用户名: 密码: 验证码:
鄂尔多斯盆地西缘构造演化与砂岩型铀矿成矿作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鄂尔多斯盆地西缘褶冲带是我国北方东部构造和西部构造的转化带,研究其构造演化对了解我国北方构造体系转化,总结该区铀成矿规律,客观评价其铀成矿潜力具有重要意义。因此,本文以地球动力学和水成铀矿理论为指导,采用构造解析、同位素年代学和同位素地球化学的方法与技术,在全面分析前人工作的基础上系统研究了盆地西缘构造演化及其对铀成矿的控制作用。
     盆地西缘物源区碎屑锆石U-Pb测年和Lu-Hf同位素测试结果表明,3.5Ga时物源区就发生了壳幔分离形成了古陆核,后经2.6~2.7Ga和0.8~1.1Ga两次大规模的地壳增生以及吕梁、海西等多期岩浆活动的改造,地壳的成熟度较高,中酸性火山岩、碱性花岗岩等富铀岩石发育,向盆地内提供了充足的铀源。
     中-新生代,周边板块离散-汇聚作用以及构造应力场的转化控制了盆地西缘7阶段演化模式。燕山期南北向构造带与喜山期六盘山弧形构造带的斜交叠加造成了盆地西缘南、北两段的显著差异。晚三叠世(扇)三角洲砂体和中侏罗世低可容纳空间下的辫状河砂体空间展布稳定,岩石中富含有机质和黄铁矿,有利于砂岩型铀矿的形成,但强烈的构造变形降低了砂体的产铀潜力;早白垩世挤压背景下的辫状河砂体具有一定的规模,构造变形较弱,有利于地下水的渗入成矿。
     盆地西缘发育3种类型的铀矿化:层间氧化带型铀矿化品位高、规模大,主要产于直罗组下段(J2zh1)和马东山组(K1m)中,后生蚀变分带明显。铀矿化受构造、砂体、地下水渗入作用及后生蚀变控制,铀的沉淀、富集与氧化带前锋碱性-还原综合地球化学障有关;潜水氧化带型铀矿化品位低、规模小,受局部还原环境的控制;沉积成岩叠加后期改造型铀矿化品位低、厚度变化大,铀矿化主要受岩性岩相控制,后期淋滤改造使铀矿化进一步富集。
     构造是盆地西缘最主要的控矿因素,不但控制了蚀源区铀源岩的形成和出露,而且控制了盆地内找矿目标层的发育和变形。砂体、构造斜坡带和排泄构造的发育特征以及构造抬升作用控制了地下水的渗入与成矿作用。根据矿化特征和控矿因素分别建立了CYB、GJW和BTJ 3个不同类型的铀矿床(化)的成矿模式,并据其进行了铀矿资源评价与预测,圈定了4片成矿远景区。
The thrust-fold belt at the western margin of Ordos Basin is the tectonic transformation belt between eastern and west structures of Northern China. It is of important significance for understanding the structural evolution of Ordos Basin and the tectonic transformation of the North of China, for summarizing uranium metallogenic regularity and evaluating the potentials of uranium metallogenesis. Thus, guided by geodynamics theory and the theory of hydrogenic uranium metallogenesis, this paper undertakes a comprehensive and systematic research on the tectonic evolution of the western margin of Ordos Basin and its control over uranium mineralization applying the approaches of tectonic analysis, isotope geochronology and geochemistry.
     According to the U-Pb dating and Lu-Hf isotope analytic results of detrital zircons from the provenance at the western margin of Ordos Basin, it is concluded that the paleo-continental nucleus was formed upon the crust-mantle differentiation in the provenance at 3.5Ga. After two-time considerable crustal accretion during 2.7~2.6Ga and 1.1~0.8Ga, as well as the reformation by the Lvliangian and Hercynian magmatic activities, the crust became higher in maturity and was abundant in uranium-rich intermediate-acidic volcanics and alkaline granites, which would supply the Basin with sufficient uranium sources.
     During Mesozoic and Cenozoic, divergence-convergence processes of the surrounding plates and the conversion of tectonic stress field resulted in 7-phase tectonic evolution of the western margin of the Basin. The oblique crossing superimposition of Yanshanian Meridional Tectonic Belt by Himalayan Liupanshan Arc-shaped Tectonic Belt led to the remarkable differences between the southern and northern sections of the western margin of Ordos Basin. Late Triassic fan delta sand bodies and Middle Jurassic braided stream sand bodies in lower accommodation space are stably distributed and enriched in organic substances and pyrites, which are favorable for the sandstone uranium mineralization. The intense structural deformation, however could reduce the uranium metallogenic potential of sand bodies. Early Cretaceous braided stream sand bodies formed under the compressive regime are of certain size and benificial to the infiltration of groundwater and uranium ore formation.
