用户名: 密码: 验证码:
基于DDA的裂隙岩体水力耦合研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当前,国内外岩体工程发展迅速,越来越多的能源、交通、矿山、水利和国防工程建造在岩石地区,其工程设计、施工、稳定性评价和岩体加固等直接依赖于对岩体的强度、变形、渗透性及破坏规律等特征的研究。裂隙岩体由于参数的随机性、模糊性以及赋存环境的复杂性使得岩体中的地下水运动具有不连续性,渗透具有非均质性和各向异性。而岩体裂隙作为岩体的主要渗透通道,显著地受应力环境的影响。众所周知,由于工程的开挖,工程荷载施加于岩体之上,改变岩体内部应力场的分布,使得岩体发生变形或破坏。岩体变形或破坏又使得岩体中地下水的渗透特性发生变化。相应地,岩体渗透特性的变化又进一步改造着岩体应力场,从而体现了两场之间的耦合关系。岩体应力场与渗流场的相互作用,影响和决定工程体的稳定性、工程的正常运转、工程活动的安全性及工程的造价高低等。国内外重大失事事故说明研究人类工程作用力、岩体地应力及地下水渗透力相互作用的重要性。
     目前,裂隙岩体渗流与应力耦合研究已成为众多学者致力挑战的课题,也是岩体力学界的热点问题。本文把岩体看作不连续介质,从理论分析、数值模拟和试验验证三个方面,对裂隙岩体的渗流场与应力场之间的相互作用机理进行了深入系统的研究,具体内容有如下几个方面:
     (1)从裂隙岩体渗流场与应力场耦合的角度出发,定量化分析了岩体裂隙的几何特征和裂隙岩体的渗透特性,研究了单裂隙在正应力、剪应力和三维复杂应力条件下的渗流与应力耦合特性,为渗流场与应力场的耦合研究奠定了基础。
     (2)介绍了非连续变形分析方法(DDA)的基本原理和数值方法,分析了DDA方法的不足,采用高阶非常应变单元改进位移函数,为提高DDA的计算精度提供了理论基础。此外,为弥补DDA中的罚函数法的不足,采用增广Lagrange乘子法代替DDA中的罚函数法实现块体交界面上无嵌入,最后通过经典算例验证了本文程序的正确性。
     (3)应用二维裂隙网络稳定渗流数学模型,求解裂隙网络渗流的渗透矩阵,并用试验结果验证了该方法的正确性,为进一步求解裂隙网络自由面位置和进行渗流应力耦合分析奠定了理论基础。通过数值分析,对离散介质岩体渗流规律进行了探讨,发现主干裂隙在裂隙岩体渗流中起着控制渗流场分布的作用。最后应用改进的初流量法,编制程序求解裂隙岩体网络渗流自由面,并与解析解相比较,验证了该程序的可靠性。
     (4)在DDA力学计算原理和裂隙网络渗流分析的基础上,建立了基于DDA的裂隙岩体渗流应力耦合分析模型,研究了裂隙岩体变形对地下水运动的影响以及渗流场与应力场共同作用下裂隙岩体结构的变形破坏特征。阐述了DDA在水力耦合计算中水力开度和水头压力的计算方法。最后将该模型用于经典算例分析,验证了本文提出的基于DDA的水力耦合计算方法的可靠性。
     (5)实现了DDA中施工开挖和全长锚固锚杆的模拟。数值计算结果表明,改进的非连续变形分析方法对隧道的开挖支护是有效的,全长锚固锚杆比端部锚固锚杆的锚固效果要好。锚杆的轴力变化与隧道的变形一致,这证明改进的DDA方法是正确的和合理的。
With the rapid development of rock engineering at home and abroad, more and more energy, transportation, mining, water conservancy construction and national defense have been built in rock area at present, whose engineering design, construction, stability evaluation and rock reinforcement etc depend directly on the characteristics such as strength, deformation, permeability and failure law of rock.The groundwater movement in fractured rock mass is of discontinuity, heterogeneity and anisotropy due to its randomness, fuzziness and corresponding complex geo-mechanical environment. While the permeability of rock fracture is significantly affected by stress environment as the main permeability channel in rock It is well known that engineering excavation causes the distribution of internal stress field and deformation or damage of rock. However, rock mass deformation or destruction has changed the permeability of groundwater in rock. Accordingly, changes of permeability in rock further transform the stress field of rock mass, which reflects the coupling relationship between them. The interaction between stress field and seepage field influences and determines the stability of engineering body, the normal operation of the project, the safety of project activities and high low construction costs. Major crash at home and abroad shows the importance of studying the interaction among force of human engineering, in-situ stress and groundwater seepage force.
     Hydro-mechanical coupling of fractured rock mass has been not only a subject that many scholars are challenging, but also a hot issue in mechanical study. Based on the discontinuous deformation analysis, the paper has studied systematically and deeply the coupling mechanism between seepage and stress field of fractured rock mass with theoretical analysis, numerical simulation and experimental validation. The work in the present paper can be summarized in the following.
     1. From the aspects of the coupling of seepage and stress of fractured rock mass, the geological and permeable characteristics of fractured rock mass have been quantitatively analyzed. Hydro-mechanical coupling properties under the circumstances of normal stress, shear stress as well as three-dimension (3D) complex stress state are analyzed, which lay firm foundations for the further coupling study between seepage and stress field.
     2. The paper reviews some of the basic concepts of the DDA method. Then, corresponding improved measures are presented in the following aiming at disadvantages of the original procedure code. At first, the displacement function is improved by using higher order block element corresponding to non-strain field, which provide a theoretical basis for enhancing the accuracy of DDA calculations. Then, contacts between blocks have been modeled using an augmented Lagrange multiplier method instead of the penalty method to prevent interpenetration of the blocks. Finally, the correctness of this program has been demonstrated through the classic example.
     3. The seepage matrix of fracture network flow has been solved by using mathematical model of two-dimensional fracture network seepage. The validity of the method has been verified by comparing with the experiment, which lays theoretical foundations for the further coupling study between seepage and stress field. And the seepage law of discrete media is studied through numerical analysis. It is found that main fracture plays a role in controlling the distribution of seepage field. The seepage free surface of fracture network is solved by using the modified initial flow method. Then, the reliability of the program is verified by comparing the numerical and analytical solution.
     4. Based on the mechanical theory of DDA and fluid flow analysis of fractured network, hydro-mechanical coupling analysis model is established in the paper. Moreover, the paper has studied the effect of the deformation of fractured rock mass on the groundwater flow, its failure characteristics of the degeneration under the action of seepage and stress field. At the same time, hydraulic aperture and fluid pressure in hydro-mechanical coupling are formulated. Finally, hydro-mechanical coupling with DDA method proposed in this paper is demonstrated to be reliable and effective through the classic model.
