method of pumps and fans system based on HMVD.This paper researches and presents the coordination adjustment principle of speed control and throttle adjustment for the flow control and energy saving of large fans and water pumps system, based on the characteristics of HMVD transmission device that its power flow can be splitted. It researches the speed and throttle adjustment method, with the combination of system pipeline flow characteristics and part power hydraulic speed-power characteristics. It sets the lowest energy consumption as the goal, establishes a coordination optimization model with speed and throttle, and can determine the best speed and throttle points according to system operating conditions. This method breaks through the traditional energy-saving theory of replacing the throttle adjustment entirely with speed control, can reduce the inevitable power loss of existing full power hydraulic speed control system, and explores a new technology direction for pumps and fans energy saving research.
引文
[1]杨乃乔.液力调速与节能.通用机械,2008,06:25-29
    [2]安连锁.泵与风机.北京:中国电力出版社,2008
    [3]杨诗成,王喜魁.泵与风机.中国电力出版社:北京,2007
    [4]杨乃乔,姜丽英.液力调速与节能.国防工业出版社:北京,2005
    [5]贾奕男,曹体祥.泵与风机的节能措施.应用能源技术,2008,04:33-34
    [6]刑希东.600MW火电机组降低厂用电率措施.中国电力,2007,40(9):60-64
    [7]梁国富.电厂泵与风机的节能研究.大众科技,2006,2:120-121
    [8]冯小洁.电站风机优化运行探讨.发电设备,2000,1:14-16
    [9]王汝武.电厂节能减排技术.北京:化学工业出版社,2008
    [10]Durmus Kaya, E.Alptekin Yagmur, K.Suleyman Yigit. Energy efficiency in pumps.Energy Conversion and Management,2008,49(6):1662-1673
    [11]Daniele Fiaschi, Roberto Graniglia, Giampaolo Manfrida. Improving the effectiveness of solar pumping systems by using modular centrifugal pumps with variable rotational speed.Solar Energy,2005,79(3),234-244
    [12]David E, Rick. A Suggested Energy-Saving Evaluation Method for AC Adjustable-Speed Drive Applications. IEEE Transactions on Industry Application,vol.24,NO.6,Nov./Dec.1988
    [13]Herbert N, Hickok. Adjustable Speed-A tool for Saving Energy Losses in Pumps,fans,Blowers,and Compressors.IEEE Transactions on Industry Application,vol.1A-21,NO. 1,Jan./Feb.1985
    [14]Steve Minett, Keld Fenwick. The Power of Variable Speed Pumps Benefits.World Pumps.2000,(11):36-38
    [15]Edoardo Garibotti. Energy saving and better performances through variable speed drive application in desalination plant brine blowdown pump service.ScienceDirect Desalination.2008,220:496-501
    [16]杨晓燕.泵与风机变速调节与节流调节的比较.辽宁工程技术大学学报(自然科学版),1998,17(2):196-197
    [17]陈瑞藻.风机水泵交流调速节能技术.北京:机械工业出版社,1990
    [18]徐甫荣.发电厂辅机电动机节能改造技术方案分析.电气传动自动化,2004,26(1):3-4
    [19]李军野.风机水泵调速经济运行分析.能源与环境,2007,1:63-64
    [20]刘应诚,杨乃乔.液力偶合器应用与节能技术.北京:化学工业出版社2006
