用户名: 密码: 验证码:
水下隧道围岩稳定性研究及其覆盖层厚度确定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自从1843年英国工程师布鲁内尔使用盾构机建成第一条水下隧道—穿越泰晤士河的人行隧道以来,水下隧道逐渐为人类接受,并且由于不破坏航运、能全天候通车、引线短、拆迁少以及能一洞多用等优点,在最近几十年来蓬勃发展,成为和桥梁并举的穿越江河湖海的交通方式。我国从1970年穿越黄浦江的打浦路过江隧道建成后,四十年来有几十条水下隧道已经建成或在规划中。
     水下隧道与一般山岭隧道最主要、最显著的区别是:存在上覆水体以及纵断面曲线是倒人字坡,而这两点都和覆盖层这个关键因素有着紧密的联系。水下隧道覆盖层是指隧道拱顶与水体下地表之间的岩土体,对于钻爆法和盾构法修建的水下隧道而言,它既是上覆水体的渗流途径、隧道的防突水屏障和稳定性支撑结构,又是纵断面设计中的决定因素,所以覆盖层厚度即隧道埋置深度是水下隧道设计施工的重要参数和关键指标,影响水下隧道造价和安全。
     本文主要从以下五个方面进行了水下隧道围岩稳定性分析和合理覆盖层厚度确定等方面的工作。
     (1)从弹性问题复势理论的的基本方程出发,借助Verruijt提供的保角映射函数和基本解法求解“含圆孔半平面弹性体在地表边界上受任意分布荷载”的问题,并把这种解法应用到水下隧道围岩应力、位移的分析中。
     (2)制作了由高强PVC板和型钢组成的试验架,开发了光纤监测系统和渗流量计量器,并研制了新型固流耦合相似材料,在此基础上以青岛胶州湾海底隧道为工程背景进行了流固耦合模型试验。试验过程中记录了渗流量和关键点的位移、应力及渗透压力等多元信息,并与FLAC3D的计算结果进行了对比分析。(3)基于Thorne和Souley的研究成果,构建了能反映体积压缩状态下损伤发展并关联渗透率的爆破损伤模型,并将其嵌入FLAC3D软件中的应力硬化-软化模型中。(4)以青岛胶州湾海底隧道为研究对象,由位于断层破碎带f3-1中的典型断面ZK5+607的几何参数和地质资料构建三维数值计算模型,借助FLAC3D先后从洞室开挖效应和爆破振动响应两个方面研究了水下小净距隧道的施工相互影响。
     (5)详细阐述了确定覆盖层厚度中的工程类比法如深浅埋隧道分界法、普氏压力拱法、挪威海底隧道建设经验法、日本最小涌水量法、国内顶水采煤法及最小位移法等,并讨论了它们各自的应用途径;进一步归纳出了简单实用的经验公式,并进行了适用性评价。最后提出了确定水下隧道合理覆盖层厚度和纵断面设计线路的方法体系,并以胶州湾海底隧道为工程背景进行了运用。
     经过上述分析,得到的研究成果如下:
     1、中线左右两倍洞跨、底板以下两倍洞跨到地表范围内围岩应力集中现象明显,位移受隧道开挖影响明显,覆盖层尤其应给予重点关注;隧道中线两侧2倍洞跨范围内,沉降槽比较陡峭,然后逐渐平滑,最后趋近于水平。
     2、地层沉陷结果具有明显的分层传递性,即沉降变形由地表到拱顶传递,变化逐渐减弱;洞周点垂直位移随距地表距离增加而逐渐减小。
     3、随着开挖进行,覆盖层竖向位移逐步增加,32.1m水深时开挖后关键点A的位移大约为10.0mm;应力场二次调整,拱顶正上方竖向压应力逐渐减小,并且出现水平拉应力区;渗压场剧烈变化,超孔隙水压力逐渐消散。随着水位的提升,覆盖层位移大幅增加,92.1m水深时的位移大约是32.1m时的两倍多;拉应力数值增加、区域扩大;最终渗压场明显变化;隧道涌水量剧烈增大,92.1m水位时的涌水量至少是32.1m时的两倍多。
     4、大多数现有爆破损伤模型是基于张拉体积应变的拉仲损伤判断准则建立的,但是在体积压缩状态下损伤已经开始发生、积累,并且会导致渗透率的增大。
     5、小净距隧道实际施工时应该使各掌子面有一定的空间间距,并且各施工步之间要有时间间隔:围岩自稳能力允许时要尽量采用全断面开挖,尽量采用小进尺;在相互影响较大的断面,服务隧道的拱部、仰拱和先行开挖主隧道的内边墙是现场施工和监测工作中应注意的部位。
     6、钻爆法施工时炮眼装药不耦合系数一定要严格控制,必要时可以通过现场试验来确定;可以施作中空眼以降低爆破振动强度;爆破施工覆盖层的影响范围在15m之内:在施工中应注意加强监控量测并推迟二次衬砌的施作;施工洞的拱部、先行洞的迎爆面边墙是爆破振速峰值最大的部位,对这些位置要加强监测;施工洞的拱部出现了严重的应力集中现象和拉应力区,施工中可用超前小导管进行预加固。
     7、在上覆土层较薄或基岩基本裸露时,可用最小涌水量法拟合公式计算的覆盖层厚度值作为选线的参考;挪威海底隧道建设经验方法确定的覆盖层厚度偏于保守,且没有考虑开挖面积的影响;合理覆盖层厚度不仅与上覆水体深度、岩体特性和开挖面积有关,而且还与围岩分层情况有关,最小位移法回归公式的计算值可以作为覆盖层厚度的下限值。
     8、提出了确定水下隧道合理覆盖层厚度和纵断面设计线路的方法体系。
The first underwater pedestrian tunnel that lies through the River Thames Since was built using the shield methed by the British engineer, Brunel, in 1843. From then on, the underwater tunnel has got gradual acceptance of human. Because of none-destroying the shipping, all-weather traffic, short lead, less demolition, multi-hole and so on, the underwater tunnel as a traffic mode which can cross rivers, lakes and straits has become as important as bridges in recent decades. In China, The first underwater tunnel, Dapu tunnel, spans the Huangpu River and was built in 1970. Since then, dozens of underwater tunnels have been built or in planning.
