用户名: 密码: 验证码:
断续节理岩体锚固效应数值模拟方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着国民经济的持续稳定增长,对地下洞室开发利用的需求日益增加,如城市地下铁道与海底隧道、地下商城与地下车库工程、大型人民防空建筑物、市政地下工程、大型水电地下厂房与超长水工隧洞、多线铁路与公路隧道、冶金和煤炭矿山井巷工程、重大军用国防工程、能源地下储存库及核废料地下处置库等等。岩土锚固技术,无疑是保证地下洞室开挖顺利进行和正常使用,有效的控制围岩变形的有效措施,目前已经成为一种无可替代的岩土工程安全加固措施。
     结构面是岩体作为工程材料的一个显著特征,它遍布于天然岩体中将岩石料切割成断续介质,其中又尤以断续节理最为普遍。结构面的数量、分布、形态和性质直接决定着岩体的整体力学效应和破坏形式。岩体的失效破坏往往是由于赋存于其中节理在荷载作用下萌生、发育、扩展、贯通造成的。锚杆作为广泛应用于岩体工程中的一种加固构件,其锚固效果是显著的,但其加固机理尚不十分明确。本文以加锚断续节理岩体为研究对象,通过损伤理论和数值分析手段,致力于得到一种简单、有效、易于推广,可以适用于工程实践的能够计算出断续节理岩体加锚加固效应的数值方法。
     对断续节理岩体儿何损伤张量进行了定义和推导,引入狄拉克奇异函数来描述裂纹密度的方向分布特征,积分即得到损伤张量D。不同的损伤张量D阶数,对裂纹描述的精确性不一样,低阶张量可以完全由高阶张量经过简化得到,高阶张量包含有所有低阶张量的信息。在多族裂纹情况下,二阶张量对多族裂纹的描述能力有所欠缺。
     基于对固有损伤定义的模仿,将损伤的定义进行扩展,将因增强材料的介入(锚杆、注浆、加筋土、土工织物)而引起的受力面积或刚度的变化量定义为负损伤(Anti-Damage)或增强(Reinforcement)。负损伤概念的提出实际上是对现有损伤概念的扩展,其量值的定义、空间方向分布的确定、推导和运算均可遵循损伤变量的法则。
     建立了能够计算翼裂纹尖端应力强度因子并同时考虑裂纹面接触效应的有限元模型。为克服目前应用最广泛的虚拟弹簧法无法提供抗弯的缺点,本文模型将锚杆建为实体,并充分考虑了锚杆与岩体之间的接触。利用此模型可以计算出加锚前后岩体内翼裂纹裂尖应力强度因子的变化。
     运用准唯象损伤力学方法,利用本文建立的实体锚杆有限元模型,以裂纹尖端应力强度因子的减小程度作为评价锚固效应的依据,发现应力强度因子的衰减符合高斯分布规律,即锚杆对岩体的加固具有非局部效应,且在不同锚杆几何尺寸与锚杆刚度下,强度因子的衰减的趋势也有不同。用高斯分布函数拟合这些趋势,得到了不同锚杆工况对应的高斯函数具体表达式。
     用Fortran程序实现了上述设想。从程序的运行结果看,本文所编制的程序能体现出裂隙存在对岩体的削弱现象,以及这种削弱效应的各向异性;在加锚后,也能够体现出锚杆对岩体的增强效果,和增强效果的各向异性。程序能够实现本文所提出的模拟锚固效应的设想,并且结果符合实际情况。
The demand of underground cavern development increases rapidly with the sustained stable growth of the national economy. These underground caverns include urban subway, submarine tunnel, underground shopping mall and garage, large-scale air-raid shelter structure, municipal underground engineering, underground workshop of hydropower station, super-long hydraulic tunnel, multiple line tunnel of highway and railway, mineral engineering, momentous national defense projects and military engineering, underground storage of fuel and nuclear waste. Geotechnical anchoring technology which can ensure the project smooth progress and normal operation also can control the deformation of surrounding rockmass has become an irreplaceable reinforcement measures in geotechnical engineering safety.
     Joint which is the most significant property of rock as a kind of engineering material distribute universally in natural rockmass. In all kinds of joints, intermittent joints are most universal. The mechanics characteristics and failure style if the entire rockmass are determined directly by the quantity, distribution, feature and properties of the joints. The failure of the rockmass is usually caused by initiation, development, expand, transfixion of the cracks under the external load. As the most widely used reinforcement structure, anchoring effect of the bolts is significant. The mechanism of anchoring effect is not explicit yet. Taking bolted intermittent jointed rockmass as the research object, through the damage theory and numerical simulation, this dissertation is dedicated to obtained a simple, efficient, propagable, engineering-usable technology which is capable of simulating the anchorage effect of bolt to intermittent jointed rockmass.