    [21]冯小洁.电站辅机电站风机优化运行探讨.发电设备,2000,1:14-16
    [22]吴正人.风机主要调速节能技术的比较,华北电力技术,2002,12:50-33
    [23]高玉芬.液力耦合器在火电厂节能中的应用.华东电力,2006,34(9):88-89
    [24]莫志扬,陈勤伟.液体粘性软启动装置的工作原理及应用.煤矿机械,2001,3:42-43
    [25]谷昭军,杨前明,许梁.液体粘性调速离合器与液力偶合器调速优缺点的分析比较.现代制造技术与装备,2006,6:28-31
    [26]丁斗章.变频调速技术与系统应用.北京:机械工业出版社,2005
    [27]徐甫荣.发电厂高压变频调速技术应用综述.变频器世界,2006,9:58-65
    [28]徐甫荣,陈辉明.高压变频调速技术应用现状与发展趋势.2007中国科协年会论文集(一),2007
    [29]徐甫荣,朱修春风.风机水泵变频调速和液力偶合器调速节能比较.变频世界,2008,2:65-70
    [30]P.Adamis, etal. Challenges Facing Future Transmission Systems.Drive system Technique.1996,6:56-60
    [31]Dr:Ing.Gerd Fechner.VORECON Multi-Stage Variable Speed Drive Operating Experience with a New Drive System. Voith Turbo GmbH&Co. KG·D-7180 Crailsheim:Cr 570 a 9.12.2. ME
    [32]Dittrich.O,etal.The Continuously Variable Chain Transmission in Motor Cars. SAE 885064
    [33]L.Mangialardi,G,Mantriota. Power Flows And Efficiency In Infinitely Variable Transmissions.Mechanism And Machine Theory.1999,34(5): 973~994
    [34]Lingyuan Kong,Robert G.Parker.Steady mechanics of layered, multi-band belt drives used in continuously variable transmissions (CVT). Mechanism and Machine Theory.2007,34(6):244-249
    [35]J.M.Micklem, D.K.Longmore,etal.Modelling of the steel pushing V-belt continuously variable transmission.Journal of Mechanical Engineering Science, Part C.1994,208(4):13-27
    [36]Cerovsky, Zdenek; Mindl, Pavel. Mechanical characteristics of automotive hybrid drives using electric power splitting generator. Source:Conference Proceedings-The 4th International Power Electronics and Motion Control Conference, v 2, p 615-619,2004,
    [37]Janulevicius, Algirdas; Giedra, Kazimieras. Analysis of main dynamic parameters of split power transmission. Source:Transport, v 23, n 2, p 112-118, April/June 2008
    [38]Thoma, J. Hydrostatic power split drives. Source:Hydraulic Pneumatic Power, v 16, n 188,464-8, Aug.1970
    [39]Seeger, J. Split power transmission in tractors. Source:Oelhydraulik und Pneumatik, v 49, n 3,138-45, March 2005 Language:German
    [40]Savaresi, S.M.; Taroni, F.; Prevedi, F.; Bittani, S. On the design and tuning of the controllers in a power-split continuously variable transmission for agricultural tractors. Source:Proceedings of the Institution of Mechanical Engineers, Part D:Journal of Automobile Engineering, v 217, n 8, p 745-759,2003
    [41]B.Boukhezzar,etal.Multivariable control strategy for variable speed,variable pitch wind turbines.Renewable Energy,32(2007)1273~ 1287
    [42]Novak P,Ekelund T,Jovik I,Schmidtbauer B. Modeling and control of variable-speed wind-turbine drivesystem dynamics. IEEE Control Syst Mag,1995,15(4):28~38
