用户名: 密码: 验证码:
高精度三维地震精细解释技术在丘陵油田二次开发中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
丘陵油田位于吐哈盆地台北凹陷,构造被南北向断裂切割成东西两块,含油层系为中侏罗统七克台组、三间房组和西山窑组。2005年吐哈油田实施了第一块针对已开发油田的二次高精度地震资料采集、处理、解释一体化项目。本次研究基于高精度三维地震资料,结合井、测井和开发动态资料,针对影响丘陵油田开发的小断层和储层进行了精细解释,取得了较为丰富的研究成果。
     油田开发面临难题多种多样,实质上是油藏地质特征认识不够深入,即对小断层识别和储层预测的精度不足以满足油田开发的需要。为此,本次研究将小断层识别和储层预测作为重点。本次研究将模型正演、谱分解技术应用于小断层的识别和解释,识别了断距为10m以下的小断层,构建了一套适合丘陵油田及类似地震地质条件下的高精度地震资料小断层解释技术框架。原有构造研究成果表明本区断层主要有两组,本次研究应用构造族系和地质力学的理论,将区内断裂系统划分为三个构造族系,使得断层组合、切割关系分析、断层平面展布特征和小断层的识别更加符合丘陵构造带地质应力环境和地质规律。
     鉴于小波分析具有良好的时频局部性质,而神经网络具有良好的容错能力和自学习功能,因此本次研究采用小波神经网络进行地震约束反演。在实施约束反演时,首先整理探区内钻井、测井、三维地震数据等基础资料;在此基础上优选反演约束条件,给小波神经网络各参数赋予随机初始值,并不断调整网络参数,直至完成网络训练。将未作为约束条件的测井曲线叠加到地震反演结果上进行分析发现,以电阻率为约束条件的地震反演结果层次清楚,剖面高阻抗和自然电位测井曲线异常具有较好的对应关系。本次研究提出了模糊支持向量机方法,并将其用于了储层预测。首先仔细分析丘陵油田的地层、沉积与岩石地球物理等特征,确定探区内主要目的层段;然后采用单道时窗提取与多道时窗提取等手段提取目的层段属性,以构成学习样本。在此基础上训练FSVM,并用训练结果对目的层段实施预测。根据本次研究可知,丘陵油田具有二次开发潜力,区内下侏罗统、三叠系和二叠系构造落实可靠、储盖组合发育,油源丰富,具有良好的勘探前景。
Qiuling oilfield is located in Taibei depression, Tulufan-Hami basin, where structure is cut into two blocks by north-south faults and where Qiketai group, Sanjianfang group and Xishanyao group of the Middle Jurassic are the source formations. In 2005, the integrated high-precision 3D seismic project including data acquisition, processing and interpretation was implemented in Tuha oilfield, which was to resolve the problems found in oil-field development. Based on high-precision 3D seismic data, combing with borehole data, logging data and development dynamic information, we subtly interpreted the small faults and predicted reservoirs.
     Materially, the problems facing to oil-filed development can be taken that the ability to recognize small faults and the precision of reservoir prediction are not meet the requirement in oil-field development. In the paper, small faults which displacement is less than 10m can be identified by forward modeling and spectral decomposition. Based on high-precision 3D seismic data, technique framework of seismic data interpretation which is suitable for geological conditions like Qiuling oil-filed was constructed.The old research results show there are two sets of faults. According to structure family theory and geologic mechanics theory, the new fault system is classified as three structure families in the research area, which makes fault combination, cutting relationship and distribution in plane clearly, and is according with geologic stress circumstance and geologic rules of Qingling structure belt.
