用户名: 密码: 验证码:
浮区法生长LaCoO_3和TiO_2单晶及它们的电磁特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
LaCoO3具有优异的化学稳定性和高温下的良导电性,特别是它低温下的磁性行为近几年来备受关注。TiO_2是一种n型半导体材料,其在光催化、光学器件制备、光电转换性能等方面应用十分广泛。本论文使用浮区法研究了LaCoO3单晶和TiO_2单晶的生长,并研究了生长晶体的特性。
     发现了LaCoO3单晶最佳生长条件,得到了无裂纹的黑亮的长圆柱状LaCoO3单晶体。单晶是沿[ 121]晶向生长的棱方钙钛矿晶体。单晶是高品质无晶界散射的,其电阻率小于已有的文献数据。
     磁性研究显示LaCoO3单晶在低温时磁性含有铁磁性成分,但其铁磁性远小于已有文献报道的各种结构形式的LaCoO3样品,实验结果证明其铁磁成分不是本征属性。强磁场中磁化率倒数曲线在12K处存在斜率变化,显示存在一结构转变。
     通过对生长条件的控制,得到了不同颜色(不同氧缺位含量)的沿[110]晶向生长的金红石TiO_2单晶。氧缺位对择优取向生长无影响,但可能会造成一定的晶格畸变,对拉曼各向异性产生影响。氧缺位对禁带宽度无影响,但对其跃迁几率有影响;氧缺位会在禁带内引入一新的杂质带。氧缺位含量高的TiO_2单晶在温度区间5-300 K都是抗磁性的,表明氧缺位并没有产生铁磁性。
The natural materials are mostly in the form of microcrystal. The single crystals as large as natural gems is minimal. Therefore, the development and application history of crystals is much shorter than that of polycrystals. Because of the single crystals scarcity in nature and demands for people, so the study of the crystal growth started in the nineteenth century. Today, almost all of the mineral crystals can be grown or synthetic by artificial methods, and a mass of single crystals which does not exist in nature have been grown by artificial methods.
     Today, the quality of artificial crystals such as diamond has been greatly exceeds the natural, and a mass of large crystals which does not exist in nature can be synthesized such as laser crystals and silicon, etc. With the development of modern science and technology, the requirements of crystal materials are improved. This promotes the development of some high-performance crystals, so that crystal materials as an industry play a very important position in the field of materials science, the national economy and high-tech, and this trend continues incessantly. The significance of crystal growth, the first is in the development of high technology, the crystals are important basic substances in the information age, is the supported matrix of mutual transformation among sound, light, heat, electricity, magnetism and force, it has extensive and important applications in the sustainable economic development and national defense construction. The second is in the basic research, many of the basic properties of materials are only carried out by crystals to research and to apply. Although the development of new crystal materials have made significant progress, but there is still a great disparity with the need of technology development. And the species, amount and cubage of crystals lie a place unsatisfactory, so the study of the crystal growth is very important and meaningful in present and future.
     Floating zone method is a melt growth method, starting from 1950s, first used in the growth of single crystal silicon. Because of non-polluting and fast growing without the crucible, it is widely used in various crystal growth, in particular used in the crystal growth with strong response and high melting oxides and intermetallic compounds. In the past half of century, the floating zone method has been improved and innovated constantly. Now the optical floating zone crystal growth furnace is widely used with elliptical mirrors and halogen lamps or xenon lamps. The melt zone remains stable mainly by the surface tension, and the crystal grows along the vertical direction.
     LaCoO_3 is a typical ABO_3 perovskite-type compounds. It has excellent chemical stability and good electrical conductivity under high temperature, due to their potential applications in energetics both as cathodes and solid electrolytes in solid oxide fuel cells, and both in environmental catalysis for pollutant decomposition and colossal magnetoresistance materials. LaCoO_3 has attracted considerable interest in the past due to its unique low-temperature magnetic behavior. TiO_2 is the most white thing in the world. Titanium dioxide has three crystal forms, brookite, anatase and rutile, respectively, and rutile is the high-temperature stable phase. TiO_2 is an n-type semiconductor material and widely used in heterogeneous catalysis, as a photocatalyst, in solar cells for the production of hydrogen and electric energy, as gas sensor, as white pigment, as a corrosion-protective coating, as an optical coating, as varistors, in bone implants, as dilute magnetic semiconductors. Both LaCoO_3 and TiO_2 have very high research value. The existing research results are almost based on different forms, such as polycrystals, nanoparticles and films, but not good in indication the nature of materials. Single crystal has long-range order in the macro level and has no defects, it can give more fundamental characteristics of the material. In this thesis, the single crystal growth of LaCoO_3 and TiO_2 by optical floating zone method and their properties have been investigated.
     We investigated the effects of the atmosphere and the pressure on the crystal growth of LaCoO_3 and the optimum growth conditions. The best LaCoO_3 single crystal growth atmosphere is 0.3 Mpa high pure oxygen atmosphere. The as-grown LaCoO_3 single crystal is a crack-free and bright black cylindrical rod with 4-6 mm in diameter and 30 mm in length. XRD and room temperature Raman show that the as-grown crystal grows parallel to the ( 121) direction and the as-grown crystal is highly crystalline with the rhombohedral perovskite structure. The electrical resistivity of the single crystal is much lower than that of the previous reports. It indicates that there is no the scattering introduced by crystal boundaries in the as-grown crystal and the single crystal is high-qulity single crystal.