     A FEM model is established to compute stress intensity factor (SIF) of winged-crack in bolted rockmass, contact effect of crack surfaces is also considered in this model. A comparison is conducted between method in this paper and virtual spring method. From the result of this model, the anchoring effect of bolt is embodied by bending resistance. The most fatal defect of virtual spring method which is very popular is that bending can not be expressed from virtual spring.
     Geometrical damage tensor of intermittent jointed rockmass is defined and derived. A singular Dirac function is introduced to describe the orientation distribution of crack density and Damage tensor is obtained by integrating the Dirac function. The accuracy of the Damage tensor in crack density description is determined by the order of the tensor. Low order tensor can be adequately derived from high order tensor. Orientation distribution of crack density can not be wholly described by second order tensor while two or more family of crack exist.
     Based on the imitation to existing definition of Damage, the increase of bearing area or stiffness caused by reinforcement (bolt, grout, geotechnical grille) is defined as Anti-Damage. In fact this is an extension to existing definition of damage. The definition, special distribution, operational rule of Anti-Damage is just same as Damage tensor.
     On the base of quasi-phenomenology damage mechanics and non-location theory, from the calculation result of FEM model, it is found that the attenuation of SIF accord with Gaussian distribution. The parameters of Gaussian distribution vary with the scale and stiffness of bolt. So Gaussian distribution is chosen to fit the attenuation of SIF.
     The statement expounded above is programmed via FORTRAN programming language whose version is 6.5.The calculation result of program is capable of expressing the anisotropic weaken effect caused by existence of joints and anisotropic and non-local anchoring effect caused by existence of bolts.
引文
[1]李术才.加锚断续节理岩体断裂损伤模型及其应用[D].武汉:中国科学院武汉岩土力学研究所博士论文.1996.
    [2]李术才等.某地下电站厂房围岩稳定性及锚固效应研究[J].岩土力学,2003,24(4):510-513.
    [3]程良奎.岩土锚固的现状与发展[J].土木工程学报,2001,34(3):7-12,34.
    [4]孙钧.中国岩土工程锚固技术的应用与发展[M].北京:中国建筑工业出版社.1996.
    [5]刘泉声,张华,林涛.煤矿深部岩巷围岩稳定与支护对策[J].岩石力学与工程学报,2004,23(21):3723-3737.
    [6]朱珍德.地下巷道锚杆作用机理的流变分析[J].山东矿业学院学报,1997,16(2):148-153,191.
    [7]付国彬.锚杆与围岩相互作用关系及锚固力的研究[D].徐州:中国矿业大学博士论文.1999.
    [8]勾攀峰.巷道锚杆支护提高围岩强度和稳定的研究[D].徐州:中国矿业大学博士论文.1998.
    [9]程良奎,范景伦,韩军,等.岩土锚固[M].北京:中国建筑工业出版社,2003.
    [10]任青文,罗军.锚杆应用加固机理研究综述[J].水利水电科技进展,1997,17(1):29-33.
    [11]蒋宇静,Y,Tanabashi.锚杆对软岩隧道变形的加固作用[J].岩石力学与工程学报.1999,18(增):1105-1109.
    [12]朱万成,唐春安.地下洞室开挖与支护有限元分析[J].岩土工程技术,2000,(1):26,24.
    [13]王桂尧,孙宗颀,徐纪成.纯剪载荷作用下的岩石断裂[J].中国有色金属学报,1996,6(1):17-21.
    [14]熊厚金.国际岩土锚固与灌浆新进展[J].北京:中国建筑工业出版社.1996.
    [15]叶金汉.裂隙岩体的锚固特性及其机理[J].水利学报,1995,9:68-74.
    [16]张乐文.传力可控型锚杆的试验及理论研究[D].武汉:中国科学院武汉岩土力学研究所博士论文.2002.
    [17]朱浮声,郑雨天.全长粘结式锚杆的加固作用分析[J1.岩石力学与工程学报,1996,15(4):333-337.
    [18]尤春安.全长粘结式锚杆的受力分析[J].岩石力学与工程学报,2000,19(3):339-341.
    [19]张季如,唐保付.锚杆荷载传递机理分析的双曲函数模型[J].岩土工程学报,2002,24(2):188-192.
    [20]Chang S.H.,Lee C.I,Jeon S. Measurement of rock fracture toughness under modes 1 and 11 and mixed-mode conditions by using disc-type sepcimens[J]. Engineering Geology,2002,66 (112):79-97.
    [21]D. Krajcinovic. Damage mechanics:accomplishments, trends and needs [J]. International Journal of solid and Structures,2000,37(112):267-277.
    [22]周维垣.高等岩石力学[M].北京:水利电力出版社,1990.
    [23]王成.层状岩体边坡锚固的断裂力学原理[J].岩石力学与工程学报,2005,24(11):1900-1904.
