用户名: 密码: 验证码:
基于改进传递路径分析方法的动力总成悬置系统优化设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文应用传递路径分析方法对车内振动进行研究。通过介绍传递路径分析方法基本原理,推导复杂系统间的传递函数和无偏估计方法的数学表达式,在理论上提高传递路径计算精度。在消声室转鼓上进行整车匀加速工况振动测试,以发动机到驾驶员座椅导轨、方向盘处、仪表板处和变速操纵杆处的振动传递为例,建立车内振动传递路径分析模型。对各个能量传递路径的传递函数进行分析并计算振动贡献量。根据车内振动传递模型,提出基于传递路径分析方法的悬置系统优化方法及评价方法;本文还提出基于整车试验模态分析方法的动力总成参数识别方法,在整车实际工况下对动力总成的刚体模态和惯量参数进行识别,为动力总成悬置系统优化设计提供准确参数;分别应用能量解耦优化方法与传递路径优化方法对样车动力总成悬置系统进行优化设计,并在悬置刚度、能量解耦、振动传递率以及车内振动控制四个方面进行对比。最后应用传递路径优化的结果制作悬置样件,实测悬置元件性能,并将悬置特性带入到整车传递路径分析模型中进行车内振动预测,改进结果证明本文提出的方法可以更有效控制车内振动;本文从建模分析到试验,全面系统地形成了基于传递路径分析方法的整车车内振动分析与动力总成悬置系统开发的方法和技术流程,为动力总成悬置系统优化设计及解决整车NVH问题提供了一个新思路。
With the rapid development of industrialization, the vibration and noise have been one of the pollute sources, and influence the people’s life、work and study, even the health and psychology, leading to many psychogenic and physiological diseases. During the one hundred years of automotive naissance, the science and technology has been rapid developed, and many newest research production have been applied on the vehicle, the total number of vehicle in the world is increasing, so the pollute problem caused by vehicle is universal and serious. At the same time, with the improvement of people’s living standard, they do not settle for the walking instrument only, especially they also need vehicles have better ride and traveling comfort of vehicle, so the NVH of vehicle (Noise、Vibration and Harshness) have been paid attention more and more in the world. The noises of vehicle include two parts, one is the interior noise, and the other is the exterior noise, and the developed nations have established many statutes and measurement methods based on the characteristic of country, even these rules prohibit selling the vehicle which does not meet the criterion of the vibration and noise rules. These methods make the interior and exterior noise become lower and lower, and the statutes have become rigid more and more. At the same time, these methods also accelerate the development of NVH technology and measurement technology.
     In china, the research of NVH is only carried out in recent years, and Chinese government has established correlative statutes, but they are not rigorous as the developed country. In these years, the total number of vehicle in China is increasing rapidly, and Chinese government has to amend the correlative statutes and keep the same step with the development of world, so all of these needs the auto manufacturer and research institute try their best to achieve farther detailed understanding of the compartment vibration generation mechanisms and the measurement methods, only by this way, it can confirm the indigenous automotive production can have a room in the international competition, and improve the technology level of independent research and development of Chinese vehicle.
     There are many elements can lead to NVH problems and generation mechanism is very complicated, the interior and exterior noise is caused by vibration of vehicle, and the powertrain is the main source of vibration and noise, so the control of vibration and noise of powertrain is the main aspect of improving the NVH and traveling comfort. In a national project of Jilin University (863 Program), the goal of this work was to achieve farther detailed understanding of the compartment vibration generation mechanisms. Through the test, an innovative optimum method of identification parameters of powertrain rigid body based on operation modal method was improved, and the vehicle vibration and analysis model was built based on transfer path analysis of vibration energy. By the method of test and simulation, the main vibration source can be found, and an innovative optimum method of engine mounting system based on transfer path analysis was introduced. Then the method was applied to optimize engine mounting system, and the optimum results were contrasted with the traditional energy decoupling method, finally, the effectiveness of the proposed method was validated through optimum of engine mounting system of the car.