     In low magnetic fields, the magnetic susceptibility for the as-grown single crystal shows paramagnetic below 35 K and above 90 K. Theχ~T curve appears a wave crest over the interval 55 K≤T≤90 K, the maximum value ofχlocated at 70 K, and theχunder FC is lower than that under ZFC in the temperature range of 55~90 K. The ZFC and FC magnetic susceptibility curves overlap and the 1/χ(T) curve shows a linear variation over the interval 5 K     M-H curves have been investigated at 5K, 25K, 45K, 65K, 75K and 95K, respectively. The ferromagnetism decreases as the temperature increasing at low temperature. The coercivity and the remanence of the as-grown single crystal are much lower than that of other reports at 5K. It indicates that the ferromagnetic component in the magnetic susceptibility of the as-grown single crystal is weaker than that of the reported samples. It proves that the ferromagnetic order in LaCoO_3 at low temperature may not be the intrinsic property, and comes from the incompleteness of prepared sample. The ferromagnetic order in LaCoO_3 may be caused by the well-known ferromagnetic double-exchange interaction between Co2+ (or Co4+) ions and the Co3+ ions. The Co2+ or Co4+ ions comes from the oxygen deficiencies or La vacancies in the crystal, as well as the surface and grain boundary of the polycrystal sample.
     Because of the high melting point, it is generally difficult to obtain a practical value of high-quality large rutile single crystal, oxygen vacancies and low angle grain boundary are also hindered on rutile single crystal in the optical application. Although the rutile single crystal grown by floating zone growth was starting from twenty years ago, but obtained TiO_2 single crystals are in deep yellow or blue and have poor light transmission. This is due to oxygen vacancies which not well controlled. Doped TiO_2 and oxygen vacancies have attracted considerable interest in the past due to TiO_2 can be used as the basis material of diluted magnetic semiconductors. So, it is important to discover how to control the level of oxygen vacancies in crystal growth progress and how to grow high-quality rutile TiO_2 single crystal.
     The TiO_2 single crystals with different oxygen vacancies had been grown by floating zone method. The apparatus used for the crystal growth was an image furnace with four ellipsoids (Crystal Systems Inc.: FZ-T-10000-H-VI-VP). Four halogen lamps of 1.5 kW as an infrared source were set at the each focal point of the ellipsoidal mirror. The growth chamber was isolated with a quartz tube, which ensured the strict control of the growth atmosphere. The as-grown crystals were in three colors: light yellow, yellow and pale blue, whose dimensions were about 6 mm in diameter and 40~50 mm in length. The light yellow and yellow crystals were grown in 0.5 and 0.3 MPa high purity oxygen atmosphere, respectively. And the pale blue crystal was grown in 0.1 MPa argon atmosphere. The as-grown crystals with different colors have different oxygen vacancies.
     The XRD results show that the crystals with different color grow parallel to the [110] direction, and the oxygen vacancies have no effect on preferential orientation.
     The room temperature Raman spectra show that the light yellow crystal was the Raman vibration anisotropy, and the other crystals (yellow and pale blue) were the Raman vibration isotropy. It indicates that the oxygen vacancies result in the lattice distortion partly on crystals, which influences the anisotropy. UV emission spectroscopy analysis shows that the oxygen vacancies have no effect on the band gap, but affect on the transition probability of the band gap. In addition, a luminescence band (424 nm) was observed in the light yellow crystal, and another luminescence band (434 nm) was found in the pale blue sample. It indicates that there is a new energy band under the conduction band caused by the oxygen vacancies. The magnetic susceptibility measurements show that the pale blue crystal with high oxygen vacancies is diamagnetic. The oxygen vacancies have no effect on the magnetism of TiO_2.
     In this thesis, the single crystal of LaCoO_3 and TiO_2 with controlled oxygen vacancies grown by optical floating zone method has been investigated. It proves that the ferromagnetic order in LaCoO_3 at low temperature is not the intrinsic property. It is found that oxygen vacancies in rutile TiO_2 single crystal have effect on the anisotropy and the transition probability of the band gap, and there is a new energy band under the conduction band caused by the oxygen vacancies, but oxygen vacancies have no effect on the magnetism of TiO_2.
引文
[1]陈春荣,赵新乐.晶体物理性质与检测[M].北京:北京理工大学出版社, 1995.
    [2]黄昆.固态物理学[M].北京:高等教育出版社,2003.
    [3]阎守胜.固态为了基础[M].北京:北京大学出版社,2003.
    [4]张克从,张乐潓.晶体生长科学与技术[M].北京:科学出版社,1997.
    [5] B.R. Pamplin,晶体生长[M].北京:中国建筑工业出版社,1981.
    [6] P. Grünberg, R. Schreiber, Y. Pang, M.B. Brodsky, H. Sowers, Layered Magnetic Structures: Evidence for Antiferromagnetic Coupling of Fe Layers across Cr Interlayers[J]. Phys. Rev. Lett., 1986, 57: 2442-2445.
    [7] W.H. Weber, R. Merlin (Eds.), Raman Scattering in Materials Science, Springer, Berlin, 2000, pp.449–478.
    [8] C.B. Alcock, K.D. Doshi, Y. Shen, Nanopowders of LaMeO3 perovskites obtained by a solution-based ceramic processing technique[J]. Solid State Ion., 1992, 51: 281.
    [9] W.F. Libby, Promising Catalyst for Auto Exhaust[J]. Science, 1971, 171: 499-500.
    [10] R.J.H. Voorhoeve, J.P. Remeika, P.E. Freeland, B.T. Matthias, Rare-Earth Oxides of Manganese and Cobalt Rival Platinum for the Treatment of Carbon Monoxide in Auto Exhaust[J]. Science, 1972, 177: 353-354.