    [24]何思明,王成华,吴文华.基于损伤理论的预应力锚索荷载-变形特性分析[J].岩石力学与程学报,2004,23(5):768-729.
    [25]Gerrard C. Rock bolting in theory--a key note lecture[C].In:Stockholm.A.A.Balekma. Prco. of the Int. Symp.on Rock Bolting.Stcohkolm,1983.
    [26]杨延毅.岩质边坡卸荷裂隙加固锚杆的增韧止裂机制与效果分析[J].水利学报,1994(6):1-10.
    [27]Li.C, Stillborg. B.Analytical models for rock bolts[J].Int.J.Rock Mech. and Min. Sci.,1999,36(8):1013-1029.
    [28]Yue Cai, Tetsuro E. Yujing Jiang. A rock bolt and rock mass interaction model[J].Int.J.Rcok Mech. and Min.Sci,2004,41 (7):1055-1067.
    [29]Farmer I.W. Stress distribution along a resin grouted rock anchor[J]. Int J Rock Mech Min Sci and Geomech Abstr,1975,12:347-351.
    [30]Freeman TJ. The behaviour of fully-bonded rock bolts in the Kielder experimental tunnel[J]. Tunnels Tunnelling,1978,10:37-40.
    [31]Stillborg B. Professional users handbook for rock bolting[M]. Germany:2nd Ed. Clausthal-Zellerfeld.1994.
    [32]杨松林等.混凝土中锚杆荷载传递机理的理论分析和现场试验[J].岩土力学,2001,(1):72-75.
    [33]陈妙峰,唐德高.锚杆锚固机理试验研究[J].建筑技术开发,2003,30(4):21-23.
    [34]Bjurstrom S. Shear strength of hard rock joints reinforced by grouted untensioned bolts[A]. Pro. 3rd ISRM Congress (Vol Ⅱ B)[C].Denver,1974.1194-1999.
    [35]Haas C J. Shear Resistance of Rock bolts[J]. Society of Mining Engineers, Transactions, 1976,260:32-41.
    [36]Haas C J. Analysis of rock bolting to prevent shear movement in fractured ground[J]. Mining Engineering,1981,33(6):698-704.
    [37]Hibino, S & Motojima, M. Effects of rock bolt rock bolting in joint rocks[J]. Proceedings of the International Symposium on Weak Rock,1981:1057-1062.
    [38]Dight P.M. Improvements to the stability of rock walls in open mines[D]. Australia:Monash University PhD thesis.1982
    [39]Egger P, Pellet F. Behaviour of reinforced jointed models under multiaxial loadings in Rock Joints[J]. Barton & Stephansson (eds.),1990:157-161.
    [40]Egger P, Zabuski L. Behaviour of rough bolted joints in direct shear tests[C]. Proceedings of the 7th ISRM Cong., Aachen, Germany,1991:1285-1288.
    [41]Pellet F, Egger P. Analytic model for the mechanical behaviour of bolted rock joints subject to shearing[J]. Rock Mechanics and Rock Engineering,1996,29:73-97.
    [42]Ludvig B. Shear Tests on Rock bolts[J]. Proceedings of the International Symposium on Rockbolting,1983:113-123.
    [43]Schubert P. Das Tragvermogen desmortelversetzten Ankers unter aufgezwungener Kluftverschiebung[D]. Austria:Montan-Universitat Leoben PhD thesis.1984.
    [44]葛修润,刘建武.加锚节理面抗剪性能研究[J].岩土工程学报,1988,(1):7-18.
    [45]Spang K, Egger P. Action of fully grouted bolts in jointed rock and factors of influence[J]. Rock Mechanics and Rock Engineering.1990, (23):201-229.
    [46]Roberts DP. Testing of mining tunnel support elements and systems for hard rock mines[D]. South Africa:University of Natal Master.1995.
    [47]叶金汉.裂隙岩体的锚固特性及其机理[J].水利学报,1995(9):68-74.
    [48]McHugh E, Signer S. Roof bolt response to shear stress:laboratory analysis[C].18th International Conference on Ground Control in Mining, Morgantown,1998:232-238.
    [49]Kharchafi M, Grasselli G, Egger P. 3D behaviour of bolted rock joints:Experimental and numerical study[A].In:Rossmanith. Mechanics of Jointed and Faulted Rock[C]. Rotterdam: Balkema,1998:299-304.
    [50]Li C, Stillborg B. Analytical models for rock bolts[J]. Int J Rock Mech Min Sci 1999,36: 1013-29.
    [51]Grasselli G, Kharchafi M, Egger P. Experimental and numerical comparison between fully grouted and frictional bolts[J], Congress on Rock Mechanics,1999:903-907.
    [52]朱焕春,肖明等.锚杆抗剪性能现场试验研究[J].岩石力学与工程学报,1999(增):1126-1128.