     The most important and significant differences between underwater tunnels and general mountain tunnels are the presence of overlying water and the inverted longitudinal slope. These two points are closely associated with the overburden layer, a key factor of underwater tunnels. The overburden of underwater tunnel is rock-soil mass between the vault and ground surface. The overburden is not only the percolation path, prevention barrier of water inrush and support structure of stability, but also the key factor of profile design for underwater tunnels which are built with drilling-blasting method or shield methed. So the depth of overburden is an important parameter and key indicator in design and construction of underwater tunnels. Furthmore, the overburden depth restricts construction cost and safety.
     The core content of this dissertation is study on stability of surrounding rocks and selection of overburden thickness for underwater tunnels. The study is primarily expanded from the following five aspects.
     (1) Using the conformal mapping function and basic solution provided by Verruijt, the classical problem of an elastic half plane with a circular cavity, loaded arbitrarily on the surface boundary is solved. Then stress and displacement analysis of surrounding rocks of underwater tunnels is performed with this method.
     (2) Based on the analysis on similarity theory of solid-fluid coupling, the new analogous material for solid-fluid coupling has been found. Extensible 3D test bench and optical fiber monitoring system are developed. Then fluid-solid coupling model test are performed for the Kiaochow Bay Subsea Tunnel. The evolution mechanism of overburden has been analyzed by the monitoring results of multi-field information. The results from model test and numerical calculation are comparatively analysed eventually.
     (3) An new rock blasting damage constitutive model which can represent damage development under volume compression state is established based on research results of Thorne and Souley, and this model contacts permeability with volumetric strain. In order to be applied in engineering practice, the new constitutive model is embed in strain-hardening/softening model of FLAC3D.
     (4) The section ZK5+607 of the Kiaochow Bay Subsea Tunnel which is located in the fault f3-1 is chosen as typical cross section, and a three-dimensional model for numerical analysis is established according to geometrical parameters and geological information.of the typical cross section. It is studied use FLAC3D that construction interaction of little distance parallel subsea tunnels owing to excavation effect and blasting vibration influence.
     (5) Engineering analogy methods used for selecting overburden thickness, for example method from domestic standards, pressure arch theory method, domestic experiences from mining under waterbody, Japanese minimum leakage method, Norwegian subsea tunnel construction experience, minimum displacement method and so on, are expatiated detailed. Then, simple and practical empirical formula are induced. Fitness evaluations are given finally,
     Through the above analysis, the research results are listed as follows:
     1. Surrounding rock that lies less twice the tunnel span apart from midline, and from twice the tunnel span bellow floor to ground surface, especially the overburden, has apparent deformation and stress concentration. Additionally, In this region settling tank vary from steep to smooth while the distance to tunnel midline increases.
     2. Ground subsidence results have obvious layered transmission, ie settlement change gradually weakened from the surface to the vault; and vertical displacement of surrounding rock decreases while the distance to surfaee increases.
     3. The vertical displacement of covering layer gradually increase with the excavation. The displacement of key point A is about 10.0mm after total excavation under 32.1m water head. Because of the second adjustment of stress field, the vertical stress of rockmass just above the vault decreases, and horizontal tensile stress zone appears. Dramatic changes occur in seepage pressure field, excess pore water pressure dissipates gradually. As the upgrade of water level, displacement of overburden increase substantially, the values of 92.1m water depth are more than twice times of that of 32.1m. tensile stress values increase, and the region expand. Final seepage pressure field changes obviously. Water inflow dramatic increase, the value of 92.1m water depth is at least more than twice times of that of 32.1m.
     4. Most of the existing blasting damage models are established by stretching damage criterion based on the tensile volumetric strain, but the damage has occurred and accumulated under volume compression state. In addition this will lead to increase of permeability.
     5. When the little distance parallel underwater tunnels are constructed, the working faces of different tunnels should have some spacing, and there should be time interval between different construction steps. The full-face excavation type and short footage should be chosen firstly if the self-stability of surrounding rock is allowable. In the section of significant mutual influence, arch and invert of service tunnel and the inner wall of constructed tunnel should be concerned in construction and spot measure.
     6. The charge decouple coefficient of blast holes should be controled strictly when drill and blast construction method is adopted, and it can be determined through the field test if necessary. Hollow holes can be Excavated to Reduce the intensity of blasting vibration. The influence scope of rock overburden under explosive load is within 15m. Spot monitoring measurement should be strengthened and concrete linings should be postponed. The maximal peak values of vibration velocity occur on arch parts of excavating tunnel and walls facing the blasting side of constructed tunnels, while stress concentrations and tension stresses appear at arch parts of excavating tunnel. So the support system shoud be reinforced at these positions.