     There are three types of uranium mineralization at the western margin of the Basin: (1) Interlayer Oxidation Zone Uranium Mineralization: higher in grade and larger in size, occurring in the lower member of Zhiluo Formation (J2zh) and Madongshan Formation (K1m), of which the epigenetic alteration zoning is expressed obviously. Precipitation of uranium is associated with the alkalic-reducing geochemical barrier at the redox front. (2) Phreatic Oxidation Zone Uranium Mineralization: lower in grade and smaller in size, controlled by local reducing environment. (3) Sedimentary Diagenetic Superimposed Reformation Uranium Mineralization: also lower in grade with variable thickness, controlled by lithologies and lithofacies and may be further concentrated by epigenetic infiltration and reworking.
     Structures are the most predominant ore control factors. Not only the development and the outcroping of uranium source rocks in the provenance, but also the upgrowth and deformation of prospective target layers are controlled by tectogenetic movements. Infiltration of ground water and uranium metallogenesis are constrained by the characteristics of sand bodies, the structural slopes and the discharge structures. According to the mineralization features and ore-controlling factors, three type of uranium metallogenic models, i.e. CYB, GJW and BTJ, are established by the author. The uranium potentials are also evaluated and prognosis. Four prospective areas are have been outlined for further mineral exploration.
引文
Andersen T. Correction of common lead in U-Pb analyses that do not report 204Pb[J]. Chemical Geology, 2002,192(1-2):59~79.
    Bea F., Montero P. Behavior of accessory phases and redistribution of Zr, REE, Y, Th, and U during metamorphism and partial melting of metapelites in the lower crust: An example from the Kinzigite Formation of Ivrea-Verbano, NW Italy[J]. Geochimica et Cosmochimica Acta, 1999,63 (7-8): 1133~1153.
    Belousova E., Griffin W., O'Reilly S. Y., et al. Igneous zircon: trace element composition as an indicator of source rock type[J]. Contributions to Mineralogy and Petrology, 2002,143(5): 602~622.
    Blichert-Toft J., Albarède F. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system[J]. Earth and Planetary Science Letters, 1997,148(1-2):243~258.
    Bodet F., Sch Rer U. Evolution of the SE-Asian continent from U-Pb and Hf isotopes in single grains of zircon and baddeleyite from large rivers[J]. Geochimica et Cosmochimica Acta, 2000,64(12):2067~2091.
    Bolhar R., Weaver S. D., Whitehouse M. J., et al. Sources and evolution of arc magmas inferred from coupled O and Hf isotope systematics of plutonic zircons from the Cretaceous Separation Point Suite (New Zealand)[J]. Earth and Planetary Science Letters, 2008,268 (3-4): 312~324.
    Darby B. J., Ritts B. D. Mesozoic contractional deformation in the middle of the Asian tectonic collage: the intraplate Western Ordos fold-thrust belt, China[J]. Earth and Planetary Science Letters, 2002,205(1-2):13~24.
    J. FergusonIn. The uraniunm cycle. In Recognition of Uranium Provinces[C],International Atomic Ernergy Agency, Vienna, 1988. 3~15.
    Guo J.F. , O'Reilly S. Y., Griffin W. L. Zircon inclusions in corundum megacrysts: I. Trace element geochemistry and clues to the origin of corundum megacrysts in alkali basalts[J]. Geo- chimica et cosmochimica acta, 1996,60(13):2347~2363.
    Heller p.L. Angevine C.L. Winslow N.S. et al. Two-phase stratigrafic mode of foreland-basin sequences[J]. Geology, 1998,16:501~504.
    Hoskin PWO. Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia[J]. Geochimica et Cosmochimica Acta, 2005,69(3): 637~648.
    Kamber B. S., Whitehouse M. J., Bolhar R., et al. Volcanic resurfacing and the early terrestrial crust: Zircon U-Pb and REE constraints from the Isua Greenstone Belt, southern West Greenland[J]. Earth and Planetary Science Letters, 2005,240(2):276~290.