    [53]朱焕春等.反复张拉荷载作用下锚杆工作机理试验研究[J].岩土工程学报,1999(6):662-665.
    [54]刘波.锚杆拉剪大变形应变分析[J].岩石力学与工程学报,2000(3):334-338.
    [55]邹志晖,汪志林.锚杆在不同岩体中的工作机理[J].岩土工程学报,1993(6):71-79.
    [56]钟新谷,徐虎.全长锚固锚杆的横向作用研究[J].岩土工程学报,1997(1):94-98.
    [57]侯朝炯,勾攀峰.巷道锚杆支护围岩强度机理研究[J].岩石力学与工程学报,2000,19(3):342-345.
    [58]任伟中.节理围岩特性及其锚固效应模型试验研究[J].中国地质大学学报,1997,22(6):660-664.
    [59]朱维申,任伟中.船闸边坡节理岩体锚固效应的模型试验研究[J].岩石力学与工程学报,2001,20(5):720-725.
    [60]陈卫忠等.节理岩体中洞室围岩大变形数值模拟及模型试验研究[J].岩石力学与工程学报,1998,17(3):223-229.
    [61]荣冠,朱焕春等.三峡工程永久船闸高强锚杆现场试验研究[J].岩土力学,2001,22(2):171-175.
    [62]Dight P.M. A case study of the behaviour of rock slope reinforced with fully grouted rock bolts[C]. International Symposium on Rock Bolting, Abisko, Sweden,1983:523-38.
    [63]汤伯森.弹塑性围岩砂浆锚杆支护问题的估算法[J].岩土工程学报.1991,13(6):42-51.
    [64]朱维申,张玉军.三峡船闸高边坡节理岩体稳定分析及加固方案初步研究[J].岩石力学与工程学报,1996,15(4):305-311
    [65]朱维申,李术才,陈卫忠著.节理岩体破坏机理和锚固效应及工程应用[M].北京:科学出版社,2002
    [66]李术才.节理岩体力学特性和锚固效应分析模型及应用研究[R].武汉:武汉水利电力大学,1999
    [67]张强勇,朱维申.裂隙岩体损伤锚柱单元支护模型及其应用[J].岩土力学,1998,19(4):19-24.
    [68]张强勇.多裂隙岩体三维加锚损伤断裂模型及其数值模拟与工程应用研究[D].武汉:中国科学院武汉岩土力学研究所博士论文.1998
    [69]侯朝炯,勾攀峰等.巷道锚杆支护围岩强度强化理论研究[J].锚杆支护.2001,5(1):1-4
    [70]伍佑伦,王元汉,许梦国.拉剪条件下节理岩体中锚杆的力学作用分析[J].岩石力学与工程学报,2003,22(5):769-772.
    [71]吕和祥,蒋和洋.非线性有限元[M].北京:化学工业出版社.1992.
    [72]孙钧,汪炳监.地下结构有限元解析[M].上海:同济大学出版社.1988.
    [73]崔俊芝,梁俊.现代有限元软件方法[M].北京:国防工业出版社.1995.
    [74]朱浮声,李锡润,王泳嘉.锚杆支护的数值模拟方法[J].东北工学院学报,1989,1:1-7
    [75]邬爱清,任放,郭玉.节理岩体开挖面上块体随机分布及锚固方式研究[J].长江科学院院报,1991,8(4):27-34
    [76]Ferrero A.M. The shear strength of reinforced rock joints[J]. Int J Rock Mech Min Sci Geomech Abst 1995,32:595-605
    [77]Pellet F, Egger P. Analytical model for the mechanical behaviour of bolted rock joints subjected to shearing[J]. Rock Mech Rock Eng,1996,29:73-97
    [78]漆泰岳.FLAC2D 3.3锚杆单元模型的修正及其应用[J].矿山压力与顶板管理,2003,4:50-52.
    [79]夏小和,等.穿层锚杆作用效果的DDA数值建模及分析[J].上海交通大学学报,2001,35(4):499-502.
    [80]李宁,赵彦辉,韩垣.单锚的力学模型与数值仿真试验分析[J].西安理工大学学报,1997,13(1):6-11.
    [81]冯光明等.锚杆初锚力锚固效应的数值模拟分析[J].煤炭工程,2005,7:46-47.
    [82]张拥军等.锚杆支护作用范围的数值模拟和红外探测实验研究[J].中国矿业大学学报,2006,35(4):545-548.
    [83]姜清辉,王书法.锚固岩体的三维数值流形方法模拟[J].岩石力学与工程学报,2006,25(3):528-532.
    [84]董志宏,邬爱清,丁秀丽.数值流形方法中的锚固支护模拟及初步应用[J].岩石力学与工程学报,2005,24(20):3754-3760.