     5. The full length rockbolt and excavation have been implemented in DDA method. The simulation results indicate that the modified discontinuous deformation analysis (DDA) method is effective for the reinforcement of tunnel. Furthermore, the change of axial force is consistent with the deformation of tunnel, which proves that the modified discontinuous deformation analysis (DDA) method is reasonable and correct. It is found that, in general, the anchoring effect of the full lenth rockbolt is better than that of the point anchoring rockbolt.
引文
[1]朱维申,李术才,陈卫忠.节理岩体破坏机理和锚固效应及工程应用[M].北京:中国科学出版社,2002.
    [2]周维垣.高等岩石力学[M].北京:水利电力出版社,1990.
    [3]龚玉峰.裂隙岩体多场广义耦合分析及工程应用研究[D].武汉:武汉大学博士学位论文,2003.
    [4]#12 #12
    [5]#12
    [6]Snow D T. Rock fracture spacings, openings and porosities[J]. J. Soil Mech. Found. Div., Proc.ASCE,1968,73-79.
    [7]Snow D T. Anisotropic permeability of fractured media[J]. Water Resources Research,1969, 5(6):1273-1289.
    [8]Wislon C R, Witherspoon P A. Steady state flow in rigid networks of fractures[J]. Water Resources Research,1974,10(2):328-335.
    [9]Witherspoon P A. The relationship of the degree of interconnection to permeability in fractured networks[J]. Journal of Geophysical Research,1985,90(B4):3087-3097.
    [10]Tsang Y W, Witherspoon P A. The dependence of fracture mechanical and fluid flow properties on fracture roughness and sample size[J]. J of GeoPhys Res,1983,88(B3): 2359-2366.
    [11]Barton N, Bandis S, Bakhtar K. Strength, deformation and conductivity coupling of rock joints[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1985,22(3):121-140.
    [12]盛金昌.三维裂隙岩体渗流应力耦合数值分析及工程应用[D].南京:河海大学博士学位论文,2000.
    [13]田开铭,万力.各向异性裂隙介质渗透性的研究与评价[M].北京:学苑出版社,1989.
    [14]田开铭,陈明佑,王海林.裂隙水偏流[M].北京:学苑出版社,1989.
    [15]张有天.用边界元求解有排水孔的渗流场[J].水利学报,1982,(7):36-40.
    [16]张有天.裂隙岩体中水的运动及其与水工建筑物的相互作用[M].天津:天津大学出版社,1992.
    [17]张有天.岩石水力学与工程[M].北京:中国水利水电出版社,2005.
    [18]速宝玉,詹美礼,赵坚.光滑裂隙水流模型实验及其机理初探[J].水利学报,1994,(5):19-24.
    [19]速宝玉,詹美礼,赵坚.仿天然岩体裂隙渗流的实验研究[J].岩土工程学报,1995,17(5):19-24.
    [20]速宝玉,詹美礼,王媛.裂隙渗流与应力耦合特性的试验研究[J].岩土工程学报,1997,19(4):73-77.
    [21]仵彦卿,张悼元.岩体水力学导论[M].成都:西南交通大学出版社,1995.
    [22]仵彦卿.岩体渗流场与应力场耦合的裂隙网络模型[J].水文地质与工程地质,1997,(5):41-45.
    [23]仵彦卿.岩体渗流场与应力场耦合的双重介质模型[J].水文地质与工程地质,1998,(1): 43-46.
    [24]Lomize G M. Flow in fractured rocks[M]. Moscow:Gesener-goizdat,1951.
    [25]Louis C, and Maini T. Determination of in situ hydraulic parameters in jointed rock[C]. In Proc.2(nd) Cong. ISRM,1970,235-245.
    [26]Louis C. Rock hydraulics in rock mechanics[M]. New York:Verlay Wien,1974.
    [27]#12 #12
    [28]Tsang Y W, Tsang C F. Channel model of flow through fractured media[J]. Water Resources Research.1987,22(3):467-479.
    [29]速宝玉,詹美礼,郭笑娥.交叉裂隙水流的模型实验研究[J].水利学报,1997,(5):1-6.
    [30]Sharp J.C. Fluid flow through fissured media[D]. London:Ph. D. Thesis, Imperial College, 1970.
    [31]Rissler P. Determination of the water Permeability of jointed rock[M]. Aachen:Publications of the RWTH,1978.
    [32]Kranz R L, Frankel A D, Engelder T, Scholz C H. The permeability of whole and jointed barre granite[J]. International Journal of Rock Mechanics and Mining Science & Geomechanics Abstract,1979,16:225-334.
    [33]Detournay E A, Cheng H D. Poroelastic response of a borehole in a non-hydrostatic stress field[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1988,25(3):171-182.
    [34]Witherspoon P A, et al. New approaches to problems of fluid flow in fractured rock masses[C]. Proc. U S Symp. Rock Mech.,1981.
    [35]Gale J E. The effects of fracture type (induced versus natural) on the stress-fracture closure permeability relationship[C]. In:Proc.23 rd Symp. On Rock Mechanics,1982,209-298.
    [36]Raven T G, Gale J E. Water flow in a natural rock fracture as a function of stress and sample size[J]. International Journal of Rock Mechanics and Mining Sciences,1985,22(44): 251-261.
    [37]Teufel L W. Permeability changes during shear deformation of fracture rock[C]. In: Proceedings of Rock Mechanics,1987:473-480.
    [38]刘继山.单裂隙受正应力作用时的渗流公式[J].水文地质与工程地质,1987,(2):28-33.
    [39]Peters R R, Klavetter E A. A continuum model for water movement in an unsaturated fractured rock mass[J]. Water Resources Research,1988,24(3):416-430.
    [40]Nolte D D, Pyrak-Nolte L J, Cook N G W. The fractal geometry of flow Paths in natural fractures in rock and the approach to percolation[C]. In:Fractals in Geophysics,1989, 111-138.
    [41]Makurat A, Barton N, Rad N S and Bandis S. Joint conductivity variation due to normal and shear deformation[C]. In Proc. Int. Symp. Rock Joints, eds. N. Barton and O. Stephansson. Balkema, Rotterdam,1990,535-540.
    [42]Esaki T, Hojo H, Kimura T, and Kameda N. Shear-flow coupling test on rock joints[C]. In: Proc.7th Int. Cong. ISRM.1992,389-392.