    Li J. W., Zhou M. F., Li X. F., et al. Origin of a large breccia-vein system in the Sanerlin uranium deposit, southern China: a reinterpretation[J]. Mineralium Deposita, 2002,37(2):213~225.
    Liu S.F. The coupling mechanism of basin and orogen in the western Ordos Basin and adjacent regions of China[J]. Journal of Asian Earth Sciences, 1998,16(4):369~383.
    R Ludwig K. ISOPLOT 3.0-A geochronological toolkit for Microsoft Excel[J]. Berkeley Geo- chronology Center Special Publication, 2003(4):70.
    Ritts B. D., Hanson A. D., Darby B. J., et al. Sedimentary record of Triassic intraplate extension in North China: evidence from the nonmarine NW Ordos Basin, Helan Shan and Zhuozi Shan [J]. Tectonophysics, 2004,386(3-4):177~202.
    Scherer E., Munker C., Mezger K. Calibration of the lutetium-hafnium clock[J]. Science, 2001, 293 (5530):683.
    Sláma J., Ko Ler J., Condon D. J., et al. Ple ovice zircon——A new natural reference material for U-Pb and Hf isotopic microanalysis[J]. Chemical geology, 2008,249(1-2):1~35.
    Sutherland F. L., Bosshart G., Fanning C. M., et al. Sapphire crystallization, age and origin, Ban Huai Sai, Laos: age based on zircon inclusions[J]. Journal of Asian Earth Sciences, 2002,20 (7):841~ 849.
    Taylor S. R., McLennan S. M. The continental crust: its composition and evolution[J]. New York: Oxford, 1985.
    Whitehouse M. J., Kamber B. S. A rare earth element study of complex zircons from early Archaean Amitsoq gneisses, Godthabsfjord, south-west Greenland[J]. Precambrian Research, 2003,126(3):363~377.
    Wu F. Y., Yang J. H., Wilde S. A., et al. Detrital zircon U-Pb and Hf isotopic constraints on the crustal evolution of North Korea[J]. Precambrian Research, 2007,159(3-4):155~177.
    Xia X.P., Sun M., Zhao G., et al. Spot zircon U-Pb isotope analysis by ICP-MS coupled witha frequency quintupled (213 nm) Nd-YAG laser system[J]. GEOCHEMICAL J., 2004,38(2): 191~200.
    Xia X.P., Sun M., Zhao G., et al. U-Pb and Hf isotopic study of detrital zircons from the Wulashan khondalites: Constraints on the evolution of the Ordos Terrane, Western Block of the North China Craton[J]. Earth and Planetary Science Letters, 2006,241(3-4):581~593.
    Yang J. H., Chung S. L., Wilde S. A., et al.“Petrogenesis of post-orogenic syenites in the Sulu Orogenic Belt, east China: Geochronological, geochemical and Nd–Sr isotopic evidence”–Reply[J]. Chemical Geology, 2006,235(1-2):186~190.
    Yang J. H., Wu F. Y., Shao J. A., et al. Constraints on the timing of uplift of the Yanshan Fold and Thrust Belt, North China[J]. Earth and Planetary Science Letters, 2006,246(3-4): 336~352.
    Yuan H.L. , Gao S., Liu X., et al. Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma-mass spectrometry[J]. Geostandards and geo- analytical Research, 2007,28(3):353~370.
    Zheng J., Griffin W. L., O Reilly S. Y., et al. U-Pb and Hf-isotope analysis of zircons in mafic xenoliths from Fuxian kimberlites: evolution of the lower crust beneath the North China Craton[J]. Contributions to Mineralogy and Petrology, 2004,148(1):79~103.
    白云来,王新民,刘化清,等.鄂尔多斯盆地西部边界的确定及其地球动力学背景[J].地质学报,2006,80(6):792~813.
    陈发景,孙家振,张光亚,等.鄂尔多斯盆地西缘北段褶皱-逆冲断层带构造特征及含油气远景[R].地质矿产部第三石油普查大队,1987.
    陈发景,汪新文.中国西北地区早-中侏罗世盆地原型分析[J].地学前缘,2000,7(4)459~469.
    陈刚.中生代鄂尔多斯盆地陆源碎屑成分及其构造属性[J].沉积学报,1999,17(003):409~413.
    陈克仁,董德杨,吴吉元.鄂尔多斯盆地北部西缘中日合作参数井完井地质报告[R].地质矿产部第三石油普查勘探大队,1988,4~40.