    [85]Chanrour A.H.,Ohtsu M. Analysis of anchor bolt pull-out tests by a two-domain boundary element method[J]. Materials and structures,1995,28:201-209.
    [86]Aydan 0, Koya T, Ichikawa Y, et al. Three-dimensional simulation of an advancing tunnel supported with forepoles, shotcrete, steel ribs and rockbolts[J]. Numerical Methods in Geomechanics, Swoboda(ed.), Innshruck, Balkema.1988:1481-1486.
    [87]郭映龙,叶金汉.节理岩体锚固效应研究[J].水利水电技术.1992,7:41-44.
    [88]雷晓燕.三维锚杆单元理论及其应用[J].工程力学,1996,13(2):50-60.
    [89]陈卫忠等.节理岩体中洞室围岩大变形数值模拟和模型试验研究[J].岩石力学与工程学报,1998,17(3):223-229.
    [90]徐东强,李占金,田胜利.锚杆安装载荷作用机理的数值模拟[J].河北理工学院学报,2002,24(3):1-5.
    [91]宋宏伟.非连续岩体中锚杆横向作用的新研究[J].中国矿业大学学报,2003,32(2):161-164.
    [92]李梅.三维锚杆的数值模拟方法[J].福州大学学报(自然科学版),2003,31(5):588-592.
    [93]陈胜宏,强晟.加锚固体的三维复合单元模型研究[J].岩石力学与工程学报,2003,22(1):1-8.
    [94]何则干,陈胜宏.加锚节理岩体的复合单元法研究[J].岩土力学,2007,28(8):1544-1550.
    [95]李金奎.锚杆对含纵向裂隙气体结构墙体刚度的数值模拟研究[J].河北建筑科技学院学报,2004,21(2):22-23.
    [96]程东幸,潘玮,刘大安,等.锚固节理岩体等效力学参数三维离散元模拟[J].岩土力学,2006,27(12):2127-2132.
    [97]Gunnar Wijk. A theoretical remark on the stress field around prestressed rock Bolts[J]. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr.,1978(15):289-294.
    [98]A.P.S. Selvadurai. Some results concerning the viscoelasic relaxation of prestress in a surface rock anchor[J]. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr.,1979(16): 1307-1310.
    [99]林世胜,朱维申.锚杆对洞周粘弹性岩体应力状态的影响[J].岩土工程学报,1983,5(3):12-27.
    [100]H.Stille, M. Holmberg. Support of Weak Rock with Grouted Bolt sand Shotcrete[J]. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr.,1989,26(19):9-11.
    [101]Spang K, Egger P. Action of fully-grouted bolts in joined rock and factors of influence[J]. Rock Mech. Rock Eng.,1990,23:201-29.
    [102]Holmberg M, Stille H. The mechanical behaviour of a single grouted bolt[C]. International Symposium on Rock Support in Mining and Underground Construction, Sudbury, Canada, 1992:473-81.
    [103]张玉军.地下圆形洞室锚固区按环向各异性体计算的弹性解[C].中国青年学者岩土工程力学与应用讨论会论文集.武汉,1994:686-689.
    [104]P. P. Oreste, D. Peila. Radial Passive Rock bolting in Tunnelling Design With a New Convergence-confinement Model[J]. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr.,1996, 33(5):443-454.
    [105]徐思虎,姜广臣,董友军.巷道锚杆支护的合理计算模型探讨[J].山东矿业学院学报,1999,18(1):21-22.
    [106]朱维申,张玉军.三峡船闸高边坡节理岩体稳定分析及加固方案初步研究[J].岩石力学与工程学报,1996,15(4):305-311.
    [107]李术才.节理岩体力学特性和锚固效应分析模型及应用研究[R].武汉:武汉水利电力大学,1999.
    [108]张强勇,朱维申.裂隙岩体损伤锚柱单元支护模型及其应用[J].岩土力学,1998,19(4):19-24.
    [109]张强勇.多裂隙岩体三维加锚损伤断裂模型及其数值模拟与工程应用研究[D].武汉:中国科学院武汉岩土力学研究所博士论文,1998.
    [110]侯朝炯,勾攀峰.巷道锚杆支护围岩强度强化机理研究[J].岩石力学与工程学报,2000,19(3):342-345.
    [111]王成.层状岩体边坡锚固的断裂力学原理[J].岩石力学与工程学报,2005,24(11):1900-1904.
    [112]李术才,陈卫忠,李术才,等.加锚节理岩体裂纹扩展失稳的突变模型研究[J].岩石力学与工程学报,2003,22(10):1661-1666.
    [113]G. Grasselli.3D Behaviour of bolted rock joints:experimental and numerical study[J]. Int. J. Rock Mech. and Min. Sci.,2005,42:13-24.