     The control of the interior noise is a complicated system project. The background knowledge of transfer path analysis and the transfer function relation of complicated subsystem were introduced, and then the mathematical equations of improved transfer path analysis method were introduced, the Accuracy of transfer function was improved in theory, so the test period of traditional transfer path analysis can be shorted. With the method, under laboratory conditions, the vehicle was located and accelerated slowly, the acceleration data (engine mounts/chair rail/steering wheel/board/gearshift) were obtained, and the vehicle vibration transfer path analysis model was built and amended by these data, . Then the transfer function model of engine mount was built too. These data were put into the vehicle vibration model and predicted the interior vibration, by the contrast of predict results and test results, the effectiveness of the proposed approach was validated.
     By analysis the vibration generation mechanisms of interior vibration, the vehicle interior vibration model of transfer path analysis was built. The structure of each vibration transfer path and the calculational method of transfer function were analyzed, the each essentials and step in the process of building the vehicle model were analyzed in detail. After the analysis of the vibration source of interior aim point and transfer function of each vibration transfer path, the main vibration transfer paths of interior aim point were picked out.
     By the vehicle model based on the test data, an innovative optimum method of engine mounting system, which based on transfer path analysis, was introduced. Then the optimum of transfer functions of engine mounting system can be carried out based on this method, and the optimization results of stiffness were obtained, at the same time, an innovative criterion of engine mounting system also was improved under real vehicle operation conditions. So it is not necessary to use the general criterion of engine mount system (20dB) to evaluate the mount system.
     An innovative optimum method of identification parameters of powertrain rigid body based on operation modal method was improved. With the method, under real vehicle operation condition, the modal parameters and inertia parameters of the powertrain were identified, and these parameters are more accurate and can be used to optimize the engine mounting system. At the same time, these parameters also can be used to evaluate the rigid body modal design of powertrain. The original stiffness of engine mounts was tested and the stiffness can be the preliminary data in optimum of engine mounting system.
     The mount system of the car was decoupled and optimized. The results of energy decoupling method were contrasted with the results of transfer path analysis method in following aspects, such as stiffness, energy decoupling, vibration transfer rate, interior vibration and so on. The contrast results show the transfer path analysis method is better in vibration transfer rate and interior vibration, but is worse in energy decoupling. So the effectiveness of the transfer path analysis method was validated in theory. Finally, the samples of the mount were made by the results of transfer path analysis method, and assembled them on the car. By the real car testing, the results show that the interior vibration can be controlled effectively, and the effectiveness of the proposed approach was validated.
     In the paper, the vibration energy transfer characteristic relations of vehicle different subsystems were built by vehicle test data and the main vibration sources and transfer paths of interior vibration were picked out by the model, the engine mounting system was optimized by an innovative transfer path analysis optimum method, then an innovative criterion of engine mounting system also was improved under real vehicle operation conditions for different kind of vehicle.
引文
[1]蒋孝煜,连小珉.声强技术及其在汽车工程中的应用[M].北京:清华大学出版社,2001.
    [2]黄其柏.工程噪声控制学[M].武汉:华中理工大学出版社,1999.
    [3]李龙.重型车车外噪声控制[D].北京:清华大学综合论文训练,2005.
    [4]杨殿阁,刘峰,郑四发等.声全息方法识别汽车运动噪声[J].汽车工程,2001,23(5):322,329-331.
    [5]庞剑,谌刚,何华.汽车噪声与振动-理论与应用[M]。北京:北京理工大学出版社,2006.
    [6] Dubbaka K R, Zweng F J, Haq S U. Application of Noise Path Target Setting Using The Technique of Transfer Path Analysis[C]. SAE: 2003-01-1402.
    [7] Bradley D, Duncan and Raja Sengupta. Numerical Simulation and Spectral Analysis of Pressure Fluctuations in Vehicle Aerodynamic Noise Generation[C]. SAE: 2002-01-0597.
    [8] Koners G. Panel noise contribution analysis: An Experimental Method for Determining the Noise Contributions of Panels to Interior Noise[C]. SAE: 2003-01-1410.
    [9] Sakai T, Terada M, Ono S, Kamimura N, Gielen L. Development Procedure for Interior Noise Performance by Virtual Vehicle Refinement, Combining Experimental and Numerical Component Models[C]. SAE: 2001-01-1538.