    [11] M. Kakihana, M. Arima, M. Yoshimura, N. Ikeda, Y. Sugitani,Synthesis of high surface area LaMnO by a polymerizable complex 3+dmethod[J]. J. Alloys Compd., 1999, 283: 102-105.
    [12] H.X. Dai, C.F. Ng and C.T. Au, The catalytic performance andcharacterization of a durable perovskite-type chloro-oxide SrFeO_(3–δ) Cl_σcatalyst selective for the oxidative dehydrogenation of ethane [J]. Catal.Lett., 1999, 57: 115-120.
    [13] T. Hayakawa, A.G. Andersen, H. Orita, M. Shimizu and K. Takehira,Oxidative dehydrogenation of ethane over some titanates based perovskiteoxides[J]. Catal. Lett., 1992, 16: 373-387.
    [14] Srinvasan, S., Dave, B. B., Murugesamoorthi, K. A., Partasarathy,A. and Appleby, A. J., In Solid Oxide Fuel Cells in Fuel Cell Systems,ed. L. J. M. J. Blomen and M. N. Mugerwa. Plenum, New York, 1993, pp.58–63.
    [15] L. Armelao, D. Barreca, G. Bottaro, A. Gasparotto, C. Maragno, E.Tondello, C. Sada, LaCoO3 Nanosystems by a Hybrid CVD/Sol–Gel Approach[J].J. Nanosci. Nanotechnol., 2005, 5: 781-785.
    [16] L. Armelao, D. Barreca, G. Bottaro, A. Gasparotto, C. Maragno, E.Tondello, Hybrid Chemical Vapor Deposition/Sol?Gel Route in thePreparation of Nanophasic LaCoO Films 3 [J]. Chem. Mater., 2005, 17:427-433.
    [17] E. Bontempi, L. Armelao, D. Barreca, L. Bertolo, G. Bottaro, E.Pierangelo, L. E. Depero, Structural characterization of sol-gellanthanum cobaltite thin films[J]. Cryst. Eng., 2002, 5: 291-298.
    [18] Arima T., TokuraY., Optical Study of Electronic Structure in Perovskite-Type RMO3 (R=La, Y; M=Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu) [J]. J. Phys. Soc. Japan, 1995,64(7): 2488-2501.
    [19] R.Ganguly, I. K. Gopalakrishnan, J, V, Yakhmi, Influence of the size of dopant ion on ferromagnetic behavior of Ln_(0.7) A_(0.3) CoO_3 system [Ln=La, Nd; and A=Ca, (Ca, Sr), Sr, (Sr, Ba), Ba][J]. Physica B, 1999, 271: 116-124.
    [20] Hideki Taguchi, Sayuki Yamada, Mahiko Nagao, Yoko Ichikawa, Kenji Tabata, Surface characterization of LaCoO_3 synthesized using citric acid[J]. Materials Research Bulletin, 2002, 37: 69-76.
    [21] S. Yamaguchi, Y. Okimoto, H. Taniguchi, and Y. Tokura,Spin-state transition and high-spin polarons in LaCoO3[J].Phys. Rev. B, 1996, 53: R2926.
    [22] Md. Motin Seikh, L. Sudheendra, Chandrabhas Narayana, and C.N.R. Rao, A Raman study of the temperature-induced low-to-intermediate-spin state transition in LaCoO3[J]. Journal of Molecular Structure, 2004, 706: 121–126.
    [23] L. Sudheendra, Md. Motin Seikh, A.R. Raju, Chandrabhas Narayana, An infrared spectroscopic study of the low-spin to intermediate-spin state ( 1 A1 ? 3T1) transition in rare earth cobaltates, LnCoO3 (Ln=La, Pr and Nd) [J]. Chemical Physics Letters, 2001, 340: 275-281.
    [24] J.-Q. Yan, J.-S. Zhou, and J. B. Goodenough, Bond-length fluctuationsand the spin-state transition in LCoO3 (L=La, Pr, and Nd) [J]. Phys. Rev. B, 2004, 69: 134409.
    [25] J.-Q. Yan, J.-S. Zhou, and J. B. Goodenough, Ferromagnetism in LaCoO3[J]. Phys. Rev. B, 2004, 70: 014402.
    [26] M. Medarde, C. Dallera, M. Grioni, J. Voigt, A. Podlesnyak, E. Pomjakushina, K. Conder, Th. Neisius, O. Tjenberg, and S. N. Barilo, Low-temperature spin-state transition in LaCoO3 investigated using resonant x-ray absorption at the Co K edge[J]. Phys. Rev. B, 2006, 73: 054424.
    [27] A. Podlesnyak, K. Conder, E. Pomjakushina, A. Mirmelstein, P. Allenspach, D.I. Khomskii, Effect of light Sr doping on the spin–state transition in LaCoO3[J]. Journal of Magnetism and Magnetic Materials, 2007, 310: 1552–1554.
    [28] M. W. Haverkort, Z. Hu, J. C. Cezar, T. Burnus, H. Hartmann, M. Reuther, C. Zobel, T. Lorenz, A. Tanaka, N. B. Brookes, H. H. Hsieh, H.-J. Lin, C. T. Chen, and L. H. Tjeng, Spin State Transition in LaCoO3 Studied Using Soft X-ray Absorption Spectroscopy and Magnetic Circular Dichroism[J]. Phys. Rev. Lett., 2006, 97: 176405.