    [43]Myer L R. Hydromechanical and seismic properties of fractures[C]. In:Proc.7th Int. Cong. Rock Mech,1992,397-404.
    [44]耿克勤.复杂岩基的渗流、力学及其耦合分析研究以及工程应用[D].北京:清华大学博士学位论文,1994.
    [45]耿克勤,吴永平.拱坝和坝肩岩体的力学和渗流耦合分析实例[J].岩石力学与工程学报,1997,(2):125-131.
    [46]速宝玉,詹美礼,张祝添.充填裂隙渗流特性实验研究[J].岩土力学,1994,15(4):46-52.
    [47]周创兵,叶自桐,熊文林.岩石节理非饱和渗流特性研究[J].水利学报,1998,(3):22-25.
    [48]赵阳升,杨栋,郑少河等.三维应力作用下岩石裂缝水渗流特性规律的实验研究[J].中国科学,1999,29(1):82-86.
    [49]胡云进,速宝玉,詹美礼.裂隙岩体非饱和渗流研究综述[J].河海大学学报,2000,28(1):40-46.
    [50]刘才华,陈从新,付少兰.二维应力作用下岩石单裂隙渗流规律的实验研究[J].岩石力学与工程学报,2002,21(8):1194-1198.
    [51]王媛,速宝玉.单裂隙面渗流特性及等效水力隙宽[J].水科学进展,2002,13(1):61-68.
    [52]Iwai K. Fundamental studies of fluid flow through a single fracture[D]. Berkely:Ph. D. Thesis, University of Calif,1976.
    [53]#12
    [54]Nuezil C E, Tracy J V. Flow through fractures[J]. Water Resources Research,1981,17(2) 191-199.
    [55]Brown S R, Scholz C H. Broad band with study of topography of natural rock surface[J]. Journal of Geophysical Research,1985,90, B14(10):12575-12582.
    [56]Elsworth D, Goodman R E. Characterization of rock fissure hydraulic conductivity using idealized wall roughness profiles[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1986,23(3):233-243.
    [57]Amadei B, Illangaskare T A. Mathematical model for flow and solute transport in non-homogeneous rock fracture[J], International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1994,18:719-731.
    [58]杨太华,袁勇,孙钧.岩体裂隙渗流地质力学模型及应用[J].同济大学学报,1995,23(3):241-246.
    [59]周创兵,熊文林.岩石节理的渗流广义立方定理[J].岩土力学,1996,17(4):1-7.
    [60]周创兵,熊文林.不连续面的分形维数及其在渗流分析中的应用[J].水文地质工程地质,1996,(6):1-6.
    [61]耿克勤,陈凤祥,刘光廷,陈兴华.岩体裂隙渗流水力特性的实验研究[J].清华大学学报(自然科学版),1996,36(1):102-106.
    [62]Hakami E, Larsson E. Aperture measurement and flow experiments on a single natural fracture[J]. International Journal of Rock Mechanics and Mining Sciences,1996,33(5): 1459-1475.
    [63]Detwiler R L, Pringle S E, Glass R J. Measurement of fracture aperture field using transmitted light:An evaluation of measurement errors and their influence on simulations of flow and transport through a single fracture[J]. Water Resources Research,1999,35(9): 2605-2617.
    [64]杨太华,孙钧.岩体裂隙非规则几何水力学特性研究[J].岩土工程学报,1997,19(4):10-14.
    [65]于龙,陶同康.岩体裂隙水流的运动规律[J].水利水运科学研究,1997,(3):208-218.
    [66]刘才华,陈从新,付少兰.充填砂裂隙在剪切位移作用下渗流规律的试验研究[J].岩石 力学与工程学报,2002,21(10):1457-1461.
    [67]Jing L. A review of techniques, advances and outstanding:issues in numerical modeling for rock mechanics and rock engineering[J]. International Journal of Rock Mechanics and Mining Sciences,2003,40(3):283-353.
    [68]Cacas M C, Ledoux E, et al. Modeling fracture flow with a stochastic discrete fracture network:Calibration and validation,1. The flow model [J]. Water Resources Research, 1990a,26(3):479-489.
    [69]Cacas M C, Ledoux E, et al. Modeling fracture flow with a stochastic discrete fracture network:Calibration and validation,2. The transport model[J]. Water Resources Research, 1990b,26(3):491-500.
    [70]Jing L, Stephansson O. Network topology and homogenization of fractured rocks[C]. In Fluid Flow and Transport in Rocks:Mechanisms and effects,1997.
    [71]肖裕行,王泳嘉,卢世宗,陈殿强,王思敬.裂隙岩休水力等效连续介质中物理量的讨论[J].岩土力学,1997,18(4):13-29.
    [72]肖裕行,王泳嘉,卢世宗,陈殿强,王思敬.裂隙岩体水力等效连续介质存在性的评价[J].岩石力学与工程学报,1999,18(1):75-80.
    [73]Wang M. Discrete fractures fluid flow modeling and field applications in fractured rocks[D]. Arizon:Ph. D. Thesis, University of Arizona,2000.
    [74]荣冠,周创兵,王恩志.裂隙岩体渗流张量计算及其表征单元体积初步研究[J].岩石力学与工程学报,2007,26(4):740-746.
    [75]Papadopulos I S. Nonsetady flow to a well in an infinite anisotropic aquifer[C]. Proc. Dubrovnik Symposium on the Hydrology,1966.
    [76]Hantush M S. Well in homogeneous anisotropic aquifers[J]. Water Resources Research, 1966.
    [77]Way S, et al. Determination of three dimensional aquifer permeability[J]. Water Resources Research,1982.
    [78]Neuman S P, Waltet G R, Bentley H W, Ward J J and Gonzalez D D. Determination of horizontal aquifer anisotropy with three wells[J]. Groundwater,1984,22(1):66-72.
    [79]周志芳.任意各向异性岩体渗透系数张量的半解析计算[J].水利学报,1999,(3):65-70.
    [80]周志芳,王锦国.裂隙介质水动力学[M].北京:中国水利水电出版社,2004.
    [81]Snow D T. Three hole pressure test for anisotropic foundation permeability[J]. Rock Mechanics and Engineering Geology,1966,4(4):198-314.
    [82]Hsieh P, Neuman S P, Simpson E S, Stiles G. Field determination of the three dimensional hydraulic conductivity tensor of anisotropic media,1, Theory[J]. Water Resources Research, 1985a,21(11):1655-1665.
    [83]Hsieh P, Neuman S P, Simpson E S, Stiles G. Field determination of the three dimensional hydraulic conductivity tensor of anisotropic media,2, Methodology with application to fractured rocks[J]. Water Resources Research,1985b,21(11):1667-1676.