     7. Japanese minimum leakage method can be used to choose overburden thickness when overlaying soil layer is quite thin or bedrock is basically exposed. Overburden thickness determined by norwegian subsea tunnel construction experience is rather conservative, and this method does not consider the impact of excavation area. Reasonable Overburden thickness is related with not only the overlying water depth, Rock properties and excavation area, but also the situations of surrounding layer. The calculational value gained from the minimal distance method regression formula can be used as the lower limit.for overburden thickness.
     8. The method system for selecting rational overburden thickness and determining lognitudinal section line is put forward.
引文
[1]王梦恕.水下交通隧道发展现状与技术难题[J].岩石力学与工程学报,2008,27(11):2161-2172.
    [2]王梦恕.台湾海峡海底铁路隧道建设方案[J].隧道建设,2008,28(5):517-526.
    [3]吕明,Gr(?)v E,Nilsen B,et al..挪威海底隧道经验[J].岩石力学与工程学报,2005,24(23):4219-4225.
    [4]GR(?)V Eivind,NILSEN Bj(?)rn. Subsea Tunnel Projects in Hard Rock Environment in Scandinavia[J]. Chinese Journal of Rock Mechanics and Engineering,2007,26(11): 2176-2192.
    [5]张明聚,郜新军,郭衍敬.海底隧道突水分析及其在翔安隧道中的应用[J].北京工业大学学报,2007,33(3):273-277.
    [6]Blindheim O T,Gr(?)v E,Nilsen B. Nordic subsea tunnel projects[A]. In:Proceedings of the ITA Open Session[C]. Istanbul:[s. n.],2005.
    [7]孙钧.海底隧道工程设计施工若干关键技术的商榷[J].岩石力学与工程学报,2006,25(8):1513-1521.
    [8]孙钧.对兴建台湾海峡隧道的工程可行性及其若干技术关键的认识[J].隧道建设,2009,29(2):131-144.
    [9]洪代玲.大型海底隧道与隧道工程技术的发展[J].世界隧道,1995,(3):50-62.
    [10]郭陕云.关于我国海底隧道建设若干工程技术问题的思考[J].隧道建设,2007,27(3):1-5.
    [11]Arild Palmstrom. The Challenge of Subsea Tunnelling[J]. Tunnelling and Underground Space Technology,1994,9(2):145-150.
    [12]李术才,李树忱,徐帮树等.海底隧道最小岩石覆盖厚度确定方法研究[J].岩石力学与工程学报,2007,26(11):2289-2295.
    [13]李术才,徐帮树,丁万涛等.海底隧道最小岩石覆盖厚度的权函数法[J].岩土力学,2009,30(4):989-996.
    [14]Nilsen B. Empirical analysis of minimum rock cover for subsea rock tunnels [J]. Developments in Geotechnical Engineering,1993,74:677-687.
    [15]Dahlo T S,Nilsen B. Stability and rock cover of hard rock subsea tunnels[J]. Tunnelling and underground Space Technology,1994,9(2):151-158.
    [16]Z. D. Eisenstein. Large Undersea Tunnels and the progress of Tunnelling Technology[J]. Tunnelling and Underground Space Technology,1994,9 (3),283~292.
    [17]Lu, M. and Nilsen, B. Analytical study of the minimum rock cover for subsea tunnels. Proc. 2nd Symp. Strait Crossings,1990.
    [18]Akira Kitamura. Technical Development for the Seikan Tunnel[J]. Tunneling and Underground Space Technology,1986,1(3/4),341~349.
    [19]Shogo Matsuo. An Overview of the Seikan Tunnel Project[J]. Tunneling and Underground Space Technology,1986,1(3/4):323~331
    [20]Savin GN. Stress Concentration around Holes[M]. Pergamon Press, London, United Kingdom,1961.
    [21]Peck RB, Hendron Jr AJ, Mohraz B. State of the art of softground tunneling[A]. Proceedings of the Rapid Excavation Tunneling Conference, Chicago, vol.1,1972; 259-285.
    [22]Einstein HH, Schwartz CW. Simplified analysis for tunnel supports[J]. Journal of Geotechnical Engineering Division (ASCE) 1979; GT4 (April):499-518.
    [23]Penzien J, Wu, CL. Stresses in linings of bored tunnels J]. Earthquake Engineering and Structure Dynamics 1998; 27:283-300.
    [24]Li SC, Wang MB. An elastic stress-displacement solution for a lined tunnel at great depth. International J]. Journal of Rock Mechanics and Mining Sciences 2008; 45:486-494.
    [25]Li SC, Wang MB. Elastic analysis of stress-displacement field for a lined circular tunnel at great depth due to ground loads and internal pressure.[J]. Tunnelling and Underground Space Technology 2008; 23:609-617.
    [26]Kirsch G. Die Theorie der Elastizitat und die Bedurfnisse der Festigkeitslehre[J]. Zeitchrift Verein Deutsch Ing 1898; 42:797-807.
    [27]Yu YY, Mo SL. Gravitational stresses on deep tunnels[J]. Journal of Applied Mechanics 1952; 19:537-542.