    [43]Xueyong Zhao, Peter MaiBer.A novel power splitting drive train for variable speed wind power generators.Renewable Energy,28(2003) 2001~2011
    [44]Georg Wahl.50 MW Power Transmission for variable speed with Variable Planetary Gear.Voith Turbo GmbH& Co.KG,2000
    [45]多级液力变速装置产品样本说明书.德国Voith公司
    [46]董泳,闫国军,周绪强.多级液力变速传动装置的工作特性与功率分流原理分析.机床与液压,2008,36(10):63-66
    [47]Kuen-Bao Sheu. Conceptual design of hybrid scooter transmissions with planetary gear-trains. Applied Energy.2007,84:526-541
    [48]Giacomo Mantriota. Performances of a parallel infinitely variable transmission with a type Ⅱ power flow. Mechanism and Machine Theory.2002,37:555-578
    [49]Wen-Hsiang Hsieh.An experimental study on cam-controlled planetary gear trains.Mechanism and Machine Theory.2007,42:513-525
    [50]Whitefield A,Wallace F.J.A Performance Prediction Procedure for Three Element Torqe Converters.International Journal of Mechanical Sciences,1978,(20):801-814
    [51]Henriette Wallen Warner, Lars Aberg. Drivers'decision to speed:A study inspired by the theory of planned behavior.Transportation Research. PartF9.2006,30:427-433
    [52]Ishibashi.A,Sonod.K,and Maenosono.k. Comparision of Speed Increase and Speed Reduction of Differential Gear Drive.Trans. JSME,Vol.62,No.594,1996
    [53]田晋跃.车辆静液压传动特性研究.农业机械学报,2002,33(4):32-34
    [54]胡纪滨.液压机械无级传动的特性研究,机械设计,2000,4:28-30
    [55]杨亚联.汽车无级变速器的类型及基本原理,1997,3:57-59
    [56]王意.行走机械液压驱动技术发展大观.液压气动与密封,2000,1:19-28
    [57]张明柱等.农业拖拉机用多段液压机械无级变速器设计.农业工程学报,2003,19(6):118-121
    [58]夏海南.液压机械传动在工程机械上的应用.工程机械,2000,3:17-19
    [59]朱剑峰.新型车用功率分流式自动变速器结构分析与改进:[硕士学位论文].江苏:南京理工大学,2006
    [60]蔡潇,叶智彪,夏鸿刚.工程机械传动机构行星轮系的建模与仿真.设备管理与维修技术,2006,23(12):62-64
    [61]周云山.混合动力汽车用新型无级变速传动系统的研究.农业机械学报,2008,39(4):180-182
    [62]陈冬生.新型液压机械无级变速器.机械设计,1994,04
    [63]郭京波,赖涤泉,高国生.液压机械复合传动的分流比与传动特性分析.建筑机械,1997,10
    [64]潘庆丰.行星传动可控启动与无级变速装置研究.机械传动,2005,29(3)
    [65]徐立友.拖拉机液压机械无级变速器特性研究:[博士学位论文].陕西:西安理工大学,2008
    [66]袁斌,陈宁,徐军民,等.一种新型的无级调速装置的开发和研究.热能动力工程,2008,01
    [67]李洪涛,张明柱,陈兴洲,等.新型多段液压机械无级变速器效率特性分析.机床与液压,2009,05:30-34
    [68]华顺刚,刘修骥.无级变速兼转向的车用液压机械综合传动系理论规律研究.兵工学报,1997,18(1):1-4
    [69]华顺刚,姜秀萍,刘修骥.车用液压机械综合传动系转速平均反向机构分析.机械设计与研究,1998,03:47-49
    [70]曹付义,周志立,贾鸿社.履带拖拉机液压机械双功率流差速转向机构设计.农业机械学报,2006,37(9):5-8
    [71]高立君.低速大功率减速器软启动系统的研究:[硕士学位论文].郑州:郑州机械研究所,2003
    [72]张以都.新型大功率软启动无级调速传动系统研究.煤炭科学技术,2003,30(6):39-41
    [73]赵宏宇.液压_机械调速器的研究.煤矿自动化,2004
    [74]周有强,崔学良,董志峰.机械无级变速器发展概述.机械传动,2005
    [75]华顺刚,刘修冀.履带车辆液压机械综合传动系统参数优化研究.兵工自动化,1999,02:46-48
    [76]何予鹏.利用差动轮系实现机械压力机混合输入的研究.中国科学.E辑:技术科学,2007,(37)1:70-79
    [77]杨实如.解决差动轮系几个问题的有效方法.成都大学学报,2001,20(2):24-29