    [84]万力,胡伏生,田开铭.三段压水试验[J].地球科学-中国地质大学学报,1995,20(4):389-392.
    [85]Long J C S, et al. Porous media equivalents for networks of discontinuous fractures[J]. Water Resources Research,1982.
    [86]杨天鸿,张永彬,冷雪峰,唐春安.岩体结构面网格渗透张量分析方法[J].东北大学学报,2003,24(9):9]1-914.
    [87]杨天鸿,唐春安等.岩石破裂过程的渗流特性-理论模型及应用[M].北京:科学出版社,2004.
    [88]Sitharama T G, Sridevib J, Shimizu N. Practical equivalent continuum characterization of jointed rock masses[J]. International Journal of Rock Mechanics and Mining Sciences,2001, (38):437-448.
    [89]Sitharama T G, Latha G M. Simulation of excavations in jointed rock masses using a practical equivalent continuum approach[J]. International Journal of Rock Mechanics and Mining Sciences,2002, (39):517-525.
    [90]Svensson U. A continuum representation of fracture networks. Part Ⅰ:Method and basic cases[J]. Journal of Hydrology,2001, (250):170-186.
    [91]Svensson U. A continuum representation of fracture networks. Part Ⅱ:Application to the Aspo Hard Rock laboratory[J]. Journal of Hydrology,2001, (250):187-205.
    [92]Kobayashi A, Fujita T, Chijimatsu M. Continuous approach for coupled mechanical and hydraulic behavior of a fractured rock mass during hypothetical shaft sinking at Sella field, U K[J]. International Journal of Rock Mechanics and Mining Sciences,2001, (38):45-57.
    [93]Cheo K Lee, Chin-Cheng Sun, Chiang C Mei. Computation of permeability and dispersivities of solute or heat in periodic porous media[J]. International Journal of Heat and Mass Transfer,1996,39(4):661-676.
    [94]Auriault J L. Upscaling heterogeneous media by asymptotic expansions[J]. ASCE J. of Engineering Mechanics,2002,128(8):817-822.
    [95]饶伟锋,张若京.水力压裂中多孔岩体的等效弹性常数应用[J].岩石力学与工程学报,2004,23(7):1174-1178.
    [96]Jackson C P, Hoch A R, Todmna S. Self-consistency of a heterogeneous continuum porous medium representation of a fractured medium[J].Water Resources Research,2000,36(1): 189-202.
    [97]杨松林,徐卫亚.裂隙岩体有效弹性模量估计的一种方法[J].河海大学学报(自然科学版),2003,31(4):399-402.
    [98]韦立德,徐卫亚,杨松林等.考虑裂纹内水压的节理岩体蠕变柔量分析[J].河海大学学报(自然科学版),2003,31(5):564-568.
    [99]Pozdnizkov S. A self-consistent approach for calculating the directive hydraulic conductivity of a binary, heterogeneous medium[J]. Water Resources Research,2004,40, W05105,doi:10.1029/2003WR002617.
    [100]Cai M, Horri H. A constitutive model of highly jointed rock masses[J].Mechanics of Materials,1992, (13):217-246.
    [101]Cai M, Horri H. A constitutive model and FEM analysis of jointed rock masses[J]. Int. J. Rock Mech. Min. Sci.& Geomech. Abstr.1993,30(4):155-171.
    [102]Vychytil J, Horii H. Micromechanics-based continuum model for hydraulic fracturing of jointed rock masses during HDR stimulation[J]. Mechanics of Materials,1998,28(1-4): 123-135.
    [103]Shao J F, Rudnicki J W. A microcrack-based continuous damage model for brittle geomaterials[J]. Mechanics of Materials,2000,32(10):607-619.
    [104]Yoshida H, Horri H. Micromechanics-based continuum model for a jointed rock mass and excavation analyses of a large-scale cavern[J]. International Journal of Rock Mechanics and Mining Sciences,2004, (41):119-145.
    [105]Barenblatt G I, et al. Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks[J]. J. Appl. Math. Mech., Engl. Transl.1960,(5).
    [106]Warren J E, Root P J. The behavior of naturally fractured reservoirs[J]. Soc. Pet. Eng. J., 1963,(5).
    [107]Streltsova T D. Hydrodynamics of groundwater flow in a fractured formation[J]. Water Resources Research,1976, (3).
    [108]Duguid J O, et al. Flow in fractured porous media[J]. Water Resources Research,1977, (3).
    [109]Huyakorn P S, et al. Finite element techniques for modeling groundwater flow in fractured aquifers[J]. Water Resources Research,1983, (5).
    [110]Neretnieks I, et al. An approach to modeling radionuclide migration in medium with strongly varying velocity and block sizes along the flow path[J]. Water Resources Research, 1984, (2).
    [111]Dykhuizen R C. A new coupling term for double-porosity models[J]. Water Resources Research,1990,(2).
    [112]王恩志.裂隙网络地下水流模型的研究与应用[D].西安:西安地质学院博士学位论文,1991.
    [113]Neuman S P. Stochastic continuum presentation of fractured rock permeability as an alternative to the REV and fracture network concepts[C]. In Proc. of the 28th US Symposium on Rock Mechanics,1987,533-561.
    [114]Neuman S P, Depner J S. Use of variable-scale pressure test data to estimate the log hydraulic conductivity covariance and dispersivity of fractured granites near oracle[J]. Arizona J. Hydro.,1988,102(1-4):475-501.
    [115]Follin S, Thunvik R. On the use of continuum approximations for regional modeling of groundwater flow through crystalline rocks[J]. Adv. Water Resources Research,1994,17(4): 133-145.
    [116]Tsang Y W, Tsang C F, Hale F V. Tracer transport in a stochastic continuum model of fractured media[J]. Water Resources Research,1996,32(10):3077-3092.
    [117]仵彦卿.岩体结构类型与水力学模型[J].岩石力学与工程学报,2000,19(6):687-691.
    [118]柴军瑞,仵彦卿.岩体渗流场与应力场耦合分析的多重裂隙网络模型[J].岩石力学与工程学报,2000,]9(6):712-717.
    [119]柴军瑞,仵彦卿.岩体多重裂隙网络渗流模型研究[J].煤田地质与勘探,2000,28(2):33-36.
    [120]Wittke W, Louis, Zur C. Berechnung des Einflusses der Bergwasser-stromung auf die Standsicherheit von Boschungen und Bauwerken in zer kluftetem Fels[C]. Proc. Intl. Cong. ISRM,1966.