    陈祖伊,郭庆银.砂岩型铀矿床层间氧化带前锋区稀有元素富集机理[J].铀矿地质, 2010,26(1): 1~8.
    陈祖伊,郭庆银.砂岩型铀矿床硫化物还原富集铀的机制[J].铀矿地质, 2007,23(6):321~327.
    陈祖伊,郭庆银,刘红旭,等.北山-走廊地区铀资源勘查规划部署研究[R].核工业北京地质研究院,2004,1~124.
    陈祖伊,郭华,刘红旭,等.中央亚洲活动带多岛海地质演化与砂岩型铀矿时刻定位模式[R].核工业北京地质研究院,2006,1~27.
    程守田,李思田,黄焱球.风成沉积体系——鄂尔多斯盆地下白垩统风成沉积与内陆古沙漠环境[C].李思田,主编.武汉:中国地质大学出版社,1996,138~147.
    程守田,刘星.风成古沙漠沉积体系[J].地学前缘, 1999,6(80):80.
    程守田,刘星.古沙漠沉积及其层序单元——以鄂尔多斯白垩纪内陆古沙漠盆地为例[J].地球科学:中国地质大学学报, 2000,25(6):587~591.
    程裕淇.中国区域地质概论[M].北京:地质出版社,1994,90~164.
    方锡珩,彭云彪,焦养泉,等.鄂尔多斯盆地西部铀成矿规律研究[R].核工业北京地质研究院等,2007,224~281.
    甘克文.论掩冲带的成因机制和鄂尔多斯盆地西缘变动带的油气前景[C].见:杨俊杰, 主编.兰州:甘肃科学技术出版社,1990,15~29.
    甘肃省地质矿产局.甘肃省区域地质志[M].北京:地质出版社,1989,224~289.
    高峰,王岳军.利用磷灰石裂变径迹研究鄂尔多斯盆地西缘热历史[J].大地构造与成矿学,2000,24(1):87~91.
    高山林,杨华.鄂尔多斯盆地燕山运动及其与油气关系[J].长春科技大学学报,2000,30(4): 353~358.
    高山林.鄂尔多斯盆地西缘中生代构造与地层分析及盆地演化研究[博士学位论文].中国科学院地质与地球物理研究所,2001.
    郭庆银,李子颖,杨圣彬,等.鄂尔多斯盆地西北部白垩系沉积特征[J].铀矿地质,2006,22(3):143~150.
    郭庆银,陈祖伊,刘红旭,等.北山-走廊地区中-新生代构造演化及盆地产铀远景评价[J].铀矿地质,2006,22(6):321~327,335.
    郭庆银,李子颖,戚大能,等.鄂尔多斯盆地西北部地浸砂岩型铀矿评价技术及应用研究[R].核工业北京地质研究院,2006.
    郭忠铭,王定一,汤锡元.陕甘宁盆地西部逆冲推覆带构造特征及油气勘探[R].长庆石油勘探局勘探开发研究院、西北大学地质系,1986.
    郭忠铭,张军.鄂尔多期地块油区构造演化特征[J].石油勘探与开发,1994,21(2):22~29.
    何自新,杨华,袁效奇.鄂尔多斯盆地地质剖面[M].北京:石油工业出版社,2004.
    何自新.鄂尔多斯盆地演化与油气[M].北京:石油工业出版社,2003,3~143.
    核工业208大队.鄂尔多斯盆地北部1:50万砂岩型铀矿成矿条件研究及编图[R].核工业208大队,2002.
    核工业203研究所.陕甘宁盆地北部下白垩统层间氧化带型铀矿成矿远景及地浸条件研[R].核工业203研究所.1996.
    核工业203研究所.陕甘宁盆地北部铀矿遥感地质调查[R].核工业203研究所,1997.
    核工业203研究所.陕甘宁盆地铀资源评价[R].核工业203研究所,1993.
    胡霭琴,韦刚健,邓文峰,等.天山东段1.4 Ga花岗闪长质片麻岩SHRIMP锆石U-Pb 年龄及其地质意义[J].地球化学,2006,35(4):333~345.
    胡霭琴,张国新.天山造山带基底时代和地壳增生的Nd同位素制约[J].中国科学: D 辑,1999,29(2):104~112.
    解国爱,肖文霞.鄂尔多斯盆地西南缘断层相关褶皱与油气圈闭构造[J].高校地质学报, 2001,7(3):272~277.