    [29] M. J. R. Hoch, S. Nellutla, J. van Tol, Eun Sang Choi, Jun Lu, H. Zheng, and J. F. Mitchell, Diamagnetic to paramagnetic transition in LaCoO3[J]. Phys. Rev. B, 2009, 79: 214421.
    [30]U.Diebold, The surface science of titanium dioxide[J]. SurfaceScience Reports, 2003, 48: 53-229.
    [31] Fujishima A,Honda K.Electrochemical Photolysis of Water at a semiconductor Electrode[J].Nature, 1972,238(5358):37—38.
    [32]贺飞,唐怀军,赵文宽,等.纳米TiO_2催化剂负载技术研究[J].环境污染治理技术与设备,2001,4(2):47—58.
    [33]孟耀斌,黄霞.史汉昌,等.4-氯苯甲酸纳的光催化氧化降解及其影响因素[J].重庆环境科学,2001,23(3):33—37.
    [34] P.K. Dutta, A. Ginwalla, B. Hogg, B.R. Patton, B. Chwieroth, Z. Liang, P. Gouma, M. Mills, S. Akbar, Interaction of Carbon Monoxide with Anatase Surfaces at High Temperatures: Optimization of a Carbon Monoxide Sensor[J]. J. Phys. Chem.B, 1999, 103: 4412-4422.
    [35] Y. Xu, K. Yao, X. Zhou, Q. Cao, Platinum-titania oxygen sensors and their sensing mechanisms[J]. Sens. Actuators B, 1993, 13-14: 492-494.
    [36] U. Kirner, K.D. Schierbaum, W. G?pel, B. Leibold, N. Nicoloso, W. Weppner, D. Fischer, W.F. Chu, Low and high temperature TiO_2 oxygen [J]. Sens. Actuators B, 1990, 1: 103-107.
    [37] L.G. Phillips, D.M. Barbano, The Influence of Fat Substitutes Based on Protein and Titanium Dioxide on the Sensory Properties of Lowfat Milks[J]. J. Dairy Sci., 1997, 80: 2726-2733.
    [38] J. Hewitt, Cosmet. Toiletries, 1999, 114: 59.
    [39] M. Higuchi, T. Hosokawa, S. Kimura, Growth of rutile single crystals by floating zone method[J]. J. Crystal Growth, 1991, 112: 354-358.
    [40] M. Higuchi, K. Kodaira, Effect of ZrO_2 addition on FZ growth of rutile single crystals[J]. J. Crystal Growth, 1992, 123: 495-499.
    [41] M. Higuchi, J. Takahashi, K. Kodaira, Effects of Sc_2O_3 addition on floating zone growth of rutile single crystals[J]. J. Crystal Growth, 1992, 125: 571-575.
    [42] K. Hatta, M. Higuchi, J. Takahashi, K. Kodaira, Floating zone growth and characterization of aluminum-doped rutile single crystals[J]. J. Crystal Growth, 1996, 163: 279-284.
    [43] M. Higuchi, K. Hatta, J. Takahashi, K. Kodaira, H. Kaneda, J. Saito, Floating-Zone growth of rutile single crystals inclined at 48°to the c-axis[J]. J. Crystal Growth, 2000, 208: 501-507.
    [44] J.K. Park, K.B. Shim, K.H. Auh, I. Tanaka, The growth of TiO_2 (rutile) single crystals using the FZ method under high oxygen pressure[J]. J. Crystal Growth, 2002, 237–239: 730-734.
    [45] J.K. Park, K.H. Kim, I. Tanaka, K.B. Shim, Characteristics of rutile single crystals grown under two different oxygen partial pressures[J]. J. Crystal Growth, 2004, 268: 103-107.
    [46] M. Higuchi, C. Sato, K. Kodaira, High-speed float zone growth of rutile single crystals inclined at 48°to the c-axis[J]. J. Crystal Growth, 2004, 269: 342-346.
    [47] S.M. Koohpayeh, D. Fort, J.S. Abell, Some observations on the growth of rutile single crystals using the optical floating zone method[J]. J.Crystal Growth, 2005, 282: 190–198.
    [48]M. Batzill, K. Katsiev, D.J. Gaspar, U. Diebold, Variations of the local electronic surface properties of TiO2(110) induced by intrinsic and extrinsic defects[J]. Phys. Rev. B, 2000, 66: 235401.
    [49]S.A. Chambers, Y. Gao, Y.J. Kim, Valence Band and Core-level Photoemission and Photoelectron Diffraction in Epitaxial Nb-Doped TiO2(110) [J]. Surf. Sci. Spectra, 1998, 5: 211.
    [50]D. Morris, Y. Dou, J. Rebane, C.E.J. Mitchell, R.G.Egdell, D.S.L. Law, A. Vittadini, M Casarin, Photoemission and STM study of the electronic structure of Nb-doped TiO2[J]. Phys. Rev. B, 2000, 61: 13445.
    [51]A.E. Taverner, A. Gulino, R.G. Egdell, T.J. Tate, A photoemission study of electron states in Sb-ion implanted TiO2(110) [J]. Appl. Surf. Sci., 1995, 90: 383-387.
    [52]J.M. Pan, B.L. Maschhoff, U. diebold, T.E. Madey, Interaction of water, oxygen, and hydrogen with TiO2(110) surfaces having different defect densities[J]. J. Vac. Sci. Technol. A, 1992, 10: 2470-2476.