    [121]王恩志.岩体裂隙的网络分析及渗流模型[J].岩石力学与工程学报,1993,12(3):2]4-221.
    [122]毛昶熙,陈平,李祖贻,李定方.裂隙岩体渗流计算方法研究[J].岩土工程学报,1991,13(6):1-10.
    [123]王泳嘉,邢纪波.离散单元法及其在岩土力学中的应用[M].沈阳:东北工学院出版社,1991.
    [124]王恩志,杨成田.裂隙网络地下水数值模型及非连通网络水流的研究[J].水文地质工程地质,1992,19(1):12-14.
    [125]贺少辉,廖国华,李中林.裂隙岩体初始裂隙网络渗流模型研究[J].南方冶金学院学报,
    1995,16(2):27-35.
    [126]Romero L, Moreno L, Neretnieks I, Nuctran. A computer program to calculate radionuclide transport in the near field of repository[R]. SKB Arbetsrapp. AR-95-14, Swed. KSrnbrlnslehautering AB, Stockholm,1995.
    [127]Dershowitz W S. Rock mechanics approaches for understanding flow and transport pathways[A]. paper presented at EUROCL'96, ISRM International Symposium on Prediction and Performance in Rock Mechanics and Rock Engineering, Int. Soc. of Rock Mech., Torino, Italy, September 2-5,1996.
    [128]周志芳,李艳.解裂隙水运动问题的混合网络有限元法[J].河海大学学报,1996,24(3):112-116.
    [129]莫海鸿,林德璋.裂隙介质网络水流模型的拓扑研究[J].岩石力学与工程学报,1997,16(2):97-103.
    [130]王洪涛,李永祥.三维随机裂隙网络非稳定渗流模型[J].水利水运科学研究,1997,(2):139-146.
    [131]张有天,刘中.降雨过程裂隙网络饱和/非饱和非恒定渗流分析[J].岩石力学与工程学报,1997,16(2):104-111.
    [132]焦玉勇,葛修润,谷先荣.三维离散元法中地下水及锚杆的模拟[J].岩石力学与工程学报,1999,]8(]):6-11.
    [133]王恩志,孙役,黄远智,王慧明.三维离散裂隙网络渗流模型与实验模拟[J].水利学报,2002,(5):37-40.
    [134]Ki-Bok Min, Lanru Jing. Numerical determination of the equivalent elastic compliance tensor for fractured rock masses using the distinct element method[J]. International Journal of Rock Mechanics and Mining Sciences,2003, (40):795-816.
    [135]宋晓晨.裂隙岩体渗流非连续介质数值模型研究及工程应用[D].南京:河海大学博士学位论文,2004.
    [136]Wei Lingli, Hudson J A. A coupled discrete-continuum approach for modeling water flow in fractured rocks[J]. Geotechnique,1993, (43):21-36.
    [137]Wei Lingli, Hudson J A. A hybid discrete-continuum approach to model hydro-mechanical behavior of jointed rocks[J]. Engineering Geology,1998, (49):317-325.
    [138]高海鹰.裂隙岩体的渗流场及其与应力场耦合对工程影响的研究[D].南京:河海大学博士学位论文,]995.
    [139]王恩志,王洪涛,孙役.双重裂隙系统渗流模型研究[J].岩石力学与工程学报,1998,17(4):400-406.
    [140]王媛.单裂隙面渗流与应力的耦合特性[J].岩石力学与工程学报,2002,21(1):83-87.
    [141]孙广忠.岩体结构力学[M].北京:科学出版社,1988.
    [142]周创兵,熊文林.双场耦合条件下裂隙岩体的渗透张量[J].岩石力学与工程学报,1996,15(4):338-344.
    [143]Jones F O. A laboratory study of the effects of confining pressure on fracture flow and storage capacity in carbonate rocks[J]. J. Pet. Tech.,1975,21:21-27.
    [144]Nelson R. Fracture permeability in porous reservoirs:experimental and field approach[D]. Ph dissertation, Department of Geology Texas A&M University,1975.
    [145]刘继山.结构面力学参数与水力参数耦合关系及其应用[J].水文地质与工程地质,1988,(2):7-12.
    [146]赵阳升.矿山岩石流体力学[M].北京:煤炭工业出版社,1994.
    [147]张玉卓,张金才.裂隙岩体渗流与应力耦合的试验研究[J].岩土力学,1997,18(4):59-62.
    [148]张金才,张玉卓.应力对裂隙岩体渗流影响的研究[J].岩土工程学报,1998,20(2):19-22.
    [149]郑少河,赵阳升,段康廉.三维应力作用下天然裂隙渗流规律的实验研究[J].岩石力学与工程学报,1999,18(2):133-136.
    [150]刘亚晨,蔡永庆,刘泉声,吴玉山.岩体裂隙结构面的温度-应力-水力耦合本构关系[J].岩土工程学报,2001,23(2):196-200.
    [151]Gangi A F. Variation of whole and fractured porous rocks permeability with confining pressure[J]. International Journal of Rock Mechanics and Mining Science & Geomechanics Abstract,1978,15:249-257.
    [152]Walsh J B. Effect of pore pressure and confining pressure on fracture permeability[J]. International Journal of Rock Mechanics and Mining Science & Geomechanics Abstract, 1981,18:429-434.
    [153]Tsang Y W, Witherspoon P A. Hydromechanical behavior of a deformable rock fracture subject to normal stress[J]. J of Geophys Res,1981,86(B10):9287-9298.
    [154]周创兵,熊文林.不连续面渗流与变形耦合的机理研究[J].水文地质工程地质,1996,(3):14-17.
    [155]Killsall P C et al. Evaluation of excavation induced changes in rock permeability[J]. International Journal of Rock Mechanics and Mining Sciences,1984, (3).
    [156]Oda M. An equivalent continuum model for coupled stress and fluid flow analysis in jointed rock masses[J]. Water Resources Research,1986, (13).
    [157]Erichsen C. Gekoppelte Spannungs-Sickerstr o mungs beurechnungon von Bauwerken in kluftigem fels unter Berucksichtigung des nichtilinea-ren Spannung-Sverschicbungs ver-haltens von Trennflachen[J]. Ver 6 ffentlichungen des Institutes fur Grundbau, Bodenmechanik, Fetsmechanik und Verkch-swasscrbau der RWTH Aachen,1987.
    [158]Bai M, Meng F, Elsworth D, Roegiers J C. Analysis of stress-dependent permeability in nonorthogonal flow and deformation fields[J]. Rock Mech. Rock Engng.,1993, 2(3):195-219.