    [10] Singh V K, Wani N, Monkaba V D, Bloughand J R, Gwaltney G. Powertrain Transfer Path Analysis of A Truck. [C]. SAE: 2001-01-2817.
    [11] Lei Liu. A Frequency Response Function-based Inverse Sub-structuring Approach for Analyzing Vehicle System NVH Response[D]. Ph.D. Dissertation, the University of Alabama, 2002.
    [12] James F. Unruh and Paul D. Till. Interior Noise Source Path Identification Technology[C]. SAE: 2000-01-1709.
    [13] K.Wyckaert, M.Brughmans. Hybrid Sub-structuring for Vibro-acoustical Optimization Application to Suspension - Car Body Interaction[C]. SAE: 971944.
    [14] Van der L inden P J G, Fun J K. Using Mechanical-acoustic Reciprocity for Diagnosis of Structure Borne Sound in Vehicles [C]. SAE Technical Paper Series, Paper Number 931340.USA, Michigan: [s. n.], 1993.
    [15] Van der L inden P J G,Varet Ph. Experimental Determination of Low Frequency Noise Contributionof Interior vVehicle Body Panels in Normal Operation [C]. SAE Technical Paper Series, Paper Number: 960194.USA, Michigan: [s. n.], 1996.
    [16] K.Genuit and J. Poggenburg. The Design of Vehicle Interior Noise Using Binaural Transfer Path Analysis[C]. SAE Technical Paper Series, Paper Number: 1999-01-1808. USA, Michigan:[s. n.], 1993.
    [17] Chris V K, Chuck Van K, William R K. Application of Indirect Force Estimation Techniques to The Automotive Transfer Case [C]. SAE Technical Paper Series, Paper Number: 1999-01-1764. USA, Michigan: [s.n.], 1999.
    [18] Sang-kwon Lee, Ki-Sung Park. Vibrational Power Flow and Its Application to a Passenger Car for Identification of Vibration Transmission Path[C], SAE: 2001-01-1451.
    [19] Renata Guedes, Paulo J.P.Goncalves. Investigation of Sub-system Contribution to a Pickup Truck Boom Noise Using a Hybrid Method Based on Noise Path Analysis to Simulate Interior Noise[C], SAE: 2003-01-3677.
    [20] Krishna R.Dubbaka, Frederick J.Zweng and Shan U.Haq. Application of Noise Path Target Setting Using the Technique of Transfer Path Analysis[C], SAE: 2003-01-1402.
    [21] Gregor K. Panel Noise Contribution Analysis: An Experimental Mmethod for Determining the Noise Contributions of Panels to An Interior Noise [C] SAE Technical Paper Series, Paper Number: 2003-01-1410. USA, Michigan: [s. n.], 2003.
    [22] Scott Amman, Perry GU, Tim Mouch. Sound and Vibration Vontribution to the Perception of Impact Harshness[C], SAE: 2005-01-1499.
    [23] Ichiro kido, Sagiri Ueyama. Coupled Vibration Analysis of Tire and Wheel for Road Noise Iimprovement[C], SAE: 2005-01-2525.
    [24] Lei Liu, Teik C.Lim. An Experimental Study of the Chassis Vibration Transmissibility Applying A Spectral-based Inverse Sub-structuring Technique[C], SAE: 2005-01-2470.
    [25] Juha Plunt. Examples of Using Transfer Path Analysis (TPA) Together with CAE-models to Diagnose and Find Solutions for NVH Problems Late in the Vehicle Development Process [C], SAE:2005-01-2508.
    [26] Seungbo K, Akira I, Rajendra S. Experimental Study of Structure-Borne Noise Transfer Paths Over the Mid-Frequency Regime [C], SAE Technical Paper Series, Paper Number: 2005-01-2338. USA, Michigan: [s.n.], 2005.
    [27] Mark A. Gehringer. Application of Experimental Transfer Path Analysis and Hybrid FRF-BasedSub-Structuring Model to SUV Axle Noise[C], SAE: 2005-01-1833.
    [28]Oliver W, Roland S. Panel Contribution Analysis an Alternative Window Method[C], SAE Technical Paper Series, Paper Number: 2005-01-2274. USA, Michigan: [s. n.], 2005.