    [28]Pender MJ. Elastic solutions for a deep circular tunnel[J]. Geotechnique 1980; 30:216-222.
    [29]Sagaseta C. Analysis of undrained soil deformation due to ground loss[J]. Geotechnique 1987; 37:301-320.
    [30]Exadaktylos GE, Stavropoulou MC. A closed-form elastic solution for stresses and displacements around tunnels, International[J]. Journal of Rock Mechanics & Mining Sciences 2002; 39:905-916.
    [31]Exadaktylos GE, Liolios PA, Stavropoulou MC. A semi-analytical elastic stress-displacement solution for notched circular openings in rocks[J]. International Journal of Solids and Structures 2003; 40:1165-1187.
    [32]刘允芳.非圆形地下洞室的复变函数解法[J].力学与实践,1987,sl:121-126.
    [33]吕爱钟.以孔边绝对值最大的切向应力最小为优化准则的孔洞形状优化[J].固体力学学报,1996,17(1):73-76.
    [34]蔡晓鸿,蔡勇斌,蔡勇平等.二向不等围压和内压作用下椭圆形洞室的计算[J].地下空间与工程学报,2008,4(3):453-459.
    [35]吕爱钟,蒋斌松.岩石力学反问题[M].北京:煤炭工业出版社,1998.
    [36]刘金高,王润富.马蹄形孔口和梯形孔口的应力集中问题[J].岩土工程学报,1995,17(5):57-64.
    [37]Fenner R. Untersuchungen zur Erkenntnis des Gebirgsdruckes[J]. Gluckauf 1938; 74: 681-695 and 705-715.
    [38]Jaeger JC, Cook NGW. Fundamentals of rock mechanics[M]. London:Chapman & Hall, 1979.
    [39]任青文,张宏朝.关于芬纳公式的修正[J].河海大学学报,2001,29(6):109-111.
    [40]任青文,邱颖.具有衬砌圆形隧洞的弹塑性解[J].工程力学,2005,22(2):212-217.
    [41]范文,俞茂宏,石耀武等.围岩塑性松动压力Caquot公式的推广和改进[J].长安大学学报(地球科学版),2003,25(1):33-36.
    [42]徐栓强,俞茂宏,胡小荣.基于双剪统一强度理论的地下圆形洞室稳定性的研究[J].煤炭学报,2003,28(5):522-526.
    [43]范文,俞茂宏,陈立伟.考虑材料剪胀及软化的有压隧洞弹塑性分析的解析解[J].工程力学,2004,21(5):16-2
    [44]Jeffery GB. Plane stress and plane strain in bipolar coordinates[J]. Transactions of the Royal Society of London, Series A 1920; 221:265-293.
    [45]Mindlin RD. Stress distribution around a tunnel. Transactions of the ASCE 1940; 1117-1153.
    [46]Mindlin RD. Stress distribution around a hole near the edge of a plate under tension[A]. Proceedings of the Society of Experimental Stress Analysis 1948; 5:56-57.
    [47]Georgiadis, H. G., Rigatos, A. P. and Charalambakis. N. C. Dynamic stress concentration around a hole in a viscoelastic plate[J]. Acta Meehaniea,1995,111-112.
    [48]Callias, C. J. and Markenscoff, X. Singular asymptotics analysis for the singularity at a hole near a boundary[J]. Quarterly Applied Mathematics,1989,47:233-245.
    [49]Verruijt A, Booker JR. Surface Settlements due to deformation of a tunnel in an elastic half plane[J]. Geotechnique 1996; 46:753-756.
    [50]Verruijt A. Deformations of an elastic half plane with a circular cavity[J]. International Journal of Solids and Structures 1998; 35(21):2795-2804.
    [51]Verruijt A. A complex variable solution for a deforming circular tunnel in an elastic half-plane[J]. International Journal for Numerical and Analytical Methods in Geomechanics 1997; 21:77-89.
    [52]Strack OE, Verruijt A. A complex variable solution for a deforming buoyant tunnel in a heavy elastic half-plane[J]. International Journal for Numerical and Analytical Methods in Geomechanics 2002; 26:1235-1252.
    [53]Bobet A. Analytical solutions for shallow tunnels in saturated ground[J]. ASCE Journal
    Engineering Mechanics 2001; 127:1258-1266.
    [54]Chou Wl, Bobet A. Predictions of ground deformations in shallow tunnels in clay[J]. Tunnelling and Underground Space Technology 2002; 17:3-19.
    [55]Chou WI, Bobet A. Response by the authors to A. Verruijt, C. Sagaseta, and O.E. Strack discussion to the paper:W. Chou and A. Bobet (2002). Predictions of ground deformations in shallow tunnels in clay, Tunnelling and Underground Space Technology, Vol.17, pp. 3-19[J]. Tunnelling and Underground Space Technology 2008; 18:95-97.
    [56]钱家欢,殷宗泽.土工原理与计算[M].北京:中国水利水电出版社,1996.
    [57]谢家杰.浅埋隧道的地层压力[J].土木工程学报,1964,6:58-70.
    [58]房营光,孙钧.地面荷载下浅埋隧道围岩的粘弹性应力和变形分析[J].岩石力学与工程学报,1988,17(2):239-247.
    [59]王立忠,吕学金.复变函数分析盾构隧道施工引起的地基变形[J].岩土工程学报,2007,29(3):319-327.