    [159]Hardin E L, Barton N, Lingle R, Board M P, Voegele M D. A heated flat jack test series to measure the thermo-mechanical and transport properties of in situ rock masses. Office of Nuclear Waste Isolation, Columbus, Ohio, ONWI-260,1982.193.
    [160]Makurat A. The effect of shear displacement on the permeability of natural rough joints, Hydrogeology of rocks of low permeability[C]. Proceedings of the 17th International Congress on Hydrogeology, Tucson, Arizona, USA,1985,99-106.
    [161]仵彦卿.裂隙岩体应力与渗流关系研究[J].水文地质工程地质,1995,(6):30-35.
    [162]Esaki T, Du S, Mitani Y, Ikusada K, Jing L. Development of a shear-flow test apparatus and determination of coupled properties for a single rock joint[J]. International Journal of Rock Mechanics and Mining Sciences,1999,36:641-650.
    [163]Chen Z, Nyrayan S P, Yang Z, Rahman S S. An experimental investigation of hydraulic behavior of fractures and joints in granitic rock[J]. International Journal of Rock Mechanics and Mining Sciences,2000,37:1061-1071.
    [164]Olsson R., Barton N. An improved model for hydromechanical coupling during shearing of rock joints[J]. International Journal of Rock Mechanics and Mining Science,2001,38(3): 317-329.
    [165]刘才华,陈从新,付少兰.剪应力作用下岩体裂隙渗流特性研究[J].岩石力学与工程学报,2003,22(10):1651-1655.
    [166]Biot M A. General theory of three-dimensional consolidation[J]. Journal of Applied Physics, 1941,12:155-164.
    [167]Noorishad J, Witherspoon P A. A finite-element method for coupled stress and fluid flow analysis in fractured rock mass[J]. International Journal of Rock Mechanics and Mining Seienees & Geomechanics Abstracts,1982,19(2):185-193.
    [168]Noorishad J, Tsang C F, Witherspoon P A. Coupled thermal-hydraulic-mechanical phenomena in saturated fractured porous rocks:numerical approach[J]. Journal of Geophysical Research,1984,89(B 12):10365-10373.
    [169]陶振宇,沈小莹.库区应力场的耦合分析[J].武汉水利电力学院学报,1988,(1):8-14.
    [170]孙均,冯紫良,等.岩石力学与工程中相互作用问题的若干进展-结构与介质相互作用理论及应用[M].南京:河海大学出版社,1993.
    [171]Ohnishi Y, Kabayashi A. Thermal-hydraulic-mechanical coupling analysis of rock mass, in: comprehensive rock engineering[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1994,31(3):146-147.
    [172]陈平,张有天.裂隙岩体渗流与应力耦合分析[J].岩石力学与工程学报,]994,13(4):299-308.
    [173]王媛.裂隙岩体渗流及其与应力的全耦合分析[D].南京:河海大学博士学位论文,1995.
    [174]王媛,徐志英,速宝玉.裂隙岩体渗流与应力耦合分析的四自由度全耦合法[J].水利学报,1998,7:55-59.
    [175]王媛,徐志英,速宝玉.复杂裂隙岩体渗流与应力弹塑性全耦合分析[J].岩石力学与工程学报,2000,19(2):177-181.
    []76]赖远明,吴紫汪,朱元林,朱林楠.寒区隧道温度场、渗流场和应力场耦合问题的非线性分析[J].岩土工程学报,1999,21(5):529-533.
    [177]黄涛,杨立中.隧道裂隙岩体温度-渗流耦合数学模型研究[J].岩土工程学报,1999,21(5):554-558.
    [178]黄涛,杨立中.渗流与应力耦合环境下裂隙围岩隧道涌水量的预测研究[J].铁道学报,1999,2](6):75-80.
    [179]朱珍德,孙均.裂隙岩体非稳定渗流场与损伤场耦合分析模型[J].水文地质工程地质,1999,26(2):35-42.
    [180]朱珍德,孙均.裂隙岩体的渗流场与损伤场耦合分析及其工程应用[J].长江科学院院报,1999,16(5):22-27.
    [181]朱珍德,徐卫亚.裂隙岩体渗流场与损伤场耦合模型研究[J].河海大学学报(自然科学版),2003,31(2):156-160.
    [182]郑少河.裂隙岩体渗流场-损伤场耦合理论研究及工程应用[D].武汉:中国科学院武汉岩土力学研究所博士学位论文,2000.
    [183]沈振中,徐志英,雒翠.三峡大坝坝基粘弹性应力场与渗流场耦合分析[J].工程力学,2000,17(1):105-113.
    [184]盛金昌,速宝玉,王媛,詹美礼.裂隙岩体渗流-弹塑性应力耦合分析[J].岩石力学与工程学报,2000,19(3):304-309.
    [185]盛金昌,速宝玉,赵坚,詹美礼.溪洛渡拱坝坝基渗流-应力耦合分析研究[J].岩土工 程学报,2001,23(1):104-108.
    [186]柴军瑞.岩体渗流-应力-温度三场耦合的连续介质模型[J].红水河,2003,22(2):18-20.
    [187]Mukhopadhyay S, Sonnenthal E L, Spycher N. Modeling coupled thermal-hydrological-chemical processes in the unsaturated fractured rock of Yucca Mountain, Nevada:Heterogeneity and seepage[J]. Physics and Chemistry of the Earth,2006, 31(10-14):626-633.
    [188]Jishan Liu, Jinchang Sheng, Polak A, et al. A fully-coupled hydrological-mechanical-chemical model for fracture sealing and preferential opening[J]. International Journal of Rock Mechanics & Mining Science,2006,43:23-36.
    [189]Aifantis E C. On the problem of diffusion in solids[J]. Acta Mech.,1980,37:265-296.
    [190]仵彦卿,张悼元.岩体系统渗流场与应力场耦合的广义双重介质模型的应用研究[J].工程地质学报,1996,4(3):40-46.
    [191]黎水泉,徐秉业.非线性双重孔隙介质渗流[J].岩石力学与工程学报,2000,19(4):417-420.
    [192]李云鹏,张静.用似双重介质模型进行岩体应力与渗流耦合分析[J].西安科技学院院报,2002,22(4):407-410.
    [193]吉小明,白世伟,杨春和.裂隙岩体流固耦合双重介质模型的有限元计算[J].岩土力学,2003,24(5):748-754.
    [194]吉小明,白世伟,杨春和.与应变状态相关的岩体双重孔隙介质流-固耦合的有限元计算[J].岩石力学与工程学报,2003,22(10):1636-1639.