    [29] Smita Shivle, Gyan Arora. Methodology of Road Noise Analysis and Improvement Strategy for Passenger Cars[C], SAE: 2006-01-1094.
    [30] Alexander Kruse. NVH Improvement of Car Suspension Using Transfer Path and Running Mode Analysis[C], SAE: 2006-01-0485.
    [31]Luca Mozzarella, Philippe Godano, Jan Horak. Reciprocal Powertrain Structure-borne Transfer Functions Synthesis for Vehicle Benchmarking[C], SAE: 2007-01-2354.
    [32] H. Van der Auweraer, P. Mas, S. Dom, A. Vecchio. Transfer Path Analysis in the Critical Path of Vehicle Refinement: The Role of Fast, Hybrid and Operational Path Analysis[C]. SAE: 2007-01-2352.
    [33] Daniel Riemann, Roland Sottek. Interactive Auralization of Powertrain Sounds Using Measured and Simulated Excitation[C], SAE: 2007-01-2214.
    [34] Masato Hashioka, Ichiro Kido. An application Technique of Transfer Path Analysis for Automotive Body Vibration[C], SAE: 2007-01-2334.
    [35] David Bogema, Andreas Schuhmacher. Comparison of Time and Frequency Domain Source Path Contribution Analysis for Engine Noise Using a Noise and Vibration Engine Simulator[C], SAE: 2008-36-0509.
    [36] Eduardo Bauzer Medeiros, Gustavo Paulinelli Guimaraes. The Use of Experimental Transfer Path Analysis in a Road Vehicle Prototype Having Independent Sources[C], SAE: 2008-36-0555.
    [37] Andrew S.Waisanen, Jason R.Blough. Road Noise TPA Simplification for Improving Vehicle Sensitivity to Tire Cavity Resonance Using Helium Gas[C], SAE: 2009-01-2092.
    [38] Gregor Koners, Ralf Lehmann. Investigation of Tire Road Noise with Special Consideration of Airborne Noise Transmission[C], SAE: 2009-01-2109.
    [39]陈光治,蒋伟廉.一种分析车内声传递特性的实验方法[J].汽车工程,2000年第5期,第22卷第5期,p313-315+309.
    [40]张立军,周鋐,余卓平.发动机振动引起的车内噪声控制研究[J].振动、测试与诊断,2001年3月,第21卷第1期,p59-64.
    [41]张立军,靳晓雄,余卓平.轿车车内噪声控制方法研究[J].汽车工程,2002年第1期,第24卷第1期,p15-19.
    [42]陈剑,万鹏程,李传斌.统计频率的传递路径分析在客车降噪中的应用[J].江苏大学学报(自然科学版),2006年9月,第27卷第5期,p413-416.
    [43]宋传学,赵彤航.轿车车内噪声测量分析及控制方法[J].吉林大学学报(工学版),2007年9月,第37卷第5期,p1000-1004.
    [44]郭荣,万钢等.车内噪声传递路径分析方法探讨[J].振动、测试与诊断,2007年9月,第27卷第3期,p199-203.
    [45]郭荣,万钢,左曙光.燃料电池轿车车内噪声传递路径分析研究[J].汽车工程,2007年第8期,第29卷第8期,p635-641.
    [46]刘东明项党,罗清.传递路径分析技术在车内噪声与振动研究与分析中的应[J].噪声与振动控制,2007年8月第4期,p73-77.
    [47]张义民.频域内振动传递路径的传递度排序[J].自然科学进展,2007年3月,第17卷第3期,p410-414.
    [48]张义民.时域内振动与噪声传递路径系统的路径传递度探索[J].航空学报,2007年7月,第28卷第4期,p971-974.
    [49]张义民.振动系统随机传递路径响应分析[J].工程力学,2008年1月,第25卷第1期,p133-136.
    [50]张义民,李鹤,闻邦椿等.基于灵敏度的振动传递路径的参数贡献度分析[J].机械工程学报,2008年10月,第44卷第10期,p168-171.
    [51]张义民,贺向东,李鹤等.具有随机路径的振动传递路径系统的随机响应分析[J].计算力学学报,2008年8月,第25卷第4期,p523-524+624+724.