    [60](?)a(?)aiei A I.巷道底臌过程的实物模型[J].AOC. Aioi.(?).,1981,94(7):41~44.
    [61]Jacoby W R,Schmeling H. Convection experiments and drivingmechanism[J]. Geol. Rundsch,1981,70(2):207~230
    [62]Wiens J. Plate tectonic model for Indian ocean"intraplate"deformation[J]. Tectonophysics, 1986,132(1):37~48.
    [63]Kincaid C,Olson P. An experimental study of subducting slabmigration[J]. J. G. R.,1987,92(3):13831~13840.
    [64]Shemenda A I. Horizontal lithosphere compression and subduction:onstraints provided by physical modeling[J]. J. G. R.,1992,97(B7):11097~11116.
    [65]龚召熊.地质力学模型材料试验研究[J].长江水利水电科学研究院院报,1984,10(1):32-46.
    [66]黎良杰,钱鸣高,闻全.底板岩体结构稳定性与底板突水关系研究[J].中国矿业大学学报.1995,24(4):18-23.
    [67]王经明.承压水沿煤层底板递进导升突水机理的模拟与观测[J].岩土工程学报,1999,21(5):546—549.
    [68]唐东旗,李运成,姚秀芳.断层带留设防水煤柱开采的相似模拟试验研究[J].矿业安全与环保,2005,32(6):26—30.
    [69]胡耀青,赵阳升,杨栋.三维固流耦合相似模拟理论与方法[J].辽宁工程技术大学学报,2007,26(2):204-206.
    [70]胡耀青,严国超,石秀伟.承压水上采煤突水监测预报理论的物理与数值模拟研究[J].岩石力学与工程学报,2008,27(1):9-15.
    [71]张杰,侯忠杰.固-液耦合试验材料的研究[J].岩石力学与工程学报,2004,23
    (18):3157-3161.
    [72]张杰,侯忠杰.水体下煤炭开采渗流实验研究[J].成都理工大学学报(自然科学版),2009,36(1):67-70.
    [73]张杰,侯忠杰,石平五.地下工程渗流场与应力场耦合的相似材料模拟[J].辽宁工程技术大学学报,2005,24(5):639-642.
    [74]王克忠,李仲奎.深埋长大引水隧洞三维物理模型渗透性试验研究[J].岩石力学与工程学报,2009,28(4):725-731.
    [75]刘爱华,彭述权,李夕兵等.深部开采承压突水机制相似物理模型试验系统研制及应用[J].岩石力学与工程学报,2009,28(7):1335-1341.
    [76]Grady. D.E.,Kipp. M.E. Continuum modeling of explosive fracture in oil shale [J], International Journal of Rock Mechanics&Mining Sciences,1980,17(2):147~157.
    [77]Kipp. M.E.,Grady. D.E. Numerical studied of rock fragmentation,SAND-79-1582,Sandia National Laboratories,1980.
    [78]Talor. L.M.,Chen. E.P.,Kuszmaul. J.S. Microcrack-induced damage accumulation in brittle rock under dynamic loading[J]. Computer Methods in Applied Mechanics and Engineering.1986,55(3):301~320.
    [79]Thorne. B.J. A damage model for rock fragmentation comparison of calculation with blasting experiments in granite,SAND-90-1389,Sandia National Laboratories,1990.
    [80]Thorne. B.J. Application of a damage model for rock fragmentation to the straight creek mine blast experiments,SAND-91 -0867,Sandia National Laboratories,1991.
    [81]Liqing Liu,Katsabanis. P.D. Development of a continuum damage model for blasting analysis[J]. International Journal of Rock Mechanics&Mining Sciences,1997,34(2):217~ 231.
    [82]Chen. E.P. Dynamic brittle material response based on continuum damage model,SAND-94-2298,Sandia National Laboratories,1994.
    [83]Paterson. S. Experimental deformation of rock:the brittle field[M]. Berlin:Springer,1978.
    [84]Zhou. J.J,Shao. J.F,Xu. W.Y. Coupled modeling of damage growth and permeability variation in brittle rocks[J]. Mechanics Research Communications,2006,33:450-459.
    [85]Souley. M,Homand. F,Pepa. S. et al. Damage-induced permeability changes in granite:a case example at the url in Canada[J]. International Journal of Rock Mechanics and Mining Sciences,2001,38:297-310.
    [86]刘殿书,王树仁.柱状装药爆破破碎工程的数值模拟研究[A].工程爆破文集第五辑[C].武汉:中国地质大学出版社,1993:16-22.
    [87]杨军,王树仁.岩石爆破分形损伤模型研究[J].爆炸与冲击,1996,16(1):5-10.
    [88]杨小林,王树仁.岩石爆破损伤断裂的细观机理[J].爆炸与冲击2000.0720(3):247-252.
    [89]金乾坤,杨永琦.岩石爆破的逾渗模型[J].爆破,1996,13(2):7~11.
    [90]单仁亮.岩石冲击破坏力学模型及其随机性研究[D].中国矿业大学北京研究生部博士论文,1997.
    [91]凌建明.节理裂隙岩体损伤力学研究中的若干问题[J].力学进展,1994,24(2):257-264.
    [92]张继春,刘浩吾.岩体爆破松裂区的损伤机制及其数值模拟[J].爆炸与冲击,1996,16(3):250~258.