     Wavelet analysis has good local time-frequency character and neural network has allowing-error ability and auto-learning ability, so wavelet neural network method is selected to perform seismic constrained inversion. Before seismic constrained inversion, it is necessary that well data, logging data and 3D seismic data in the research area are neatened. After selecting optimum constrained condition, we give the random initial value of each parameter of wavelet neural network, and continuously adjust network parameters until the completion of network training. Comparing the inversion results and the log curves which are not used as constrained condition, it can be found that the inversion results of resistivity curve used as constrained condition is clearly, and there is a good corresponding between high impedance in inversion result and abnormity in spontaneous potential curve when. In our research, FSVM is used to reservoir prediction.After analyzing the characteristics of lithology, sedimentary and petrophysics of the targets in Qiuling oil-field, the attributes of targets are extracted by the means of single or multi-channel time-window. Learning samples is composed of these attributes. After training FSVM, the results is used to predict the reservoir. Random comparing prediction results with drilling data, prediction errors are within the allowable range. The research result shows that there are potential of secondary development in Lower Jurassic, Triassic and Permian the structures are reliable,and the source is abundant.
引文
[1]许卫平.关于开发地震技术发展的几点思考.石油物探,2002,41(1):11-14
    [2]中国石油天然气总公司等.丘陵油田开发建设总体方案设计,1993,5
    [3]李庆.物探技术在油田开发中适用性研究.吉林省第五届科学技术学术年会,2008
    [4]张光明.开发中后期油藏精细描述与开发调整研究:[博士论文].四川成都:成都理工大学,2001
    [5]詹仕凡.物探解释新技术进展.见:石油物探专业委员会教材,2008
    [6]张延庆.2002年SEG年会技术介绍报告.内部资料,2002
    [7]杨勤勇.地震勘探技术新进展.勘探地球物理进展,2002,25(1):5-10
    [8] Bahorich M and Farmer S. 3-D Seismic Discontinuity for Faults and Stratigraphic Features: The Coherence Cube. The Leading Edge, 1995,14(10):1053-1058
    [9] Bahorich M. S and Bridges S R. Seismic sequence attribute map (SSAM).SEG 62th Annual International Meeting.New Orleans,1992
    [10] Roberts, A., 2001, Curvature attributes and application to 3D interpreted horizons: First Break, 19, 85-99
    [11] Barnes A E. Instantaneous bandwidth and dominant frequency with applications to seismic reflection data. Geophysics, 1993, 58 (3) :419-428
    [12] Marfurt. Robust estimates of 3D reflector dip and azimuth.Geophysics, 2006,71(4):29-40
    [13] Hart.Seismic Definition of Fracture-Swarm Sweet Spots.SEG Annual Meeting, 2006, 570-570
    [14] Sigismondi M E and J C Soldo.Curvature attributes and seismic interpretation:Case studies from Argentina basins: The Leading Edge, 2003,22, 1122-1126