    [114]姜清辉,丰定祥.三维非连续变形分析方法中的锚杆模拟[J].岩土力学,2001,22(2):176-178.
    [115]Kim. N. K. Performance of tension and compression anchoring weathered soil[J]. Journal of Geotechnical and Geo-environmental engineering,2003,129(12):1138-1150.
    [116]王霞,郑志辉,孙福英.锚索内锚固段摩阻力分布及扩散规律研究[J].煤炭工程,2004,(7):45-48.
    [117]朱合华,郑国平,刘庭金.预应力锚固支护的数值模拟[J].西部探矿工程,2003,(7):17-19.
    [118]姜清辉,王书法.锚固岩体的三维数值流形方法模拟[J].岩石力学与工程学报,2006,25(3):528-532.
    [119]董志宏,邬爱清,丁秀丽.数值流形方法中的锚固支护模拟及初步应用[J].岩石力学与工程学报,2005,24(20):3754-3760.
    [120]张欣.全长粘结式锚杆受力特性以及数值仿真试验研究[D].济南:山东大学博士学位论文,2008.
    [121]严德群.三维锚杆的数值模拟及其相互作用分析[D],南京:河海大学硕士学位论文.2001.
    [122]B. Indraratna, P.K. Kaiser. Design for Grouted Rock Bolts on the Convergence Control Method[J]. Int. J. Rock Mech. Min. Sci.& Geomech. Abstr.1990,27(4):269-281.
    [123]Kawamoto T.,Ichikawa Y.,Kyoya T. Deformation and fracturing behaviour of discontinuous rock mass and damage mechanics theory[J]. International Jounral For Numerical And Analytical Methods in Geomechanics,1988,12:1-30.
    [124]Lemaitre J. A Course on Damage Mechanics[M]. Springer, Second Edition,1990.
    [125]Swoboda G., Yang Q. An Energy-Based Damage Model of Geo-materials. Formation and Numerical Results[J]. International Journal of Solids and Structure,1999,36:1719-1734.
    [126]Yang Q. Numerical Modelling for Discontinuous Geo-materials Considering Damage Propagation and Seepage [D]. Ph.D Dissertation, Faculty of Architecture and Civil Engineering, University of Innsbruck, Austria,1996.
    [127]Ju J. W. On energy-based coupled elastoplastic damage theories:constitutive modelling and computational aspects[J]. International Journal of Solids and Structure,1989,25:803-833.
    [128]周维垣,杨延毅.节理岩体损伤断裂模型与验证[J].岩石力学与工程学报,1991,10(1):43-54.
    [129]李新平,朱瑞赓,朱维申裂隙岩休的损伤断裂理论与应用[J].岩石力学与程学报,1995,14(3):43-54.
    [130]余寿文,冯西桥.损伤力学[M]北京:清华大学出版社,1997.
    [131]Zheng Q. S., Betten J. On damage effective stress and eqivalence hypothesis[J]. International Journal of Damage Mechanics,1996,6:319-340.
    [132]高蕴听,郑泉水,余寿文.各向同性弹性损伤的双标量模型[J].力学学报,1996,28:542-549.
    [133]Zheng Q. S.,Collins I.F. The relationship between damage variables and their evolution laws and micro structural and physical properties [J].Proc. R. Soc. Lond. A,1998,454: 1469-1498.
    [134]Gurson A. L. Continuum theory of ductile rupture by void nucleation and growth.I.Yield criteria and flow rules for porous ductile media[J].ASME Journal of Engineering Materials and Technology,1977,99:2-15.
    [135]Budiansky B. O'Connel R. J. Elastic moduli of a cracked solid. International Journal of Solids and Structures,1976,12:81-97.
    [136]Bazant Z.P. Mechanics of fracture and progressive cracking in concrete structure, Fracture mechanics of concrete[J].Structure application and numerical calculation,edited by George C Sih and Ditommaso.A,Martinus Nijhoff Publishers,1985.
    [137]Schlangen E. Garboczi. Farcture simulationa of concrete using lattice models: computational aspects [J]. Engngg. Frac. Mech,1997,57(2/3):319-332.
    [138]Schlangen E, van Mier J. G. M. Experimental and numerical analysia of micromechannics of fracture of cement-based composites [J].Cement & Concrete Composites,1992,14(2): 105-118.
    [139]Chiavia B, Vervuurt A, van Mier J. G. M. Lattice model evaluation of progressive failure in disordered particle composites [J].Engng. Frac. Mech,1997,57(2/3):301-318.
    [140]Curtin W.A., Scher H. Brittle fracture in disordered materials:A spring network model[J], J. Mater.Rec,1990,15(3):535-553.
    [141]Adri Vervuurt, van Mier J. G. M. Schlangen E. Analysis of anchor pull-out in concrete [J]. Mater. Struct,1994,27:251-259.