    [93]余永强.层状复合岩体爆破损伤断裂机理及工程应用研究[D].重庆:重庆大学博士学位论文,2003.
    [94]邱战洪.非线性动力损伤力学理论及其数值分析模型[D].杭州:浙江大学博士学位论文2005.
    [95]刘军.岩体在冲击载荷作用下的各向异性损伤模型及其应用[J].岩石力学与工程学报2004,23(4):635-640.
    [96]肖明清.武汉长江隧道工程概况[J].土工基础,2005,19(1):2-4.
    [97]王明年,潘晓马,张成满等.邻近隧道爆破振动响应研究[J].岩土力学,2004,25(3):412-414
    [98]肖正勤.小间距隧道施工技术探讨[J].西部探矿工程,2006,18(3):144-146.
    [99]倪新兴.小净距隧道施工技术[J].西部探矿工程,2002,14(3):78-79.
    [100]张玉军,朱维中,杨家岭.近距离双隧道开挖与支护稳定性的粘弹塑性有限元计算[J].岩石力学与工程学报,1999,18(supp2):855-859.
    [101]荆春燕,黄宏伟,张子新等.小间距隧道施工动态监测与数值模拟分析[J].地下空间与工程学报,20073(3):503-508.
    [102]刘胜利,施成华,彭立敏等.小间距隧道施工期间洞室与结构的稳定性评判[J].西部探矿工程,2003,13(3):108-111.
    [103]王明年,李志业,关宝树.3孔小间距浅埋暗挖隧道地表沉降控制技术研究[J].岩土力学,2002,23(6):821~824.
    [104]蔡小林,吴从师,:Swoboda G.小间距浅埋隧道的支护设计探讨[J].岩石力学与工程学报,:2005,24(supp2):5943-5949.
    [105]凌昌荣,张子新.偏压小间距隧道荷载结构计算模型研究[J].地下空间与工程学报,2007,3(6):1148-1153.
    [106]吴波,高波,索晓明等.城市地铁小间距隧道施工性态的力学模拟与分析[J].中国公路学报,2005,18(3):84-89.
    [107]李云鹏,王芝银,韩常领等.不同围岩类别小间距隧道施工过程模拟研究[J].岩土力学,2006,27(1):11~16.
    [108]龚建伍,夏才初,郑志东.鹤上三车道小净距隧道爆破振动测试与分析[J].岩石力学与工程学报,2007,26(9):1882-1887.
    [109]阳生权,周健,李雪健.小净距公路隧道爆破震动观测与分析[J].工程爆破,2005,11(3):62-65.
    [110]傅洪贤.长距离小间距隧道爆破开挖设计与施工[J].工程爆破,2006,12(3):30-32..
    [111]谭忠盛,杨小林,王梦恕.复线隧道施工爆破对既有隧道的影响分析[J].岩石力学与工程学报,2003,22(2):281-285.
    [112]李飞,陈卫忠,李术才等高速公路浅埋大跨度双跨连拱隧道爆破振动影响研究[J]岩石力学与工程学报,2004,23(supp2):4744-4748.
    [113]李云鹏,艾传志,韩常领等.小间距隧道爆破开挖动力效应数值模拟研究[J].爆炸与冲击,2007,27(1):75-81.
    [114]易长平,卢文波.开挖爆破对邻近隧洞的震动影响研究[J].工程爆破,2004,10(1):1-5.
    [115]毕继红,钟建辉.邻近隧道爆破震动对既有隧道影响的研究[J].工程爆破,2004,10(4):69-73.
    [116]姚勇,何川,周俐俐等.爆破振动对相邻隧道的影响性分析及控爆措施[J].解放军理工大学学报,2007,8(6):702-708.
    [117]崔积弘,周健,林从谋.爆破震动对既有洞室影响的数值模拟[J].有色金属,2008,60(1):101-104.
    [118]杨年华,刘慧.近距离爆破引起的隧道周边振动场[J].工程爆破,2000,6(2):6-10.
    [119]Nilsen B. Concept of Norwegian Subsea Tunnelling[R].International Seminar on Subsea and Underwater Tunnels, June 2005, Beijing China.
    [120]丁万涛 随机裂隙对节理岩体稳定性影响研究及其在海底隧道中的应用[D].济南,山东大学博士学位论文2008.
    [121]陈俊儒,王星华.海底隧道涌水量的预测及其应用[J].铁道建筑技术,2008(5):76-79
    [122]沈荣喜,吴秀仪,刘长武等.海底隧道施工过程中突水风险研究[J].武汉理工大学学报(交通科学与工程版),2008,32(3):385-388.
    [123]张明聚,郝新军,郭衍敬.海底隧道突水分析及其在翔安隧道中的应用[J].北京工业大学学报,2007,33(3):273-277.
    [124]Korehide Miyaguchi. Maintenance of the Kanmon Railway Tunnels[J]. Tunneling and Underground Space Technology,1986,1 (3/4):307~314.
    [125]Akira Kitamura. Technical Development for the Seikan Tunnel[J]. Tunneling and Under-ground Space Technology,1986,1 (3/4):341~349.
    [126]李术才,徐帮树,李树忱.海底隧道衬砌结构选型及参数优化研究[J].岩石力学与工程学报,2005,24(21):3894-3902.