    [52]龙岩,范让林,史文库,周舟,李伟.提高传递路径分析速度和精度的方法[J].吉林大学学报(工学版),2009年3月增刊1,p78-82.
    [53]龙岩,史文库,梁天也,周舟,张军.基于改进传递路径分析方法的动力总成悬置系统优化及评价[J].汽车工程,2009年第10期,2009(Vol.31)No.10, p957-962+985.
    [54]龙岩,史文库,梁天也,周舟,张军.基于传递路径的动力总成悬置系统优化及评价[J].北京工业大学学报,2009年11月,第11期,p1448-1453.
    [55]赵群,张义民,赵晋芳.非线性刚度振动传递路径系统灵敏度分析[J].东北大学学报(自然科学版),2009年8月,第30卷第8期,p1174-1177.
    [56]赵群,张义民,赵晋芳.振动传递路径的功率流传递灵敏度分析[J].振动与冲击,2009年7月,第28卷第7期,p183-186+222.
    [57] A.Rust, M. Pfluger, Active Path Tracking, A New Analysis Tool for Vehicle Noise[C], SAE: 2001-01-0045, Proc. SIAT 2001, Pune (India), Jan. 2001.
    [58] W. Halvorsen. Noise Source Identification Using Coherent Output Power Spectra [J], Sound and Vibration, Aug. 1975, pp.17-24.
    [59] D. Ewins, W. Liu, Transmissibility Properties of MDOF Systems[C], Proc. 16th IMAC, Santa Barbara (CA), pp. 847-854, California, 1998.
    [60] P. Varoto, K. McConnell, Single Point vs. Multi Point Acceleration Transmissibility Concepts in Vibration Testing[C], Proc. 16th IMAC, Santa Barbara,(CA) ,pp. 83-90, 1998.
    [61] N.M.M. Maia, J.M.M. Silva, A.M.R. Ribeiro, The Transmissibility Concept in Multi-degree-of-freedom Systems[J], Mechanical Systems & Signal Processing, 15(1), pp. 129-137. January 2001.
    [62] A.M.R. Ribeiro, J.M.M. Silva, N.M.M., Maia, M. Fontul, Transmissibility Matrix in Harmonic and Random Processes [J], J. of Shock and Vibration, 11(5-6), pp. 563-571, 2004.
    [63]梁天也,史文库,唐明祥.发动机悬置研究综述[J].噪声与振动控制,2007年2月第一期,p6-10.
    [64] ErnstW, Gerhard E T.A Review of Parameters Affecting the Noise and Vibration in Diesel Powered Passenger Cars[C]. SAE Trans: 850966, 1985:35-43.
    [65] Takao U,Kazuya T,Hiroshi K. High Performance Hydraulic Mount for Improving Vehicle Noise and Vibration[C].SAE Technical Paper Series:880073,1988:1-9.
    [66]范让林,吕振华.汽车动力总成隔振难点与被动悬置改进技术[J].汽车技术, 2009年第5期No.404期,p18-21.
    [67] Resh W F. The Effect of Engine Build Options on Powerplant Inertias[C]. SAE Trans.900457,1990:81-86.
    [68] Akio M, Kinro H, Masaaki I. New Polyether Elastomers for Oilresistant Automotive Use[C].SAE Trans: 870194, 1987:695-699.
    [69] Dennis E H,Robert E E,Eduard H,et al.New Elastomers are More Resistant to Many Automotive Fluids[C].SAE Trans.890361, 1989:266-277.
    [70] Rivin E I.Passive Engine Mounts-Some Directions for Further Development[C]. SAE Trans: 850481, 1985:528-591.
    [71] Bradley D, Duncan and Raja Sengupta. Numerical Simulation and Spectral Analysis of Pressure Fluctuations in Vehicle Aerodynamic Noise Generation[C]. SAE: 2002-01-0597.
    [72] Sakai T, Terada M, Ono S, Kamimura N, Gielen L. Development Procedure for Interior Noise Performance by Virtual Vehicle Refinement, Combining Experimental and Numerical ComponentModels[C]. SAE: 2001-01-1538.
    [73] Singh V K, Wani N, Monkaba V D, Bloughand J R, Gwaltney G. Powertrain Transfer Path Analysis of a Truck[C]. SAE: 2001-01-2817.