    [53]M.A. Henderson, An HREELS and TPD study of water on TiO2(110): the extent of molecular versus dissociative adsorption[J]. Surf. Sci., 1996, 355: 151-166.
    [54]C.A. Jenkins, D.M. Murphy, Thermal and Photoreactivity of TiO2 at the Gas?Solid Interface with Aliphatic and Aromatic Aldehydes[J]. J. Phys. Chem. B, 1999, 103: 1019-1026.
    [55]姚连增,晶体生长基础[M]合肥:中国科学技术大学出版社,1995.
    [56] W. G. Pfann, Technical Notes - Purification of Gallium by Zone-Refining[J]. Trans. AIME, 1952, 194: 747.
    [57] P. H. Keck, and M. J. E. Golay, Crystallization of Silicon from a Floating Liquid Zone[J]. Phys, Rev., 1953, 89: 1297.
    [58] Tian-cun Xiao, Sheng-fu Ji, Hai-tao Wang, Karl S. Coleman, Malcolm L. H. Green,Methane combustion over supported cobalt catalysts[J]. Journal of Molecular Catalysis A: Chemical, 2001, 175: 111-123.
    [59]薛爱莲,黄寅生,康聪成,王盈华,李继,纳米LaCoO_3对RDX基混合炸药的热分解特性和感度的影响[J].火炸药学报,2005, 28(2): 75-77.
    [60]贾立山,秦永宁,马智,齐晓舟,丁彤,梁珍成,含氧气氛下预硫化钙钛矿LaCoO_3上的CO还原SO2反应[J].催化学报,2003, 24(10): 751-754.
    [61]傅希贤,杨秋华,王英,CO_32-在纳米LaCoO_3悬浮体系中的光催化还原[J].硅酸盐学报,2002, 30(6): 793-794.
    [62]杜卫民,李强,牛新书,LaCoO_3复合氧化物纳米材料的制备及其甲醛敏感性能[J].漯河职业技术学院学报,2008, 7(5): 7-10.
    [63]李江,卫芝贤,陈志敏,LaCoO_3光催化降解孔雀绿染料的研究[J].应用化工,2O07, 36(10): 986-988.
    [64]李江,卫芝贤,LaCoO_3光催化降解染料酸性红B的实验研究[J].光谱实验室,2007, 24(2): 165-168.
    [65]朱永法,谭瑞琴,冯杰,嵇世山,曹立礼,LaCoO_3模型催化剂SO2中毒机理的研究[J].高等学校化学学报,2000, 21(11): 1733-1737.
    [66]胡瑞生,付冬,王克冰,沈岳年,LaCoO_3与LaFeO_3结构与CO催化氧化性能比较研究[J].内蒙古大学学报(自然科学版),2001, 32(2): 189-192.
    [67]赵晓明,秦永宁,马智,LaCoO_3在含氧气氛下对CO还原SO_2的催化性能[J].化学工业与工程,2004, 21(5): 334-336.
    [68]王俊珍,博希贤,杨秋华,孙艺环,陈秀增,曾淑兰,钙钛矿型LaCoO_3的光催化活性[J].应用化学,1999, 16(3): 97-99.
    [69]吴维维,张虹,常思思,高敬,贾立山,可见光下钙钛矿LaCoO_3光催化杀菌性能的应用研究[J].化工时刊,2009, 23(7): 25-28.
    [70]朱俊武,王艳萍,汪信,杨绪杰,陆路德,纳米LaCoO_3的制备及其对高氯酸铵分解的催化性能[J].中国稀土学报, 2007, 25(3): 364-367.
    [71] Christophe Py, Dan Roth, Isabelle Lévesque, John Stapledon, Anne Donat-Bouillud,An integrated shadow-mask based on a stack of inorganic insulators for high-resolution OLEDs using evaporated or spun-on Materials[J]. Synth. Met.,2001, 122: 225-227.
    [72] Hiroaki Usui, Kuniaki Tanaka, Hiroyuki Orito and Shinich Sugiyama, Ionization-assisted deposition of 8-hydroxyquinoline aluminum for organic light emitting diode[J]. Jpn. J. Appl. Phys., 1998, 37: 987-992.
    [73] Wang L D, Kwok H S. Pulsed laser deposition of organic thin films[J]. Thin Solid Films, 2000, 363(1-2): 58-60.
    [74]李晓常,孙景志,马於光等.聚合物半导体电致发光器件[J].高等学校化学学报, 1999, 20(2): 309-314.
    [75]华斌,张建福,卢凤双,孔永红,蒲健,李箭,LaCoO_3涂层对SUS 430合金连接体中温氧化行为的影响[J].金属学报,2009, 45(5): 605-609.
    [76]蒲健,华斌,李箭,LaCoO3涂层在SOFC金属连接体中的应用[J].电池,2006, 36(5): 380-382.
    [77] Bhoopendra K S,Rohit A,Jarinder K, Suresh C.A, Photocatalytic reduction of carbon dioxide over ferrocyanide-coated titanium dioxide powder[J]. Int. J. Energy Res., 1997, 21: 923-929.
    [78]杨秋华,傅希贤,桑丽霞,纳米LaCoO3的光催化氧化还原活性[J].燃料化学学报,2002, 30(4): 368-371.
    [79]康振晋,姚艳,郑兴,钙钛矿型A位掺杂复合氧化物La1-xSrxCoO3-δ的光催化活性研究[J].分子催化,2005, 19(6): 473-476.
    [80]吴秉衡,胡双启, LaCoO3对TNT废水光催化降解的实验研究[J].火炸药学报, 2008, 31(6): 21-24.