    [127]李术才,李廷春,陈卫忠等.厦门海底隧道最小顶板厚度三维弹塑性断裂损伤研究[J].岩石力学与工程学报,2004,23(18):3138~3143.
    [128]李树忱,李术才,张京伟等.数值方法确定海底隧道最小岩石覆盖厚度研究[J].岩土工 程学报.2006,28(10):1304-1308.
    [129]李树忱,张京伟,李术才等.海底隧道最小岩石覆盖厚度的位移收敛法[J].岩土力学,2007,28(7):1443-1447.
    [130]徐帮树,张宪堂,张芹.海底隧道涌水量预测及应用研究[J].武汉理工大学学报(交通科学与工程版),2007,31(4):599-602.
    [131]徐帮树,李树忱,李术才等.海底隧道涌水量与覆岩厚度关系研究[J].力学与实践,2007,29(1):34-36.
    [132]徐帮树,丁万涛,李术才.挪威海底隧道最小岩石覆盖厚度的经验及应用[J].武汉理工大学学报(交通科学与工程版),2008,32(4):723-726.
    [133]徐帮树,李术才,蔚立元等.舟山灌门水道隧道最小岩石覆盖厚度研究[J].地下空间与工程学报,2008,4(4):609-614.
    [134]李廷春,李术才,邱祥波等.三维快速拉格朗日法在安全顶板厚度研究中的应用[J].岩土力学,2004,25(6):935-939.
    [135]李廷春,李术才,陈卫忠等.厦门海底隧道的流固耦合分析[J].岩土工程学报,2004,26(3):397-401.
    [136]丁万涛,李术才,朱维申.某海底隧道岩石覆盖厚度及选线方案优化研[J].地下空间与工程学报,2007,3(3):463-469.
    [137]张小玉,李术才,邱祥波.有限元在水下隧道最小安全顶板厚度中的应用[J].武汉理工大学学报,2004,26(10):24-27.
    [138]张顶立,李兵,房倩等.基于风险系数的海底隧道纵断面确定方法[J].岩石力学与工程学报,2009,28(1):9-19.
    [139]张明平,徐园园,于广明等.海底隧道最小安全顶板厚度优化决策研究[J].青岛理工大学学报,2008,29(1):14-18.
    [140]Muskhelishvili NI. Some basic problems of the mathematical theory of elasticity. Groningen, The Netherlands:Noordhoof Ltd,1963.
    [141]徐芝纶.弹性力学(第三版)[M].北京:高等教育出版社,1990.
    [142]路见可.双周期平面弹性理论中的复Airy函数[J].数学杂志,1986,6(3):319-330.
    [143]郑可.双周期平面弹性基本问题[J].数学物理学报,1988,8(1):95-104.
    [144]Li X. Application of doubly quasi-periodic boundary value problems in the elasticity theory. [Ph.. D Thesis.] Berlin University,1999.
    [145]Honein T, Hermann G. On the bonded inclusions with circular or straight boundaries in plate elastostatics. Journal of Applied Mechanics 1990; 57:850-856.
    [146]Fang QH, Liu YW, Jiang CP. On the interaction between a generalized screw dislocation and circular-arc interfacial rigid lines in magnetoelectroelastic solids. International Journal of Engineering Science 2005; 43:1011-1031.
    [147]Timoshenko SP, Goodier JN. Theory of Elasticity. McGraw-Hill Publishing Company, New York,1970.
    [148]周益春.材料固体力学[M].北京:科学出版社,2005.
    [149]刘建亚.复变函数与积分变换[M].北京:高等教育出版社,2005.
    [150]牛少彰.复变函数[M].北京:北京邮电大学出版社,2004.
    [151]朱维申,何满朝.复杂条件下围岩稳定性与岩体动态施工力学[M].北京:科学出版社,1995
    [152]李晓红,卢义正,康勇,饶邦华.岩石力学实验模拟技术[M].北京:科学出版社,2007.
    [153]ZHU W S,ZHAO J. Stability analysis and modelling of underground excavations in fractured rocks[M]. Amsterdam:Elsevier,2004.
    [154]EMANUELE F. Statistical and geomechanical models[M]. New York:Springer,1973.
    [155]袁文忠.相似理论与静力学模型试验[M].成都:西南交通大学出版社,1998.
    [156]Itasca Consulting Group, Inc. FLAC3D User Manuals, Version3.0[M]. Minneapolis, Minnesota,2005.9.
    [157]高文学.岩石动态响应特性及损伤模型研究[D],北京:北京理工大学.1999.
    [158]谢和平.岩石、混凝土损伤力学[M].北京:中国矿业大学出版社,1990.
    [159]Budiansky,B.,O'Connell,R.J.,Elastic moduli of a cracked solid[J],International Journal of Solids and Structures,1976,12(1):81~97.
    [160]Grady,D.E.,Lipkin,L.,Criteria for impulsive rock fracture[J],Geophysics research letters, 1980,7(4):255~258.
    [161]KuszmauI,J.S.,A new constitutive model for fragmentation of rock under dynamic loading[J],2nd International Symposium on Rock Fragmentation by Blast,1987:412-424.
    [162]Yang R. A new constitutive model for blast damage[J]. Int. J. Rock Mech. Min. Sci., Geomech. Abstr.,1996(33):245-254.
    [163]Chengqing Wu,Fuzzy dynamic damage analysis of rock mass[D],Singapore:Nanyang Technological University,2001.