    [142]Tang C. A. Kaiser K. Numerical simulation of cumulative damage and seismic energy released during brittle rock failure part I:Fundamentals [J].Int. J. Rock Mech. Min. Sci, 1998,35(2):113-121.
    [143]Tang C. A. Numerical simulation of progressive crack failure and associated seismicity[J]. Int. J. Rock Mech. Min. Sci,1997,34(2):249-261.
    [144]Krajcinovic D. Mastilovic S. Statistical models of brittled deformation, Part I: Introduction[J].Int. J. plasticity,1999,15:401-426.
    [145]董志宏,邬爱清,丁秀丽.数值流形方法中的锚固支护模拟及初步应用[J].岩石力学与工程学报,2005,24(20):3754-3760.
    [146]姜清辉,丰定祥.三维非连续变形分析方法中的锚杆模拟[J].岩土力学,2001,22(2):176-178.
    [147]张秀丽,焦玉勇,刘泉声.非连续变形分析(DDA)方法中的预应力锚杆模拟[J].地下空间与工程学报,2008,4(1):38-41.
    [148]李洪升等.工程断裂力学[M].大连:大连理工大学出版社,1990:270-281.
    [149]Barsoum R. S.. Triangular guarter-Point elements as elastic and perfectly-plastic crack tip element [J].Int.J.Num.Mech.Engng.1977,11:85-98.
    [150]Barsoum R. S.. On the use of isoparametric finite elements in linear fracture mechanics[J].Int. J. Num. Meth. Engng.1976,10:25-37.
    [151]杨伯源,巫绪涛,牛忠荣.求裂尖应力强度因子的数值外插法的进一步研究.见:吕国志,童小燕主编.疲劳与断裂,第九届全国疲劳与断裂学术会议.昆明,1998,北京:航空工业出版社,1998.528-532.
    [152]巫绪涛,杨伯源.数值外插法求解空间应力强度因子的研究.合肥工业大学学报.1999,22(4):26-31.
    [153]Kachanov L. M..Time of the Rupture Process Under Creep Conditions[J].TVZ Akad Nauk,S.S.R. Otd, Tech Nauk,1958,(8):26-31.
    [154]Robotnov L.On the Equation of State For Creep[J].Progrss in Applied Mechanics-The Prager Anniversary Volume,1963(8):307-315.
    [155]Lemaitre J.. Chaboche J. L.. A Nonlinear Model of Creep-Fatigue Damage Cumulation and interaction of Mechanics of Visco-elastic Media and Bodies[M]. Proc.IUTAM Symp. Springer,Gothenburg,1974.
    [156]Chaboche J.. Continuum Damage Mechanics:Part Ⅰ-General Concepts[J]. J. Appl. Mech.,1988(55):59-64.
    [157]Murakami S..Mechanical Modelling of Material Damage[J].J.Appl.Mech.,1988(55):280-286.
    [158]Kawamoto T.,Ichikawa Y.. Deformation and Fracturing behaviour of Discontinous Rock Mass and Damage Mechanics Theory[J].Int. J. Numer. Anal. Mech. Geomech.,1988(12):1-30.
    [159]杨延毅.节理裂隙岩体损伤-断裂力学模型及其在岩体工程中的应用[D],北京,清华大学,1990.
    [160]村上澄男.损伤力学-材料损伤与断裂的连续介质力学处理.材料(日).1982,31(340):1-11.
    [161]Robotnov. Creep Rupture.Ptoc.12th Int. Cong. Appl. Mech. IUTAM.1968.
    [162]Lemaitre J..Evolution of Dissipation and Damage in Metals Submitted to Dynamic Loading. Proc.I.C.M. Kyoto Japan.1971.
    [163]Papenfuss C.,Van P.,Muschik W.. Mesoscopic Theory of Microcracks[J].Archives of Mechanics,2003(55):5-6.
    [164]Kanatani K..Distribution of Directional data and Fabric Tensors[J].Int. J. Engng Sci,1984(22):149-164.
    [165]Onat E. T.,Leckie F. A..Representation of Mechanical Behaviour in the Presence of Changing Internal Structure[J] J. Appl. Mech,1988(55):1-10.
    [166]Lemaitre J..Formulation and Identification of Damage Kinetic Constitutive Equation[J].Continuum Damage Mechanics,1987(295):37-89.
    [167]Lemaitre J..A Course on Damage Mechanics[M],Berlin,Springer-Verlag,1992.
    [168]Hallbauer.D. K., Wagner. H.. Some observations concerning the microscopic and mechanical behavior of quartzite specimens in stiff, triaxial compression tests[J]. Inf. J. Rock Mech. Sci. Geomech.Ahstr,1973(10):713-726.
    [169]Zheng. Z., McLennan. J. and Martin. W..Compressive stress-induced microcracks and effective elastic properties of limestone and concrete. Phase I final technical report, submitted to AFOSRDOT by Terra Tek, Inc (1991).