    [81] C. Leighton, John Kern, and Suzanne R. English, A high temperature probe operating in the variable temperature insert of a commercial superconducting magnet system[J]. Rev. Sci. Instrum., 2002, 73(6): 2364.
    [82] Suzanne R. English, J. Wu, and C. Leighton, Thermally excited spin-disorder contribution to the resistivity of LaCoO3[J]. Phys. Rev. B, 2002, 65: 220407(R).
    [83] Monica Popa, Masato Kakihana, Synthesis of lanthanum cobaltite (LaCoO3) by the polymerizable complex route[J]. Solid State Ionics, 2002, 151: 251-257.
    [84] Susumu Nakayama, Masahiro Okazaki, Yan Lin Aung, Masatomi Sakamoto,Preparations of perovskite-type oxides LaCoO3 from three different methods and their evaluation by homogeneity, sinterability and conductivity[J]. Solid State Ionics, 2003, 158: 133-139.
    [85] Marta M. Natile, Elisabetta Ugel, Chiara Maccato, Antonella Glisenti, LaCoO3: Effect of synthesis conditions on properties and reactivity[J]. Applied Catalysis B Environmental, 2007, 72: 351-362.
    [86]L. Armelao, D. Barreca, G. Bottaro, A. Gasparotto, C. Maragno, E. Tondello, LaCoO3 Nanosystems by a Hybrid CVD/Sol-Gel Route: An XPS Investigation[J]. Surf. Sci. Spectra, 2003, 10: 143.
    [87]S. Kaliaguine, A. Van Neste, V. Szabo, J.E. Gallot, M. Bassir, R. Muzychuk, Perovskite-type oxides synthesized by reactive grinding: Part I. Preparation and characterization[J]. Appl. Catal. A, 2001, 209: 345-358.
    [88] Helene Seim, Minna Nieminen, Lauri Niinist?, Helmer Fjellv?g, Leena-Sisko Johansson, Growth of LaCoO3 thin films fromβ-diketonate precursors[J]. Appl. Surf. Sci., 1997, 112: 243-250.
    [89]Y. Uwamino, T. Ishizuka, H. Yamatera, X-ray photoelectron spectroscopy of rare-earth compounds[J]. J. Electron Spectrosc. Relat. Phenom., 1984, 34: 67-78.
    [90]J.-L. Dubois, M. Bisiaux, H. Mimoun, C.J. Cameron, X-Ray Fhotoelectron Spectroscopic Studies of Lanthanum Oxide Based Oxidative Coupling of Methane Catalysts[J]. Chem. Lett., 1990, 19: 967-970.
    [91]T.L. Barr, An ESCA study of the termination of the passivation of elemental metals[J]. J. Phys. Chem., 1978, 82: 1801-1810.
    [92]K. Tatsumi, M. Tsutsui, G.W. Beall, D.F. Mullica, W.O. Milligan, Satellite phenomena in the X-ray photoelectron spectra of lanthanide trihydroxides[J]. J. Electron Spectrosc. Relat. Phenom., 1979, 16: 113-118.
    [93]M.M. Natile, A. Glisenti, Study of Surface Reactivity of Cobalt Oxides: Interaction with Methanol[J]. Chem. Mater., 2002, 14: 3090-3099.
    [94]Ruiqin Tan, Yongfa Zhu, Poisoning mechanism of perovskite LaCoO3 catalyst by organophosphorous gas[J]. Applied Catalysis B Environmental, 2005, 58: 61–68.
    [95]电子能谱学(XPS/XAES/UPS)引论[M].北京:国防工业出版社,1992.
    [96] A. Ishikawa, J. Nohara, and S. Sugai, Raman Study of the Orbital-Phonon Coupling in LaCoO3[J]. Phys. Rev. Lett., 2004, 93: 136401.
    [97] V. Gnezdilov, V. Fomin, and A. V. Yeremenko, K.-Y. Choi, Yu. Pashkevich, P. Lemmens, S. Shiryaev, G. Bychkov, and S. Barilo, Low-temperature mixed spin state of Co3+ in LaCoO3 evidenced from Jahn–Teller lattice distortions[J]. Low Temp. Phys., 2006, 32: 162.
    [98] Monica Popa, Le Van Hong, Masato Kakihana, Nanopowders of LaMeO3 perovskites obtained by a solution-based ceramic processing technique[J]. Physica B, 2003, 327: 233-236.
    [99] E. Granado, N. O. Moreno, A. García, J. A. Sanjurjo, C. Rettori, I. Torriani, S. B. Oseroff,J. J. Neumeier, K. J. McClellan, S.-W. Cheong, Y. Tokura, Phonon Raman scattering in R1-xAxMnO3+δ(R=La,Pr; A=Ca,Sr) [J]. Phys. Rev. B, 1998, 58: 11435.
    [100] M. V. Abrashev, A. P. Litvinchuk, M. N. Iliev, R. L. Meng, V. N. Popov, V. G. Ivanov, R. A. Chakalov, C. Thomsen, Comparative study of optical phonons in the rhombohedrally distorted perovskites LaAlO3 and LaMnO3[J]. Phys. Rev. B, 1999, 59: 4146.
    [101] WANG Wei-Ran, XU Da-Peng, SU Wen-Hui, DING Zhan-Hui, XUE Yan-Feng, SONG Geng-Xin, Raman Active Phonons in RCoO3 (R=La,Ce,Pr,Nd,Sm,Eu,GD,and Dy) Perovskites[J]. CHIN.PHY.LETT., 2005, 22(9): 2400-2402.