    [15] Goloshubin G and Silin D. Using frequency-dependent seismic attributes in imaging of a fractured reservoir zone. 75th Ann. Int. Mtg., Soc. Expl. Geophys, 2005
    [16] Masaferro J L, Bulnes M,Poblet J and Casson N. Kinematic evolution and fracture prediction of the Valle Morado structure inferred from 3-D seismic data, Salta province, northwest Argentina. AAPG Bulletin, 2003,87, 1083-1104
    [17] Blummentritt C H, Marfurt K J and Sullivan E C. Volume based curvature computations illuminate fracture orientations– Early to mid Paleozoic, Central Basin Platform, West Texas. Geophysics,2006,71(5):159-166
    [18] Susan E Nissen, Timothy R Carr and Kurt J Marfurt.Using New 3-D Seismic Attributes to Identify Subtle Fracture Trends in Mid-Continent Mississippian Carbonate Reservoirs: Dickman Field, Kansas, AAPG Annual Convention, Calgary, Alberta, June 19-22, 2005
    [19] Susan E Nissen, Timothy R Carr, Kurt J Marfurt,et al. Using 3-D seismic volumetric curvature attributes to identify fracture trends in a depleted Mississippian carbonate reservoir: Implications for assessing candidates for CO2 sequestration,2007
    [20]刘雯林.油气田开发地震技术.北京:石油工业出版社,1996
    [21]马在田.关于油气开发地震学的思考.油气地球物理,2004,2(2):1-5
    [22]李栋明,刘群星.地震技术在油气田开发中的应用.内蒙古石油化工,2008,4:97-99
    [23]肖玉茹,孙义梅,何峰煜.地震方法技术在油气勘探开发中的应用与挑战.勘探地球物理进展,2003,26(2):143-147
    [24]唐建仁.高分辨率三维地震技术在油田开发中的应用.石油物探,2000,39 (1) :50-56
    [25]凌云.地震数据采集、处理、解释一体化实践与探索.北京:石油工业出版社,2007
    [26]韩喜.油田地震地质综合研究方法:[博士学位论文].北京:中国地质大学(北京)2007
    [27]杜世通.地震属性分析.油气地球物理,2004,2(4):19-30
    [28]陈冬.地震多属性分析及其在储层预测中的应用研究:[博士论文].北京:中国地质大学(北京),2008
    [29]周波,梁文发,彭长水.丘陵油田开发形势分析及下步技术对策研究.吐哈油气,1996,2(2):31-41
    [30]张明山,张进学,于拥军,等.吐哈盆地地质结构和油气聚集规律的新认识.新疆石油地质,2002,23(3):189-192
    [31]刘日强.吐哈低渗透油田中含水期开发技术对策.吐哈油气,2000,5(1):26-31
    [32]朱玉双,孙卫,梁晓伟,等.丘陵油田陵二西区三间房组油藏注水开发动态特征.石油勘探与开发,2004,31(4):116-118
    [33]杨立恒,叶立香,苏放文.利用井网加密调整改善低渗透油田开发效果.吐哈油气,2003,8(4):335-336
    [34]北京华油鼎力科技发展有限公司.丘陵油田精细技术及调整对策研究.2006
    [35]曾凡刚,吴朝东,等.吐一哈盆地天然气成因类型探讨.石油与天然气地质,1998,19(2):162-164
    [36] Partyka G, Gridley J, Lopez J. Interpretational applications of spectral decomposition in reservoir characterization.The Leadinn Edge, 1999, 18(3): 353-360
    [37] Partyka G A and Gridley J M. Interpretational Aspects of Spectral Decomposition, Abstract.Istanbul '97 International Geophysical Conference and Exposition, July 7-10, 1997
    [38]马海珍,等.地震速度场建立与变速构造成图的一种方法.石油地球物理勘探, 2002, 37(1):53 - 55
    [39]王树华等.变速成图方法及应用研究.中国海洋大学学报,2004 ,34(1) :139 - 146
    [40]倪逸.地震反演技术调研.内部报告,2001
    [41] W L Soroha. Impedance inversion in a structurally complex carbonate enviroment Abu Dhabi UAE case study. SEG, 2003