    [195]吉小明,杨春和,白世伟.岩体结构与岩体水力耦合计算模型[J].岩土力学,2006,27(5):763-768.
    [196]同登科,张海英.变形双重介质分形油藏渗流流动分析[J].石油大学学报(自然科学版),2003,27(4):76-80.
    [197]李勇明,郭建春,赵金洲.裂缝渗透率依赖于压力的双重介质油藏压裂产能模拟[J].江汉石油学院学报,2004,26(1):94-97.
    [198]赵瑜,李晓红,卢义玉,靳晓光.块裂结构岩质边坡水力学模型及数值模拟[J].岩土力学,2005,26(6):995-999.
    [199]刘晓丽,梁冰,王思敬,李宏艳.水气二相渗流与双重介质变形的流固耦合数学模型[J].水利学报,2005,36(4):405-412.
    [200]Indraratna B. Hydro-mechanical aspects of jointed rock media[C]. Proceedings of the 8th International Congress on Rock Mechanics,1995,759-762.
    [201]王洪涛,王恩志,金宜英.裂隙岩体渗流耦合数值分析方法及其工程应用[J].水利水运科学研究,1998,4:320-328.
    [202]王洪涛.裂隙网络渗流与离散元耦合分析充水岩质高边坡的稳定性[J].水文地质工程地质,2000,2:30-33.
    [203]肖裕行,王思敬,王泳嘉.离散单元法中接触变化诱导的水头变化[J].岩土力学,1999,20(2):5-9.
    [204]Cappa F, Guglielmi Y, Fenart P, et al. Hydromechanical interactions in a fractured carbonate reservoir inferred from hydraulic and mechanical measurements[J]. International Journal of Rock Mechanics and Mining Sciences,2005,42(2):287-306.
    [205]Guglielmi Y, Cappa F, Rutqvist J, et al. Mesoscale characterization of coupled hydromechanical behavior of a fractured-porous slope in response to free water-surface movement[J]. International Journal of Rock Mechanics and Mining Sciences,2008,45(6):
    862-878.
    [206]Ivars D M. Water in flow into excavations in fractured rock-a three-dimensional hydromechanical numerical study[J]. International Journal of Rock Mechanics and Mining Sciences,2006,43(5):705-725.
    [207]高海鹰,夏颂佑.三维裂隙岩体渗流场与应力场耦合模型研究[J].岩土工程学报,1997,19(2):102-105.
    [208]Nguyen T S, Selvadurai A P S. Coupled thermal-mechanical-hydrological behavior of sparsely fractured rock:Implications for nuclear fuel waste disposal [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1995,32(5):465-479.
    [209]Guvanasen V, Tin Chan. A Three-dimension numerical model for thermohydromechanical deformation with hysteresis in a fractured rock mass[J]. International Journal of Rock Mechanics and Mining Sciences,2000,37(1-2):89-106.
    [210]仵彦卿.岩体裂隙系统渗流场与应力场耦合模型[J].地质灾害与环境保护,1996,7(1):31-34.
    [211]仵彦卿,柴军瑞.裂隙网络岩体三维渗流场与应力场耦合分析[J].西安理工大学学报,2000,16(1):1-5.
    [212]Young-II Kim, Amadei B, Pan E. Modeling the effect of water, excavation sequence and rock reinforcement with discontinuous deformation analysis[J]. International Journal of Rock Mechanics and Mining Sciences,1999,36(7):949-970.
    [213]Jing L, Ma Y, Fang Z L. Modeling of fluid flow and solid deformation for fractured rock with discontinuous deformation analysis (DDA) method[J]. International Journal of Rock Mechanics and Mining Sciences,2001,38(3):343-355.
    [214]张国新,武晓峰.裂隙渗流对岩石边坡稳定性的影响-渗流、变形耦合作用的DDA法[J].岩石力学与工程学报,2003,22(8):1269-1275.
    [215]卓家寿,章青.不连续介质力学问题的界面元法[M].北京:科学出版社,2001.
    [216]Lorig L J, Brady B H G. Hybrid distinct element-boundary element analysis of jointed rock[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1982,23(4):303-312.
    [217]Lemos J V. A distinct element model for dynamic analysis of jointed rock with application to dam foundation an fault motion[D]. Minneapolis:Ph. D. thesis, University of Minnesota, 1987.
    [218]Cundall P A. Formulation of a three-dimensional distinct element model-part Ⅰ. A scheme to detect and represent contacts in a system composed of many polyhedral blocks[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1988,25(3):107-116.
    [219]Hart R, Cundall P A, Lemos J. Formulation of a three-dimensional distinct element model-part Ⅱ. Mechanical calculations for motion and interaction of a system composed of many polyhedral blocks[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1988,25(3):117-125.
    [220]Lemos J V, Lorig L J. Hydromechanical modeling of jointed rock masses using the distinct element method[C]. In:Mechanics of jointed & faulted rock. Rotterdam:Balkema,1990.
    [221]陶连金,姜德义,孙广义,张东日.节理岩体中地下水流动的离散元模拟[J].煤炭学报,2000,25(1):1-4.
    [222]Min K B, Rutqvist J, Tsang C F, Jing L. A block-scale stress permeability relationship of fractured rock determined by numerical experiments[C]. International Conference on Coupled THMC Processes in Geosystems,2003,257-262.
    [223]Sung O Choi, S K So-Keul Chung. Stability analysis of jointed rock slopes with the barton-bandis constitutive model in udec[J]. International Journal of Rock Mechanics and Mining Sciences,2004,41(suppl):581-586.
    [224]Cappa F, Guglielmi Y, Soukatchoff V M, Mudry J, Bertrand C, Charmoille A. Hydromechanical modeling of a large moving rock slope inferred from slope levelling coupled to spring long-term hydrochemical monitoring:example of the La Clapiere landslide(Southern Alps, France)[J]. Journal of Hydrology,2004,291(1-2):67-90.
    [225]Shi G H. Discontinuous Deformation Analysis:A New Numerical Model for the Statics and Dynamics of Block System [D]. Berkeley:Ph. D. Thesis, Department of Civil Engineering, University of California,1988
    [226]Lin C T. Extension to the discontinuous deformation analysis for jointed rock masses and other blocky systems [D]. Boulder:Ph. D. Thesis, University of Colorado Boulder,1995
    [227]Cai Y E, Liang G P, Shi G H, et al. Studying an impact problem by using LDDA method[A] In:Proc. of the First International Forum on Discontinuous Deformation Analysis(DDA) and Simulations of Discontinuous Media[C]. Albuquerque:TSI Press,1996,288-294.