    李斌,孟自芳,夏斌,等.鄂尔多斯盆地西缘构造演化特征[J]西北油气勘探,2006,18(4):29~34.
    李长民.锆石成因矿物学与锆石微区定年综述[J].地质调查与研究,2009,32(3):161~174.
    李克勤.中国石油地质志(Vol.12)[M].北京:石油工业出版社,1989.
    李思田.鄂尔多斯盆地东北部层序地层及沉积体系分析[M].北京:石油工业出版社,1992.
    李天斌.鄂尔多斯盆地西缘逆冲推覆构造特征及演化[博士学位论文].北京:中国地质大学(北京),2006.
    李廷栋.中国构造运动期序和构造发展阶段[J].地质通报,1982(1):13~25.
    李孝泽,董光荣,靳鹤龄,等.鄂尔多斯白垩系沙丘岩的发现[J].科学通报,1999,44(8):874~ 877.
    李云龙等.鄂尔多斯盆地北部白垩系专题研究总结报告[R].地质矿产部第三石油普查勘探大队,1979.
    刘池洋,吴柏林,赵俊峰,等.鄂尔多斯盆地中新生代沉积体系及构造演化研究[R].西北大学含油气盆地研究所,2005.
    刘池洋,赵红格,王锋,等.鄂尔多斯盆地西缘(部)中生代构造属性[J].地质学报, 2005,79(6):737~747.
    刘池洋.盆地多种能源矿产共存富集成藏(矿)研究进展[M].科学出版社:北京, 2005.
    刘和甫,李晓清,刘立群,等.盆山耦合与前陆盆地成藏区带分析[J].现代地质, 2004,18(4): 389~403.
    刘和甫,陆新文,王玉新.鄂尔多斯西缘冲断褶皱带形成与形变[C].见:杨俊杰主编. 兰州:甘肃科学技术出版社,1990,54~75.
    刘化清,白云来,王宏波,等.鄂尔多斯中生代盆地演化及勘探潜力评价[R],中石油勘探开发研究院鄂尔多斯分院、西北分院,2004.
    刘少峰,杨士恭.鄂尔多斯盆地西缘南北差异及其形成机制[J].地质科学,1997,32(3):397~ 408.
    刘显凡,卢秋霞.锆石形态标型特征及标型生长机制探讨[J].岩石矿物学杂志,1997,16(2): 179~184.
    刘星,程守田,郭秀蓉.陆相干旱盆地充填的沙漠层序:以鄂尔多斯盆地白垩系为例[J]. 西北地质,2000,33(1):50~55.
    刘训.中国西北盆山地区中-新生代古地理及地壳构造演化[J].古地理学报,2004,6(4):448~ 458.
    刘英俊,曹励明,李兆麟,等.元素地球化学[M].北京:科学出版社,1984. 50~58,125~276.
    刘正宏,徐仲元,杨振升,等.鄂尔多斯北缘石合拉沟逆冲推覆构造的发现及意义[J].地质调查与研究,2004,27(1):24~27.
    刘正宏,徐仲元,杨振升.内蒙古大青山逆冲推覆体系中生代逆冲构造活动的40Ar-39Ar定年[J].科学通报,2003,48(20):2193~2197.
    刘志武,周立发,白斌,等.鄂尔多斯盆地西南缘印支期沉积特征及物源[J].西北大学学报:自然科学版,2006,36(2):270~274.
    李子颖,陈祖伊,郭庆银,等.赴俄罗斯铀矿地质考察培训总结报告[R].核工业北京地质研究院2006,7~42.
    内蒙古地矿局.中华人民共和国1:20万区域地质调查报告(磴口幅)[Z]. 1980.
    内蒙古自治区地质矿产局.内蒙古自治区区域地质志[M].北京:地质出版社,1991.
    宁夏地质局区域地质调查队.中华人民共和国1:20万区域地质调查报告(石咀山市幅).贺兰[Z]. 1982.
    宁夏地质局区域地质调查队.中华人民共和国1:20万区域地质调查报告(乌海市幅).贺兰[Z]. 1980.
    宁夏地质局区域地质调查队.中华人民共和国吉兰泰幅(J-48-4)1/20万区域地质调查报告[Z]. 1976.
    宁夏地质矿产局矿产地质调查所.宁夏回族自治区煤炭资源远景调查汇总报告[R].宁夏地质矿产局矿产地质调查所,1989.