    [170]Dundurs. J.,Markenscoff. X..A Green's function formulation of anticracks and their interaction with load-induced singularities[J]. J. Appl. Mech.1989(56):550-555.
    [171]Kawamoto T, Ichikawa Y, Kyoya T. Deformation and fracturing behaviour of discontinuous rockmass and damage machanics theory[J]. Int. J. for Numerical and Analysis Methods in Geomachanics.1988(12):1-30.
    [172]Ichikawa Y, Kyoya T, Kawamoto T. Icremantal theory of plasticity for rock[C].Proc.5th Int. Conf. Num. Meth. in Geomach..Nagoya.1995(1):451-462.
    [173]刘元高.岩土工程稳定局部化的宏、细观分析及应用[D].北京:清华大学博士学位论文.2003.
    [174]Jirasek M. Nonlocal models for damage and fracture:comparison of approaches[J]. International Journal of Solids and Structures,1998,35(31/32):4133-4145.
    [175]Diprisco M.,Felicetti R.,Gambarov P. G. On the evaluation of the characteristic length in high strength concrete[C]High Strength Concrete. New York:ASCE,1999:377-390.
    [176]Bazant Z. P.. Nonlocal continuum damage,localization instability and convergence[J]. Journal of Applied Mechanics,1988(55):287-293.
    [177]Kroener,E. Dislocations and continuum mechanics[J]. Appl.Mech.Rev.1962(15):599-606.
    [178]Eringen,A.C. Theory of micropolar continuum[J].In Proc.Ninth Midwestern Mechanics Conference,1965(3):23-40.
    [179]Eringen,A.C.and Edelen,D.G.B. On nonlocal elasticity[J].Int.J.Eng.Sci.,1972(4):233-248.
    [180]Edelen,D.G.B.Nonlocal field theories,in:Eringen A.C.(Ed.)[J]Continuum Physics,Academic Press,New York,1976(4):96-204.
    [181]Green,A.E.and Naghdi,P.M.On nonlocalCambridge Philos[J].Soc.,1978,83(2):307-319.
    [182]赵吉东.岩土工程稳定破坏的应变梯度损伤局部化分岔模型及应用[D].北京:清华大学博士学位论文,2003.
    [183]Pijaudier-Cabot, G. and, Bazant Z.P. Nonlocal damage theory[J].J. Engng. Mech,1987 (113): 1512-1533.
    [184]Bazant Z.P.and Pijaudier-Cabot G.Nonlocal continuum damage,localization instability and convergence[J].J.Appl.Mech,1988(55):287-293.
    [185]D. Lasry, T. Belytschko.Localization limiters in transient problems[J]. Int. J. Solids Struc. 1988(24):581-597.
    [186]H.B. M uhlhaus, E.C. Aifantis, A variational principle for gradient plasticity[J], Int. J. Solids Struc.1991(28):845-857.
    [187]Peerlings R.H.J.,Geers M.G.D.,de Borst R and Brekelmans W.A.M.A critical comparison of nonlocal and gradient-enhanced softening continua[J].International Journal of Solids and Structures,2001(38):7723-7746.
    [188]吴澎,周维垣.节理岩体损伤模型及非线性有限元分析[J].岩石力学与工程学报,1988,7(3):193-202.
    [189]周维垣.节理岩体损伤力学模型[J].岩石力学新进展,1989.
    [190]孙卫军,周维垣.裂隙岩体弹塑性损伤本构模型[J].岩石力学与工程学报,1990,9(2):108-119.
    [191]周维垣,杨延毅.节理岩体损伤断裂模型及验证[J].岩石力学与工程学报,1991,10(1):43-54.
    [192]陶振宇,曾亚武,赵震英.节理岩体损伤模型及其验证[J].水利学报.1991,6:52-58.
    [193]王勖成.有限单元法[M].北京:清华大学出版社,2003.
    [194]曾攀.有限元分析及应用[M].北京:清华大学出版社,2004.
    [195]王元汉,李丽娟,李银平.有限元法基础与程序设计[M].广州:华南理工大学出版社,2001.
    [196]钱学森,物理力学讲义[M],北京:科学出版社,1962.
    [197]夏蒙梦,韩闻生,柯孚久,白以龙.统计细观损伤力学和损伤演化诱发突变(Ⅰ)[J],力学进展,1995,25(1):1-40.
    [198]夏蒙梦,韩闻生,柯孚久,白以龙.统计细观损伤力学和损伤演化诱发突变(Ⅱ)[J],力学展,1995,25(2):145-173.
    [199]黄克智,肖纪美.国家自然科学基金重大项目:材料的损伤断裂机理和宏微观力学理论[M],清华大学出版社,1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700