    [74]邵慧萍.求解动力系统响应使用的改进模态叠加算法[J].南京理工大学学报,Vol.30 No.4, Aug.2006, p454-457.
    [75]李德葆著.振动模态分析及其应用[M].宇航出版社,1989年8月第一版.
    [76] William Hendricx, Dirk De Vis.An Overview of the European Research Project DIANA[C], SAE, May 1997.
    [77]赵彤航.基于传递路径分析的汽车车内噪声识别与控制[D].吉林大学博士学位论文,2008年4月.
    [78]李德堡,陆秋海著.实验模态分析与应用[M].科学出版社,2000年2月第一版.
    [79]雷继尧,蒋和生等.结构模态分析中的频响函数新估计方法[J].振动分析与测试技术。1987,19(2): 28-33.
    [80]林砺宗.传递函数的无偏差测量法[J].振动、测试与诊断,1989,9(3): 16-20.
    [81]《振动与冲击手册》编辑委员会编著.振动与冲击手册[M].第一卷,国防工业出版社。1988年4月第一版.
    [82]滑广军.结构分析中的多输入多输出传递函数无偏估计[D].中南大学硕士学位论文,2002.
    [83] LONG Yan, SHI Wen-ku , LIANG Tian-ye,ZHOU Zhou,Improved Method of Transfer Path Analysis and Test Validation[C],The 15th Asia Pacific Automotive Engineering Conference.
    [84] Givers L. Technical highlights of the 1985 automobiles [J]. Automotive Engineering, 1985(10):39-51.
    [85]蒋国平,王国林,陈步达,周孔亢.车辆动力传动系振动研究述评[J].江苏理工大学学报(自然科学版),第21卷第3期,2005年5月,p22-26.
    [86]傅立敏主编.汽车空气动力学[M].北京:机械工业出版社,1998年11月第一版.
    [87]郭荣,万钢.车内噪声传递路径分析方法探讨[J ].振动、测试与诊断,2007 , 27 (3): 199-203.
    [88]严济宽著.机械振动隔离技术[M].上海:上海科学技术文献出版社,1986年第一版.
    [89]赵海澜,汪鸿振等.偏相干分析识别噪声源的计算[J].噪声与振动控制,2005.4,p31-33.
    [90]杨德森.利用偏相干方法识别主要激励源[J].哈尔滨船舶工程学院学报,1994.3,p35-44.
    [91]伶德纯.工程信号处理及应用[M].上海:上海交通大学出版社,1989.
    [92]黄文梅等编.信号分析与处理—语言及应用[M].北京:国防科技大学出版社,2000年2月第一版.
    [93]李胡,锡姜红主编.循序渐进[M].上海:上海交通大学出版社,1997年11月第一版.
    [94]夏永源,张阿舟编著.机械振动问题的计算机解法[M].北京:国防工业出版社,1993年9月第一版.
    [95]国电子仪器仪表学会信号处理学会《振动数字信号处理程序库》编委会编.振动数字信号处理程序库[M].北京:科学出版社,1988年8月第一版.
    [96]李人厚等译.精通MATLAB综合指导与指南[M].西安:西安交通大学出版社,1998年1月第一版.
    [97]阎红玉等.发动机悬置系统的能量解耦法及优化设计[J].汽车工程,1993, 15(6), p321-328.
    [98]徐石安.汽车发动机弹性支撑隔振的解耦方法[J].汽车工程,1995,17(4), p198-204.
    [99]史文库.轿车动力总成液压悬置隔振降噪技术的理论和应用研究[D].长春:吉林工业大学汽车工程学院,1996.
    [100]裘新,吕振华等.轿车动力总成-液压悬置-副车架系统参数的优化设计[J].汽车技术,1998,(7), p1-6.
    [101]刘惟信,孟嗣宗.机械最优化设计[M].北京:清华大学出版社,1986.
    [102]王军.模糊小波网络及其在永磁同步电机控制中的应用[D].西南交通大学博士论文,2005年9月.
    [103]张楠,文成林.多尺度分布平滑估计方法[J].河南大学学报(自然科学版),2000年3月,Vol.30, No.1,p43-47.