    宁夏地质矿产局区域地质调查队.中华人民共和国1:20万区域地质调查报告(吴忠幅)[Z]. 1983.
    宁夏地质矿产局区域地质调查队.中华人民共和国1:20万区域地质调查报告(银川市幅)[Z]. 1983.
    宁夏地质矿产局区域地质调查队.中华人民共和国1:20万区域地质调查报告(中卫幅)[Z]. 1983.
    宁夏地质矿产局区域地质调查队.中华人民共和国1:20万区域地质调查报告(宗别立幅)[Z]. 1983.
    宁夏回族自治区地质矿产局.宁夏回族自治区区域地质志[M].北京:地质出版社, 1991,1~ 443.
    宁夏煤炭工业地质勘探队.宁夏回族自治区灵武煤田碎石井勘探区磁窑堡井田地质勘探精查补充报告[R].宁夏煤炭工业地质勘探队,1981.
    宁夏煤炭工业地质勘探队.宁夏回族自治区灵武煤田鸳鸯湖矿区普查勘探报告[R].宁夏煤炭工业地质勘探队,1989.
    全国地层委员会.中国区域年代地层(地质年代)表说明书[M].北京:地质出版社, 2002.
    任战利,赵重远.鄂尔多斯盆地与沁水盆地中生代晚期地温场对比研究[J].沉积学报, 1997,15 (2):134~137.
    陕西省地质矿产局.陕西省区域地质志[M].北京:地质出版社,1989,1~140.
    宋志敏.阴极发光地质学基础[M].武汉:中国地质大学出版社,1993,82~99.
    苏世民.鄂尔多斯盆地西缘的两个不同类型的盆地[J].西安石油学院学报,1996,11(4):21~24.
    孙少华,李小明,龚革联,等.鄂尔多斯盆地构造热事件研究[J].科学通报,1997,42(3):306~ 309.
    孙圭,赵致和.中国北西部铀矿地质[R].核工业西北地质局,1998,305~318.
    汤锡元,郭忠铭,陈荷立,等.陕甘宁盆地西缘逆冲推覆构造及油气勘探[M].西安:西北大学出版社,1992.
    汤锡元,郭忠铭.鄂尔多斯盆地西缘地质构造演化特征[C].见:杨俊杰,主编.兰州:甘肃科学技术出版社,1990,77~90.
    田在艺.鄂尔多斯盆地西缘地质构造与油气前景[C].见:杨俊杰,主编.兰州:甘肃科学技术出版社,1990. 31~39.
    田在艺,张庆春.中国含油气沉积盆地论[M].北京:石油工业出版社,1996,210~222.
    万天丰.中国大地构造学纲要[M].北京:地质出版社,2003.
    汪泽成,王玉新.鄂尔多斯西缘马家滩滑脱型冲断构造[J].石油与天然气地质,1996,17(3): 221~225.
    王锋,刘池洋,赵红格,等.贺兰山盆地与鄂尔多斯盆地的关系[J].石油学报,2006,27(4): 15~17.
    王锋.贺兰山中段中生代构造环境分析[博士学位论文].西安:西北大学,2007.
    王奎仁.地球与宇宙成因矿物学[M].合肥:安徽教育出版社,1989,224~227.
    王濮,潘兆橹,翁玲宝,等.系统矿物学(中册)[M].北京:地质出版社,1984,169~193.
    王玉新.鄂尔多斯西缘中生代前陆盆地的形成与演化[A].见张功成主编:中国含油气盆地构造[C].石油工业出版社,1999,444~452.
    吴福元,李献华,郑永飞,等. Lu-Hf同位素体系及其岩石学应用[J].岩石学报,2007,23(2): 185~220.
    吴元保,郑永飞.锆石成因矿物学研究及其对U-Pb年龄解释的制约[J].科学通报, 2004,49(16):1589~1604.
    吴紫电.马家滩推覆体结构形态及周边构造关系[C].见:杨俊杰,主编.兰州:甘肃科学技术出版社, 1990, 106~121.
    徐平,吴福元,谢烈文,等. U-Pb同位素定年标准锆石的Hf同位素[J].科学通报, 2004,49 (14):1403~1410.
    杨俊杰,张伯荣.扭裂型地堑与伴生的冲断带—以银川地堑和横山堡冲断带为例[J].石油勘探与开发,1986,2:1~8.