    [228]栾茂田,黎勇,杨庆.非连续变形计算力学模型基本原理及在边坡岩体稳定性分析中的应用[J].岩石力学与工程学报,2000,19(3):289-294.
    [229]郑宏,江巍.基于互补理论的非连续变形分析方法[J].中国科学E辑,2009,39(10):1702-1708.
    [230]Chang.T.C. Nonlinear dynamic discontinuous deformation analysis with finite element meshed block systems [D]. Berkeley:Ph. D. Thesis, University of California at Berkeley, 1994.
    [231]Lee. Seung-Cheol. Linear and nonlinear modeling of viscous geo-materials with DDA [D]. Boulder:Ph. D. Thesis, University of Colorado Boulder,2002.
    [232]Ke T C. Simulated testing of two dimensional heterogeneous and discontinuous rock masses using discontinuous deformation analysis [D]. Berkeley:Ph. D. Thesis University of California,1993.
    [233]Shyu K. Nodal-based discontinuous deformation analysis [D]. Berkeley:Ph. D. Thesis University of California,1993.
    [234]Wang C Y, Chang C T, Sheng J. Time integration theories for the DDA method with finite element Meshes [A]. In:Proc. of the First International Forum on Discontinuous Deformation Analysis (DDA) and Simulations of Discontinuous Media [C]. Albuquerque: TSI Press,1996:263-288.
    [235]Chern J C, Koo C Y, Chen S. Development of second order displacement function for DDA and manifold method [A]. In:Working Forum on the Manifold Method of Material Analysis [C].1990,183-202.
    [236]Koo C Y, Chern J C. The development of DDA with third order displacement function [A]. In:Proc. of the First International Forum on Discontinuous Deformation Analysis (DDA) and Simulations of Discontinuous Media [C]. Albuquerque:TSI Press,1996:342-350.
    [237]Ma M Y, Zaman M, Zhou J H. Discontinuous deformation analysis using the third order displacement function [A]. In:Proc. of the First International Forum on Discontinuous Deformation Analysis (DDA) and Simulations of Discontinuous Media [C]. Albuquerque: TSI Press,1996:383-394.
    [238]姜清辉.三维非连续变形分析方法的研究[D].武汉:中国科学院武汉岩土力学研究所博士学位论文,2000.
    [239]刘君.三维非连续变形分析与有限元耦合算法研究[D].大连:大连理工大学博士学位论文,2001.
    [240]张运良.冰荷载的识别及冰激振动的实验与数值模拟[D].大连:大连理工大学博士学位论文,2002.
    [241]赵宁,卓家寿.动力分析的刚体-界面元与有限元耦合法[J].河海大学学报,1994,22(6):8-15.
    [242]金峰,贾伟伟,王光纶.离散元-边界元动力耦合模型[J].水利学报,2001,(1):23-26.
    [243]朱珍德,郭海庆.裂隙岩体水力学基础[M].北京:科学出版社,2007.
    [244]Priest S D, Hudson J A. Estimation of discontinuity spacing and trace length using scanline surveys[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1981,(18):183-197.
    [245]周创兵,陈益峰,姜清辉,卢文波.复杂岩体多场广义耦合分析导论[M].北京:中国水利水电出版社,2008.
    [246]Charlaix E. Percolation threshold of a random array of discs:a numerical simulation[J]. J. Phys. A.,1986,19(7):533-536.
    [247]Moreno L, et al. Flow and tracer transport in a single fracture:a stochastic model and its relation to some field observations[J]. Water Resources Research,1988, (12).
    [248]石根华著,裴觉民译.数值流行方法与非连续变形分析[M].北京:清华大学出版社,1997.
    [249]王士民.非连续子母块体细观损伤演化模型及应用[D].上海:同济大学博士学位论文,2007.
    [250]刘先珊.基于不连续介质的裂隙岩体水力耦合特性研究[D].武汉:武汉大学博士学位论文,2006.
    [251]王媛.求解有自由面渗流问题的初流量法的改进[J].水利学报,1998,(3):68-73.
    [252]ollos G. Examen hydrauligue de lecoulement dans des roches crevasses sur des modoeles reduits[J]. Bull, Int. Ass. Sci. Hydrel.,1963,8(2):9.
    [253]Witherspoon P A, Wang J S Y, Iwai K, et al. Validity of cubic law for fluid flow in a deformable rock fracture[J]. Water Resource Research,1980,16(6):1016-1024.
    [254]马钺.水与岩体耦合不连续变形DDA方法研究及程序实现[D].北京:北京科技大学博士学位论文,1999.
    [255]李术才.加锚断续节理岩体断裂损伤模型及其应用[D].武汉:中科院博士学位论文,1996.
    [256]张强勇,朱维申.溪洛渡地下厂房施工开挖的弹塑性损伤及岩锚支护计算[J].岩土工程学报,1999,21(5):583-585.
    [257]Yeung M R. Application of Shi's discontinuous deformation analysis to the study of rock behavior[D]. Minneapolis:Minnesota USA,1991.
    [258]张秀丽,焦玉勇,刘泉声.非连续变形分析(DDA)方法中的预应力锚杆的模拟[J].地下空间与工程学报,2008,4(1):38-41.
    [259]CHEN S, Chem J C, Koo C Y. Study on the performance of tunnel near slope by DDA[A]. Proc.1st Intl. Conf. of Analysis of discontinuous deformation [C].1995.
    [260]Ohnishi Y, Chen G, Miki S. Recent development of DDA in rock mechanics[A], Proc. ICADD-1[C].1995,26-47.
    [261]刘君,孔宪京.节理岩体中隧道开挖与支护的模拟[J].岩土力学,2007,28(2):321-326.
    [262]姜清辉,周创兵.岩土工程不连续变形分析计算中的若干问题[J].岩石力学与工程学报,2007,26(10):2014-2026.
    [263]M. Moosavi, R. Grayeli. A model for cable bolt-rock mass interation:Integration with discontinuous deformation analysis (DDA) algorithm. International Journal of Rock Mechanics and Mining Sciences, Vol 43, pp.661-670,2006.
    [264]邬爱清,丁秀丽,卢波等.DDA方法块体稳定性验证及其在岩质边坡稳定性分析中的应用[J].岩石力学与工程学报,2008,27(4):664-672.
    [265]Ke T C. Improved modeling of rockbolting in DDA[A]. Proc.9th intl. on comp. methods and advances in geomechanics[C]. Wuhan,1997.
    [266]吴益民.节理岩体三维不连续变形分析方法研究及应用[D].武汉:武汉大学,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700