    [42] Germán Merletti.Geostatistical inversion for the lateral delineation of thin-layer hydrocar- bon reservoirs: A case study in San Jorge basin, Argentina.The Leading Edge,1999,18(9)
    [43]杜世通.地震识别技术与描述超薄层的潜力与局限.石油地球物理勘探,2005,40(6):652-662
    [44]林畅松等.高精度层序地层学与储层预测.地学前缘,2000,l7(3)
    [45]李晓慈.应用地震模型方法开展储集层预测.新疆石油地质,1996,17(4)
    [46]熊翥.地球物理勘探技术发展及前缘基础理论研究.内部报告,2001
    [47]聂凯轩等.地震测井资料综合储层预测方法概述.石油地球物理勘探,1997,32(增刊1)
    [48]张延庆.鄂尔多斯盆地塔巴庙地区低孔渗砂岩中优质储层预测技术研究:[博士论文].北京:中国地质大学(北京),2008
    [49]程遵德等.地震储层预测方法研究进展.地球物理学进展,1997,12(4)
    [50] Mitra P P ,Joshi T R. Real time geosteering of high tech well in virtual reality and predic- tion ahead of drill bit for cost optimization and risk Reduction in mumbai High L- III reservoir. Perth ,Australia∶SPE Asia Pacific Oil and Gas Conference and Exhibition, 2004
    [51]刘兵,刘怀山,姜绍辉.虚拟现实技术在石油勘探开发中的应用.西北地质, 2004, 37 (40):108-112
    [52]张进铎.地震解释技术现状及发展趋势.地球物理学进展,2006,21(2):578-587
    [53]赵改善.勘探开发中虚拟现实技术的应用与展望.勘探地球物理进展, 2002, 25(4):9-20
    [54]赵庆国,赵华,湛林福,等.虚拟现实技术在石油勘探中的应用.石油大学学报(自然科学版),2005 ,29(1)∶31– 33
    [55]陶彬,马艳艳,胡艳浩,等.小断层研究在油田开发中的应用.内蒙古石油化工,2003,29(1):160-161
    [56] Mor1et J, Arens G, Fourneau E, eL al.Wave propagation and sampling theory一Part II: Sampling theory and complex waves.Geophysics, 1982, 47(2):222- 236
    [57] Partyka G A, Gridley J M and Lopez J. Interpretational applications of spectral decomposi- tion in reservoir characterization.The Leading Edge, 1999, 18(3):353-360
    [58] Partyka, G., Bottjer, R. and Peyton, L., 1998, Interpretation of incised valleys using new 3-D seismic techniques: A case history using spectral decomposition and coherency:The Leading Edge, 1294-1298.
    [59] Partyka G. Seismic thickness estimation: three approaches, pros and cons. 71st Annual International Meeting of the Society of Exploration Geophysicists, Expanded Abstracts, 2001,503-506
    [60] Kurt Marfurt. Seismic Attribute Mapping of Structure and Stratigraphy.SEG Distinguished Instructor Short Course,2006
    [61] Burnett M D, CasLanna J P et al. Application of spectral decomposition to gas basins in Mexico.The Leading Edge, 2003, 22( 11):1130-1134
    [62] Castagna J P, Sun Shengjie, et al. Instantaneous spectral analysis: Detection of low- frequency shadow associated with hydrocarbons.The Leading Edge, 2003, 22(2): 120-127
    [63]袁志云.频谱分解技术在储层预测中的应用.石油地球物理勘探,2006,41(增刊):11-15
    [64]李劲松.谱分解技术在岩性油气藏描述中的应用.江汉石油学报, 2008, 30(2): 239- 241
    [65]张亚中,赵裕辉,鲁新便,等.频谱分解技术在塔里木盆地北部TH地区碳酸盐岩缝洞型储层预测中的应用.石油地球物理勘探.2006, 41(增刊):16- 20, 24
    [66] Wei Xiaodong,Zhang Yanqing,Zhang Yazhong, et al.The gradient of the amplitude spectrum of seismic data and its application in reservoir prediction.79th SEG Annual Meeting (Houston),2009