    [102] D. P. Kozlenko, N. O. Golosova, Z. Jirák, L. S. Dubrovinsky, B. N. Savenko, M. G. Tucker, Y. Le Godec, and V. P. Glazkov, Temperature- and pressure-driven spin-state transitions in LaCoO3[J]. Phys. Rev. B, 2007, 75: 064422.
    [103] E. Iguchi, K. Ueda, and W. H. Jung,Conduction in LaCoO3 by small-polaron hopping below room temperature[J]. Phys. Rev. B, 1996, 54: 17431.
    [104] K. Kní?ek, Z. Jirák, J. Hejtmánek, M. Veverka, M. Mary?ko, B. C. Hauback, and H. Fjellv?g, Structure and physical properties of YCoO3 at temperatures up to 1000 K[J]. Phys. Rev. B, 2006, 73: 214443.
    [105] Z. Jirák, J. Hejtmánek, K. Kní?ek, and M. Veverka, Electricalresistivity and thermopower measurements of the hole- and electron-doped cobaltites LnCoO3[J]. Phys. Rev. B, 2008, 78: 014432.
    [106] Y. Tokura, Y. Okimoto, S. Yamaguchi, H. Taniguchi, T. Kimura and H. Takagi, Thermally induced insulator-metal transition in LaCoO3 : A view based on the Mott transition[J]. Phys. Rev. B, 1998, 58: R1699.
    [107] H. Y. Hwang, S-W. Cheong, N. P. Ong, and B. Batlogg, Spin-Polarized Intergrain Tunneling in La2/3Sr1/3MnO3[J]. Phys. Rev. Lett., 1996, 77: 2041.
    [108] J. B. Goodenough, An interpretation of the magnetic properties of the perovskite-type mixed crystals La1?xSrxCoO3?λ[J]. J. Phys. Chem. Solids, 1958, 6: 287-297.
    [109] M. A. Se?arís-Rodríguez and J. B. Goodenough, LaCoO3 Revisited[J]. J. Solid State Chem., 1995, 116: 224-231.
    [110] K. Asai, O. Yokokura, N. Nishimori, H. Chou, J. M. Tranquada, G. Shirane, S. Higuchi, Y. Okajima, and K. Kohn, Neutron-scattering study of the spin-state transition and magnetic correlations in La1-xSrxCoO3 (x=0 and 0.08) [J]. Phys. Rev. B, 1994, 50: 3025.
    [111] M. Itoh, I. Natori, S. Kubota, and K. Motoya, Spin-Glass Behavior and Magnetic Phase Diagram of La1-xSrxCoO3 ( 0≤x≤0.5) Studied by Magnetization Measurements[J]. J. Phys. Soc. Jpn., 1994, 63: 1486-1493.
    [112]M. Itoh, M. Sugahara, I. Natori, and K. Motoya, Spin State and Hyperfine Interaction in LaCoO3 : NMR and Magnetic Susceptibility Studies[J]. J. Phys. Soc. Jpn., 1995, 64: 3967-3977.
    [113] S. Yamaguchi, Y. Okimoto, H. Taniguchi, and Y. Tokura, Spin-state transition and high-spin polarons in LaCoO3[J]. Phys. Rev. B, 1996, 53: R2926.
    [114] M. A. Korotin, S. Yu. Ezhov, I. V. Solovyev, and V. I. Anisimov, D. I. Khomskii and G. A. Sawatzky, Intermediate-spin state and properties of LaCoO3[J]. Phys. Rev. B, 1996, 54: 5309.
    [115] S. Yamaguchi, Y. Okimoto, and Y. Tokura, Local lattice distortion during the spin-state transition in LaCoO3[J]. Phys. Rev. B, 1997, 55: R8666.
    [116]C. Zobel, M. Kriener, D. Bruns, J. Baier, M. Grüninger, T. Lorenz, P. Reutler, and A. Revcolevschi, Evidence for a low-spin to intermediate-spin state transition in LaCoO3[J]. Phys. Rev. B, 2002, 66: 020402(R).
    [117]P. G. Radaelli and S.-W. Cheong, Structural phenomena associated with the spin-state transition in LaCoO3[J]. Phys. Rev. B, 2002, 66: 094408.
    [118] G. Maris, Y. Ren, V. Volotchaev, C. Zobel, T. Lorenz, and T. T. M. Palstra, Evidence for orbital ordering in LaCoO3[J]. Phys. Rev. B, 2003, 67: 224423.
    [119]J. Baier, S. Jodlauk, M. Kriener, A. Reichl, C. Zobel, H. Kierspel, A. Freimuth, and T. Lorenz, Spin-state transition and metal-insulator transition in La1?xEuxCoO3[J]. Phys. Rev. B, 2005, 71: 014443.
    [120]D. Phelan, D. Louca, S. Rosenkranz, S.-H. Lee, Y. Qiu, P. J. Chupas, R. Osborn, H. Zheng, J. F. Mitchell, J. R. D. Copley, J. L. Sarrao, and Y. Moritomo, Nanomagnetic Droplets and Implications to Orbital Ordering in La1-xSrxCoO3[J]. Phys. Rev. Lett., 2006, 96: 027201.
    [121]A. Podlesnyak, S. Streule, J. Mesot, M. Medarde, E. Pomjakushina, K. Conder, A. Tanaka, M. W. Haverkort, and D. I. Khomskii, Spin-State Transition in LaCoO3: Direct Neutron Spectroscopic Evidence of Excited Magnetic States[J]. Phys. Rev. Lett., 2006, 97: 247208.