    [104] Coleman, T.F. and Y. Li, An Interior, Trust Region Approach for Nonlinear Minimization Subject to Bounds[J], SIAM Journal on Optimization, Vol. 6, pp. 418-445, 1996.
    [105] Coleman, T.F. and Y. Li, On the Convergence of Reflective Newton Methods for Large-Scale Nonlinear Minimization Subject to Bounds[J], Mathematical Programming, Vol.67, Number 2, pp. 189-224, 1994.
    [106] Gill, P.E., W. Murray, and M.H. Wright, Practical Optimization [M]. London, Academic Press, 1981.
    [107] Han, S.P., A Globally Convergent Method for Nonlinear Programming [J]. Vol. 22, Journal of Optimization Theory and Applications, p297, 1977.
    [108] Powell, M.J.D., A Fast Algorithm for Nonlinearly Constrained Optimization Calculations[C], Numerical Analysis, ed. G.A. Watson, Lecture Notes in Mathematics, Springer Verlag, Vol. 630, 1978.
    [109] Powell, M.J.D. The Convergence of Variable Metric Methods for Nonlinearly ConstrainedOptimization Calculations [M], Nonlinear Programming 3 (O.L. Mangasarian, R.R. Meyer, and S.M. Robinson, eds.), Academic Press, 1978.
    [110]史文库,林逸,吕振华.动力总成悬置元件特性对整车振动的影响[J].汽车工程,1997.19(2), p103-107.
    [111] (比利时)海伦,拉门兹,萨斯等.白化同,郭继忠译.模态分析理论与试验[M].北京:北京理工大学出版社,2001, p53-72.
    [112]龙岩,史文库,兰靛靛.动力总成刚体惯性参数识别的实验研究[J].噪声与振动控制, 2009年第1期,p73-76
    [113]龙岩,史文库,周舟.基于工作模态法的动力总成刚体参数识别[J].汽车工程,2008年第10期,2008(Vol.30)No.10,p863-856.
    [114] Toivola,J.and Nuutila,O. Comparison of three Methods for Determining Rigid Body Inertia Properties from Frequency Response Functions[C], Proc.of the 11th International modal Analysis Co-Conference,IMAC,1997.
    [115] Okuzumi, H.Identification of the Rigid Body Characteristics of a Powerplant by Using Experimentally Obtained Transfer Functions [J], Int.J.of Vehicle Design, Vol 15, Nos 3/4/5, 1994.
    [116] Lemaire, G. and Gielen,L, Het bepalen van de inertie-parameters vaneen star lichaam door middel van transferfuncties[Z], Eindwerk katholieke hogeschool Brugge-Oostende dep.industriele wetenschappen en technologie,1995-1996.
    [117] Lee H, Lee Y B and Park Y S.Response and Excitation Points Selection for Accurate Rigid-Body Inertia Properties Identification [J].Mechanical Systems and Signal Processing(1999)13(4), p571-592.
    [118]王山山,任青文.结构模态参数测试的传感器优化布置研究[J].动力学与控制学报,2005(1),p67-71.
    [119]龙岩,史文库,兰靛靛.基于工作模态法的动力总成刚体模态参数识别[J].噪声与振动控制,2008年第6期,p88-91.
    [120] Long Yan, SHI Wen-ku, LIANG Tian-ye, ZHOU zhou,Identification of Powertrain Rigid Body Properties Based on Operation Modal Method[C], SAE:2009-01-2761.
    [121]熊云亮.全顺轻型客车动力总成液压悬置动特性研究[D].吉林大学硕士学位论文,2000.
    [122]范让林.汽车动力总成悬置系统隔振特性分析及液压阻尼式橡胶悬置隔振技术研究[D] .长春:吉林工业大学汽车工程学院,1995.
    [123]叶庆凯,王肇明.优化与最优化控制中的计算方法[M].北京:科学出版社,1986.
    [124]粟塔山.最优化计算原理与算法程序设计[M].北京:国防科技大学出版社,2001.
    [125]龙岩,史文库.橡胶主簧的有限元分析及对液阻悬置性能的影响[J].机电工程,2004.4. p48-51.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700