    [78]杨实如,段钦华.NGW型直齿行星传动的设计方法研究.煤矿机械,2005,10:18-20
    [79]杨实如,段钦华.封闭式周转轮系的结构与功率流的研究.煤矿机械,2003,11:42-44
    [80]董万福,吴斌,段钦华.封闭式行星轮系的结构与功率流研究.机械设计与研究,2007,23(3):82-83
    [81]贾宝贤,边文凤.2K-H差动轮系的功率流向与啮合效率.机械设计,1999,5:33-36
    [82]荆崇波,胡纪滨,鲁毅飞.车用液力减速器制动性能试验研究.汽车技术,2005,12,27-31
    [83]徐绿野,马济泉.风机和水泵的调速控制.发电设备,2007,3:219-222
    [84]王汝武.电厂节能减排技术.北京:化学工业出版社,2008
    [85]徐晓丹.液粘调速装置在泵类负载上的应用研究:[硕士学位论文].山东:山东科技大学,2005
    [86]Rui Xiaoming. Fundamentals of a Power Splitting Driving Chain for Large Wind Turbines. The 7th World Congress on Intelligent Control& Automation. Chongqing,China,2008
    [87]王刚.行星液控变速装置.中国专利,932215408,1993-08-1 0
    [88]刘岩.液力行星自动无级变速器.中国专利,200410059200,2006-02-15
    [89]师建国.行星传动无级变速装置的研究与仿真:[硕士学位论文].辽宁辽宁工程技术大学,2003
    [90]黄榕清,吴磊,邵建华.汽车液力缓速器的原理及应用.汽车电器,2006,11:6-8
    [91]曹建国,秦大同,胡建军,等.液力变矩器在机械无级变速传动系统中的应用.重庆大学学报,2002,25(5):5-9
    [92]张银彩,苑士华,荆崇波,等.液压机械无级传动系统储能技术研究.机床与液压,2007,35(2)146-149
    [93]袁敏,李润方,林建德.行星齿轮系统的运动分析及动力学仿真.机械传动,2006,30(5):17-19
    [94]张庆霞,王兴贵,杜秀菊,等.基于虚拟样机技术的行星轮系的动力学仿真研究.机械传动,2006,30(4):4-6
    [95]葛正浩,杨芙莲.Pro/Engineer机构运动仿真与动力分析.北京:化学工业出版社,2008
    [96]张云杰.Pro/Engineer机械设计.北京:中国林业出版社,2006
    [97]纪传建.差动轮系在扩大无级变速范围中的应用.机械设计,2006,23(1):53-55
    [98]张国瑞,张展.行星传动技术.上海:上海交通大学出版社,1989
    [99]赵静一,王巍.液力传动.北京:机械工业出版社, 2007
    [100]关醒凡.泵的理论与设计.北京:机械工业出版社,1986
    [101]郑勇建,邱敏秀,陈宁,等.液体黏性调速离合器的试验与研究.液压与气动,2002,12:35-37
    [102]于兴亮,白成春.200MW机组电动变速泵调速特性改造.西北电力技术,2005,5:24-26
    [103]桑波,朱道灿,周晓燕.风机水泵调速方案选择应考虑的几个问题.应用能源技术,1998,2:32-33
    [104]龚世缨,董亚晖.水泵调速节能的正确计算方法.冶金能源,2001,20(6):53-56
    [105]黎维华.锅炉送、引风机改节流调节为变速调节的经济性分析.江西电力,1998,22(3):15-18
    [106]左行涛.并联水泵变频调速特性分析及在管路中的应用研究:[硕士学位论文].哈尔滨:哈尔滨工业大学,2006
    [107]成大先.机械设计手册.北京:化学工业出版社,2008
    [108]孙恒,陈作模.机械原理.北京:高等教育出版社,2001
    [109]张国瑞,张展.行星传动技术.上海:上海交通大学出版社,1989,1-158
    [110]杨廷栋,周寿华,肖忠实,等.渐开线齿轮行星传动.四川:成都科技大学出版社,1986
    [111]濮良贵,纪明刚.机械设计.北京:高等教育出版社,2001
    [112]上海市经委节能办公室.风机水泵调速节能手册.北京:机械工业出版社,1987
    [113]王中双.键合图理论及其在系统动力学中的应用.黑龙江:哈尔滨工程大学出版社,2007
    [114]郑梦海.泵测试实用技术.北京:机械工业出版社,2006
    [115]满咏梅,何永学,刘全.差动轮系液粘调速装置仿真模型的建立和仿真.煤矿机电,2004,5:45-47
    [116]中国电工技术学会,电控系统与装置专业委员会.风机水泵交流调速节能技术.北京:机械工业出版社,1990
    [117]姚永亮,黄华.风机调速技术的选择分析及节能应用.风机技术,2007,4:53-55
    [118]徐甫荣.发电厂辅机电动机节能改造技术方案分析.电气传动自动化,2004,26(1):3-4
    [119]郑勇建,邱敏秀,陈宁等.液体黏性调速离合器的试验与研究.液压与气动,2002,12:35-37
    [120]于兴亮,白成春.200MW机组电动变速泵调速特性改造.西北电力技术,2005,5:24-26
    [121]桑波,朱道灿,周晓燕.风机水泵调速方案选择应考虑的几个问题.应用能源技术,1998,2:32-33
    [122]龚世缨,董亚晖.水泵调速节能的正确计算方法.冶金能源,2001,20(6):53-56
    [123]黎维华.锅炉送、引风机改节流调节为变速调节的经济性分析.江西电力,1998,22(3):15-18
    [124]左行涛.并联水泵变频调速特性分析及在管路中的应用研究:[硕士学
    位论文].黑龙江:哈尔滨工业大学,2006
    [125]陈允中,曹占友,邓国强,等译.泵手册.北京:中国石油出版社,2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700