    [67] Widess M B. How Thin is a thin bed? Geophysics, 1973, 38:1176-1180
    [68]黄绪德.薄层陷频法.勘探地球物理进展,2002,25(5):193-196
    [69] Geomodeling用户手册.2008_VVA频谱分解,2008
    [70] An P. Application of multi-wavelet seismic trace decomposition and reconstruction to seismic data interpretation and reservoir characterization. 76th Annual International Meeting, SEG, Expanded Abstracts, , 2006,973-976
    [71] An P. Case studies on stratigraphic interpretation and sand mapping using volume-based seismic waveform decomposition.76th Annual International Meeting, SEG, Expanded Abstracts, 2006b ,496-498
    [72] An P. Case studies on oil and water wells separation and gas sand prediction in a coal formation using wavelet selection and volume-based seismic waveform decomposition.78th Annual International Meeting, SEG, Expanded Abstracts, 2008
    [73] GeoCyber用户手册. GeoCyber多子波地震解释及综合油藏描述系统,2006
    [74]杜世通.地震分界面频率属性分析.油气地球物理,2004,2(4):39-48
    [75] Liu J and K J Marfurt. Multicolor display of spectral attributes: 76th Annual International Meeting, SEG, Expanded Abstracts, 2006,1098-1102
    [76]郑剑东.阿尔金断裂与大陆走滑断裂.内陆地震,1988,2(2):123-130
    [77]童崇光.新疆构造演化与吐哈盆地油气地质特征.成都理工学院学报,1999,26(1):8-13
    [78]李明杰,郑孟林,曹春潮.阿尔金断裂带两侧含油气盆地特征类比与油气勘探. CPS/SEG2004国际地球物理会议论文集, 2004
    [79]范秋海,等.走滑构造与油气成藏.西南石油大学学报,2008,30(6):76-79
    [80]蔡希源等.中国油气区反转构造.北京:石油工业出版社,2001
    [81]夏义平,等.走滑断层的识别标志及其石油地质意义.中国石油勘探,2007,12(1):17-48
    [82]戴俊生等.油区构造分析.北京:石油工业出版社,2003
    [83] Kennedy W Q. The Great Glen Fault. Geol Soc London Quarterly Journal. 1946,102: 47-76
    [84] Moody J D,Hill M J. Wrench-fault tectonics. Geol Soc Am Bull.,1956,67: 1207-1246
    [85] Wilcox R E, Harding T P, Seely D R. Basic wrench tectonics. Am Assoc Petro Geol Bull.,1973, 57: 74-96
    [86] Freund R. Kinematics of transform and transcurrent faults. Tectonophysics, 1974,21:93-134
    [87] Taira A,Saito Y,Hashimoto M. The role of oblique subduction and strike-slip tectonics in the evolution of Japan. In Geodmamic of the.Western Pacific-Indonesian Region, Geodynamics Series. Washington D C: Am Geophys Union,1983, 11,303-317
    [88] Woodcock N H. The role of strike-slip fault systems at plate boundaries. Royal Society oI London Philosophical Transactions. Ser A. 1986,317: 13-29
    [89] Sylvester A G. Wrench fault tectonics. Am Assoc Petro Geol (Reprint Series),1984
    [90] Sylvester A G. Strike-slip faults. Soc Am Bull. 1988,100: 1666-1703
    [91]李四光.旋扭构造.北京:科学出版社,1974
    [92]徐嘉炜.论走滑断层作用的几个主要问题.地学前缘,1995,2(2):126-136
    [93]刘和甫,梁慧社,蔡立国,等.天山两侧前陆冲断系构造样式与前陆盆地演化.地球科学,1994, 19 (6):727 -741
    [94]刘和甫,夏义平,殷进垠,等.走滑造山带与盆地耦合机制.地学前缘,1999, 6 (3):121 -132
    [95]万天丰.郯庐断裂带的演化与古应力场.地球科学,1995, 20(5):526 -534