    杨俊杰,张伯荣.陕甘宁盆地西缘掩冲构造带及其油气发现[R].长庆石油勘探局,1987.
    杨俊杰.鄂尔多斯盆地构造演化与油气分布规律[M].北京:石油工业出版社,2002.
    杨圣彬.鄂尔多斯盆地西缘逆冲推覆带构造特征及其运动学定量分析[硕士学位论文].北京大学,2006.
    杨兴科,刘池洋,杨永恒,等.热力构造的概念分类特征及其研究进展[J].地学前缘,2005,12(4)385~393.
    杨修伦,无吉元.内蒙古自治区鄂托克旗伊25井完井地质报告[R].地质矿产部华北石油局第三普查勘探大队,1991.
    张泓,白清昭.鄂尔多斯聚煤盆地的形成及构造环境[J].煤田地质与勘探,1995,23(3):1~9.
    张泓,何宗莲,晋香兰,等.鄂尔多斯盆地构造演化与成煤作用——1:500000鄂尔多斯煤盆地地质构造图简要说明[M].北京:地质出版社,2005.
    张泓.鄂尔多斯盆地中生代构造应力场[J].华北地质矿产杂质,1996,11(1):87~92.
    张慧,晋香兰,张泓,等.鄂尔多斯盆地西缘汝箕沟煤矿区的石英脉及其地质意义[J].地质学报,2006,80(5):768~774.
    张家声.造山后伸展构造研究的最新进展[J].地学前缘, 1995,2(1):67~84.
    张进,马宗晋,任文军.鄂尔多斯西缘逆冲褶皱带构造特征及其南北差异的形成机制[J].地质学报,2004,78(5):600~611.
    张进,任文军.鄂尔多斯盆地西缘逆冲带南北差异的形成机制[J].大地构造与成矿学, 2000,24(2):124~133.
    张进.陕甘宁地区古生代以来的构造及演化特征研究[博士学位论文].中国地震局地质研究所,2002.
    张进江,戚国伟,郭磊,等.内蒙古大青山逆冲推覆体系中生代逆冲构造活动的40Ar-39Ar定年.岩石学报,2009 25(3): 609-620.
    张抗.鄂尔多斯断块构造与资源[M].西安:陕西科学技术出版社,1989.
    张韬,简绍广,张天鹏.大型湖泊三角洲与聚煤作用——以鄂尔多斯盆地西缘中侏罗统延安组煤聚集规律[M].北京:地质出版社,1993.
    张义楷.鄂尔多斯盆地西缘中新生代构造体制转换与油气聚集[博士学位论文].西安: 西北大学,2007.
    赵红格.鄂尔多斯盆地西部构造特征及演化[博士学位论文].西安:西北大学,2003.
    赵孟为,Ahrendt Hans, Wemmer Klaus,等.鄂尔多斯盆地志留-泥盆纪和侏罗纪热事件——伊利石K-Ar年龄证据[J].地质学报,1996,70(2):186~194.
    赵文智,王新民,郭彦如,等.鄂尔多斯盆地西部晚三叠世原型盆地恢复及其改造演化[J].石油勘探与开发,2006,33(1):6~13.
    赵重远.鄂尔多斯地块西缘构造演化及板块应力机制初探[A],见:赵重远,刘池洋编,华北克拉通沉积盆地形成与演化及其油气赋存[M].西北大学出版社,1990.
    郑建平,张瑞生,余淳梅,等.冀东—辽西玄武岩二长岩包体锆石U-Pb定年,Hf同位素和微量元素示踪燕辽地区169Ma和107Ma的热事件[J].中国科学: D辑,2004,34(A1): 32~44.
    郑亚东,王士政,王玉芳.中蒙边界区新发现的特大型推覆构造及伸展变质核杂岩[J].中国科学(B辑),1990,12:1299~1305.
    郑亚东.内蒙古大青山大型逆冲推覆构造[J].中国科学: D辑,1998,28(4):289~295.
    中国煤田地质总局著,王双明主编.鄂尔多斯盆地聚煤规律及煤炭资源评价[M].北京:煤炭工业出版社,1996,12~124,317~350.
    周良仁,于浦生.阿拉善台隆同位素年龄数据及其地质意义[J].西北地质,1989,1:52~63.
    N.B.吴德华特,S.E.博耶,J.萨普平衡地质剖面[M].武汉:中国地质大学出版社,1991,44~56.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700