    [122] J. Androulakis, N. Katsarakis, and J. Giapintzakis, Ferromagnetic and antiferromagnetic interactions in lanthanum cobalt oxide at low temperatures[J]. Phys. Rev. B, 2001, 64: 174401.
    [123] Shiming Zhou, Lei Shi, Jiyin Zhao, Laifa He, Haipeng Yang, and Shangming Zhang, Ferromagnetism in LaCoO3 nanoparticles[J]. Phys. Rev. B, 2007, 76: 172407.
    [124] D. Fuchs, C. Pinta, T. Schwarz, P. Schweiss, P. Nagel, S. Schuppler, R. Schneider, M. Merz, G. Roth, and H. L?hneysen, Ferromagnetic order in epitaxially strained LaCoO3 thin films[J]. Phys. Rev. B, 2007, 75: 144402.
    [125] N. Menyuk, K. Dwight, and P. M. Raccah, Low temperature crystallographic and magnetic study of LaCoO3[J]. J. Phys. Chem. Solids, 1967, 28: 549-556.
    [126]徐良,步平,防晒化妆品及其市场发展[J].日用化学品科学,1997.20(2): 17-20.
    [127]涂国荣,王武尚,张利兴,等,纳米TiO_2与天然紫外吸收剂防晒效用的研究[J].精细化工,2001, 18(7): 379-381.
    [128]罗付生,韩爱军,化妆品用聚甲基丙烯酸甲醋-二氧划钛复合微球的制备及性能[J].日用化学工业,2002,32(2): 41-43.
    [129] J. G. Traylor, H. G. Smith, R. M. Nicklow, and M. K. Wilkinson, Lattice dymamics of rutile[J]. Phys. Rev. B, 1971, 3: 3457-3472.
    [130] M. Shirasaki, K. Asama, Compact optical isolator for fibers using birefringent wedges[J]. Appl. Opt., 1982, 21: 4296-4300.
    [131]U. Diebold, M. Li, O. Dulub, E.L.D. Hebenstreit, and M. Hebenstreit, The relationship between bulk and surface properties of rutile TiO_2(110) [J]. Surf. Rev. and Lett., 2000, 7: 613-617.
    [132]梁敬魁编著,粉末衍射法测定晶体结构[M].北京:科学出版社,2003,第1版, 96-98.
    [133] Carolyn Rubin Aita, Raman scattering by thin film nanomosaic rutile TiO_2[J]. Appl. Phys. Lett., 2007, 90: 213112.
    [134]王秉超,李良德,马文琦等编,光学[M].长春:吉林大学出版社,1991,第1版.
    [135]张文宣,蓝国祥,王玉芬编著,晶格振动光谱学[M].北京:高等教育出版社,2003,第2版.
    [136] G. A. Samara and P. S. Peercy, Pressure and temperature dependence of the static dielectric constants and Raman spectra of TiO_2(rutile) [J]. Phys, Rev. B, 1973, 7(3): 1131-1147.
    [137] S. P. S. Portto, P. A. Fleury and T. C. Damen, Raman Spectra of TiO2, MgF2, ZnF2, FeF2[J]. Phys. Rev., 1967, 154(2): 522-526.
    [138] U. Balachandran and N. G. Eror, Raman spectra of titanium dioxide[J]. J. Solid State Chem., 1982, 42: 276-282.
    [139] T. D. Robert, L. D. Laude, V. M. Geskin, R. Lazzaroni, R. Gouttebaron, Micro-Raman spectroscopy study of surface transformations induced by excimer laser irradiation of TiO2[J]. Thin Solid Films, 2003, 440: 268-277.
    [140] Y. H. Zhang, C. K. Chan, J. F. Porter, W. Guo, Micro-Raman spectroscopic characterization of nanosized TiO2 powders prepared by vapor hydrolysis[J]. J. Mater. Res., 1998, 13(9): 2602-2609.
    [141] B. Dayal, Proc. Indian Acad. Sci. Sect. A, 1950, 32: 304.
    [142] R. S. Krishnan and J. P. Russell, The first-order Raman spectrum of magnesium fluoride[J]. Brit. J. Appl. Phys., 1966, 17: 501-503.
    [143] P. S. Narayanan, Proc. Indian Acad. Sci. Sect. A, 1953, 37: 411.
    [144] Y. Hara and M. Nicol, Raman spectra and structure of rutile at high pressures[J]. Status Solidi B, 1979, 94: 317-322.
    [145] T. Ohsake, F. Izumi, Y. Fujiki, Raman spectrum of anatase, TiO2[J]. J. Raman Spectrosc, 1978, 7: 321-324.
    [146] G. Mattioli, F. Filippone, P. Alippi, and A. Amore Bonapasta, Ab initio study of the electronic states induced by oxygen vacancies in rutile and anatase TiO2[J]. Phys. Rev. B, 2008, 78: 241201(R).
    [147] GUO Xing-Yuan,XU Da-Peng,DING Zhan-Hui ,SU Wen-Hui,Study on preparation of rutile single crystal using floating zone method and its Raman spectrum[J]. Chin. Phys. Lett.,2006, 23: 1645-1647.
    [148]沈学础,半导体光谱和光谱性质[M].北京:科学出版社,2002,第二版, 276-278.
    [149] S. Munnix and M. Schmeits, Electronic structure of ideal TiO2(110), TiO2(001), and TiO2(100) surfaces[J]. Phys. Rev. B, 1984, 30: 2202.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700