    [96]许志琴,曾令森,杨经绥,等.走滑断裂、“挤压性盆—山构造”与油气资源关系的探讨.地球科学,2004,29( 6): 631-643
    [97]任收麦,葛肖红,刘水江,等.晚白垩世以来沿阿尔金断裂带的阶段性走滑降升.地质通报,2004,23(9/10):926-932
    [98]袁秉衡.介绍扭动构造.石油物探专业委员会教材,2005
    [99]漆家福.走滑构造与富油凹陷的勘探实例.石油物探专业委员会教材,2006
    [100] Groshong R H and Usdansky S I. Kinematic models of plane-roofed duplex styles: Geological Society of America Special Paper 222, 1988,197-206
    [101]李海亮,等.层位标定方法的研究和应用.中国西部油气地质,2005,1(1):114-116
    [102]王克宁.地震记录极性和层位标定研究田.石油地球物理勘探,1992,26( 1):130-139
    [103]陆基孟.地震勘探原理.山东东营:石油大学出版社,1993
    [104]雷卫兵,曹坚明,查树贵.变速成图技术在二连盆地赛汉塔拉凹陷低幅度构造解释中应用.内蒙古石油化工,2005,10,91-94
    [105]李庆忠.论地震约束反演的策略.石油地球物理勘探,1998,33(4): 434-438
    [106]彭传圣,常国贞.试论地震约束反演的不适定性.油气地质与采收率,2002,9(2):88-90
    [108]张生,许永忠,喇果彦,杨超.测井约束三维地震资料波阻抗反演在煤田勘探中应用,能源技术与管理,2009(4):12-14
    [109]赵强绩,韩行吉,燕汉业.小波波阻抗反演.大庆石油地质与开发, 1999, 18(1): 44-47
    [110]王西文,刘全新,赵应成.小波域的波阻抗反演方法. 2000, 35(1): 89-96
    [111]杨立强,等.基于BP神经网络的波阻抗反演及应用.地球物理学进展,2005,20(1): 34-37
    [112]李智超,赵正文,钟仪华等.小波神经网络在油田产量预测中的应用.大庆石油地质与开发,2008,27(6): 52-54
    [113]张红英,吴斌.小波神经网络的研究及其展望.西南工学院学报,2002, 17(1): 8-10
    [114]李建丽,钟仪华,刘道杰,李智超.小波神经网络的油田开发动态指标预测方法.天然气勘探与开发, 2008,9 62-66
    [115]耿喜哲,刘天佑,丁艳红,涂阳发.小波神经网络在重磁资料反演中的应用前景.物探与化探,2001,25(2): 102-108.
    [116]陈学华,贺振华,黄德济.时频域高分辨地震层序识别.吉林大学学报(地球科学版), 2008, 38(1): 152-155
    [117]李汉林,赵永军.岩性识别的多元统计方法.地质论评,1998, 44(1):106-112
    [118] R O Duda, P E Hart and D G. Stork. Pattern Classification. 2nd ed. New York: Wiley, 2002
    [119] P Bois. Some Applications of Pattern Recognition to Oil And Gas Exploration. IEEE Trans. Geoscience and Remote Sensing, 1983, GE-21(4), 416-426
    [120] Artificial Intelligence and Signal Processing in Underwater Acoustics and Geophysics Problems.Montreal, Quebec, Canada. Pattern Recognition, 1985, 18(6)
    [121]阎平凡,高林,徐雷.由地震记录辅助推断沉积相-模式识别在地震勘探中应用的探讨.清华大学学报(自然科学版),1987, 27(1): 77-86
    [122]王淑盛,等.改进的K近邻方法在岩性识别中的应用.地球物理学进展,2004,19(2):478-480
    [123]邹玮,张锐,宋晓麟.利用逐步多元回归分析的孔隙度预测.内蒙古石油化工, 2006,11:139-142
    [124]李操,王继春.神经网络方法在储层孔隙度预测中的应用.内蒙古石油化工, 2007,12:372-376
    [125]程建国,周冠武,王潇潇.概率神经网络方法在岩性识别中的应用.微计算机信息(测控自动化), 2007,23(1): 11-15
    [126] Nello Cristianini and John Shawe-Taylor.An Introduction to Support Vector machines, Cambridge, UK: Cambridge University Press, 2000
    [127] C J C Burges.A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2(2), 1998
    [128]阎辉,张学工,李衍达.应用SVM方法进行沉积微相识别.物探化探计算技术,2000, 22(2),158-164
    [129] Guyon J, Matic N and Vapnik V N. Discovering Information Patterns and Data Cleaning. Cambridge, MA: MIT Press, 1996,181-203
    [130] Takuya Inoue and Shigeo Abe. Fuzzy support vector machines for pattern classification. Proceedings of Int. Joint Conf. on Neural Networks, IJCNN’01, 2001,2:1449-1454

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700