    [164]Shao,J.F.,Chau,K.T.,Feng,X.T.,Modeling of anisotropic damage and creep deformationin brittle rocks[J],International Journal of Rock Mechanics and Mining Sciences,200 6,43:582~592.
    [165]郑颍人,沈珠江,龚晓南.岩土塑性力学原理[M],北京:中国建筑工业出版社,2002.
    [166]Bieniawski,Z.T.,Mechanism of brittle fracture of rock[J],International Journal of Rock Mechanics&Mining Sciences,1967,4(4):407~423.
    [167]Englman,R.,Jaeger,Z.,Theoretical aids for improvement of blasting efficiencies in oil shale and rocks,AP-TR-12/87,Soreq Nuclear Research Center,Yavne,Israel,1987.
    [168]Grady,D.E.,Local inertial effects in dynamic fragmentation[J], Journal of Applied Physics,1982,53(1):322~325.
    [169]陈顒,黄庭芳.岩石物理学[M],北京:北京大学出版社,2001.
    [170]Oda,M.,Takemura,T.,Aoki,T., Damage growth and permeability change in triaxial compression tests of inada granite[J],Mechanics of Material,2002,34:313-331.
    [171]Oda,M.,Katsube,T.,Takemura,T.,Microcrack evolution and brittle failure of inada granite in triaxial compression tests at 140 MPa[J],Journal of Geophysical Research,2002,107(B10).
    [172]Chen,M.,Bai,M.,Modeling stress-dependent permeability for anisotropic fractured porous rocks[J],International Journal of Rock Mechanics&Mining Sciences,1998,35 (8):1113~1119.
    [173]Mark,D.Z.,James,D.B.,The effect of microcrack dilatancy on the permeability ofwesterly granite[J],Journal of Geophysical Research,1975,80(5):752-755.
    [174]Xiaochun Li,Permeability change in sandstones under compressive stress conditions [D],Ibaraki University,2001.
    [175]重庆交通科研设计院.公路隧道设计规范[S].北京:人民交通出版社,2004.
    [176]BrownET主编.佘诗刚,王可钧,译.工程岩石力学中的解析与数值计算方法(Analytical and computational methods in engineering rock meehanies).:北京:科技出版社,1991
    [177]铁道综合技术研究所.既设卜夕字沙近接施工对策,二二了几.平成8年
    [178]铁道部基本建设总局.铁道隧道新奥法指南[M]北京:中国铁道出版社.1988.
    [179]孙钧.隧道力学问题的若干进展[J]西部探矿工程,1993,5(4):1-22.
    [180]铁道部第二勘测设计院.铁路工程设计技术手册(隧道)[M].北京中国铁道出版社,1995.
    [181]朱镜清,周建.海底地震动估计的一个流体力学基础[J].地震工程与工程振动,1991,11(3):87-93
    [182]林英松,葛洪魁,王顺昌岩石动静力学参数的试验研究[J]岩石力学与工程学报,1998,17(2):216-222.
    [183]SWOBODA O,ZENG G,LI NING,et al. Dynamic analysis of blast procedure in tunnel[J]. Structural dynamics,1991,5:386-437.
    [184]张欣,李术才爆破荷载作用下青岛胶州湾海底隧道覆盖岩层稳定性分析[J]岩石力学与工程学报,2007,26(11):2348-2355
    [185]国家质检总局GB6722-2003,爆破安全规程[S].北京:中国标准出版社,2003.9.
    [186]邵国建,卓家寿,章青.岩体稳定性分析与评判准则研究[J].岩石力学与工程学报,2003,22(5):691-696.
    [187]王思敬.论岩石的地质本质性及其岩石力学演绎[J].岩石力学与工程学报,2009,28(3):433-450.
    [188]金峰,胡卫,张楚汉等.基于工程类比的小湾拱坝安全评价[J].岩石力学与工程学报, 2008,27(10):2027-2033.
    [189]黄宏伟,杨新安.隧道锚喷支护设计的工程类比模糊经验法[J].隧道及地下工程,1997,18(3):52-56.
    [190]周海清,刘东升,陈正汉.工程类比法及其在滑坡治理工程中的应用[J].地下空间与工程学报,2008,4(6):1056-1060.
    [191]杨志法,尚彦军,刘英.关于岩土工程类比法的研究[J].工程地质学报,1997,5(4):299-305.
    [192]关宝树,杨其新.地下工程概论[M].成都:西南交通大学出版社,2001.
    [193]沈明荣,陈建峰.岩体力学[M].上海:同济大学出版社,2006.
    [194]中华人民共和国煤炭工业部.建筑物、水体、铁路及主要井巷煤柱留设与压煤开采规程[S].北京:煤炭工业出版社,2000.
    [195]孙洪星,康永华,刘武章等.龙口矿区近海厚冲积层下综放采煤防水煤岩柱的留设研究[J].煤炭科学技术,1999,27(6):6~9.
    [196]王梦恕,皇甫明.海底隧道修建中的关键问题[J].建筑科学与工程学报,2005,22(4):1-4.
    [197]董国贤.水下公路隧道[M].北京:人民交通出版社,1984
    [198]唐晓松,郑颖人,叶海林.涉水岸坡稳定性影响参数的敏感性分析[J].后勤工程学院学报,2008,24(2):22-26.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700