用户名: 密码: 验证码:
通过多元方法构造功能性有序微结构阵列
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微观的结构和表面图案在现代科技中均发挥了重要的作用。随之而来,各种各样的构造技术与方法应运而生。不断发展的图案化技术,展现丰富的多样性和功能性。但是,单一的图案化技术总是在某一方面存在缺点或不足;与之相对,近期新兴的自组装技术则可以迅速而简单地构造微图案,但这项技术的可控性和精确度较差。而且对复杂的二元结构来说,通过单一的策略是很难得到的。因此,对现有的技术进行合理的搭配或改进,来构筑新颖的图案,是图案化技术中新的机遇和挑战。在本论文中,我们将传统与新兴的图案化技术相结合,通过简单的操作步骤,实现了功能性的二元结构的构筑。首先,我们通过可控的去润湿过程,在化学图案化的基底上构造了大面积二元条带的阵列。随着形貌及尺寸的改变,各向异性的效果也不同。这种二元条带阵列不仅在结构上模仿了水稻叶表面结构,而且水滴在其表面也展现出各向异性的润湿。我们不仅可以构造单一聚合物的二元阵列,还可以构造异质的二元结构阵列。然后,我们通过改良的水汽冷凝辅助法(breath figure)结合可控去润湿,构造了异质的靶心结构微阵列。许多材料都可以用于这个体系,磁性纳米粒子、聚合物、有机发光小分子均可以用来构造靶心结构。而更小的特征尺寸往往带来更优异的性质,所以我们在进一步的实验中用二氧化硅胶体微球代替冷凝的水滴,通过胶体微球刻蚀技术与表面诱导的可控二次去润湿的过程,构造了纳米尺寸的双环阵列。
Micro-structure or surface pattern has played an important role in both modern science and technology. Followed, a variety of construction techniques and methods have emerged. Developing technologies show the rich diversity and functionality in many areas, such as microelectronics, information storage, solid-state physics, materials science, biotechnology and application of fluid science and so on. However, a single pattern technology always has shortcomings or deficiencies in one way, such as laser or particle beam writing techniques. These techniques possess high precision and control capability, but they suffer complicated operation, poor general-purpose, time-consuming and expensive. By contrast, the recent emerging of self-assembly techniques can be quickly and easily construct micro-patterns, but they have less controllable and precision. For the complex binary structure, it is very difficult to fabricate by a single strategy. Accordingly, improving the existing technologies for novel pattern remain new opportunity and challenge in pattern technology. In this paper, through a combination of one or several patterned technologies, we first construct a chemical or physical patterned template. Then, by the template-induce dewetting process on the surface, variety of ordered binary microstructure array had been obtained. This policy strategy for combination of multiple patterned technologies to construct the ordered binary structures array, not only followed the advantages of each patterned technology, but also makes up for their deficiencies, which complement each other. At the same time, this multiplex strategy provides a new approach for design and fabrication of functional and structural structure array.
     In chapter 2, we fabricated the large-area surface with ordered binary structures via controllable dewetting of polymer thin films. Firstly, the substrate with stripe patterned resist was obtained by conventional photolithography. By chemical vapor deposition (CVD) of fluoride silane (PFS), the chemical heterogeneous substrate was fabricated. Then the polymer film was spin-coating on the patterned substrate and thermal annealing above its Tg. By regulating the simple conditions including concentration of polymer solution and pattern of PFS modification, the diverse topographies had been obtained finally. And the fabrication process were investigated and calculated in detail. The novel surfaces mimicked the natural rice leaf in surface structure. Moreover, these surfaces with ordered binary stripes exhibited well anisotropic wettability for water droplet as natural rice leaf. After a large number of static contact angle measurements, it was confirmed that the anisotropy had been influenced by the periods of the patterns. For a variety of topographies, the mimicking surfaces all exhibited the anisotropy. This technique will offer an effective new way of designing the wettability of materials, and further to design and fabricate smart controllable devices.
     In chapter 3, we have demonstrated a versatile method to fabricate ordered homogeneous and heterogeneous bull's-eye-like arrays on the SAMs-patterned surface of a gold substrate through a simple approach. Firstly, we constructed heterogeneous thioalcohol self-assembly monolayers (SAMs) on the gold substrate by microcontact printing (μCP). Then, we fabricated the PVK dot rings on the SAMs-patterned gold substrate by SAMs-directed dewetting; at the same time, we optimized conditions of the dot formation of different materials. Secondly, as the reservation of chemical properties on SAMs, we obtained the ordered ring arrays on the dot arrays patterned surface under the protecting of water droplets by water-droplets-directed and concentration-controlled dewetting process. Finally, the ordered bull's-eye-like structure arrays had been fabricated on the gold substrate. Since both experimental steps were relatively independent, the bull's-eye-like structure that we fabricated could be not only homogeneous but also heterogeneous. We had fabricated the bull's-eye-like structure arrays of PVK/PVK, PVK/DTQA, and PVK/Fe3O4 nanoparticles separately, and characterized the properties of fluorescence and magnetism. Accordingly, diverse material could be introduced to the current system, such as fluorescent materials, electro-conductive materials and magnetic materials as long as the simple conditions are satisfied. These heterogeneous bull's-eye-like structure arrays may have potential applications including photoelectric devices, catalytic surfaces, field emission devices and integrated magnetic, gas, and biochemical sensors.
     In Chapter 4, the ordered rhodamine@PVA/PVK heterogeneous double-rings-like structures array was fabricated via combining colloidal lithography technology with two steps dewetting process. For the swelling property of the PDMS elastomer, non-close-packed (ncp) silica colloidal microspheres had been obtained. Then, by the“hot pressing”method, the ncp microspheres array was transferred on the prepared rhodamine@PVA film; moreover, microspheres array was partially embedded in the film and contacted the substrate. Here, we discussed the influence of film thickness in the transfer processes. Next, through the reactive ion etching (RIE) process under the mask of microspheres array, the ring-like structures array turned up below the microspheres array. The thickness of polymer film and radius of microspheres affected the ring-like structure morphology. We investigated the relationship between the two influence factors in detail. Finally, we dipped the substrate with microspheres and ring-like structures array into the PVK chloroform solution. With chloroform volatilization, the two steps dewetting process happened on the top of microspheres and the surface of substrate respectively. Followed, the PVK ring was fabricated surround the rhodamine@PVA ring. After further RIE etching, the ordered rhodamine@PVA/PVK heterogeneous double-rings-like structures array was constructed successfully. We also proved the heterogeneous double-rings-like structure by the characterization of SEM, AFM and fluorescence spectra. These unique structures array has potential application in optoelectronics device, data storage, surface photo-catalytic and surface enhanced Raman scattering (SERS). In addition, due to its universality, this method could be extended to other materials.
引文
[1] Sze S M. Semiconductor devices: Physics and Technology. [M]. John Wiley, New York 1985.
    [2] Moreau W M. Semiconductor Lithography: Principles and Materials. [M]. Plenum, New York 1988.
    [3] Rai-Choudhury P. Handbook of Microlithography, Micromachining, and Microfabrication. [M]. SPIE Optical Engineering Press, Bellingham, WA 1997.
    [4] Sheats J R, Smith B W. Microlithography-Science and Technology Marcel Dekker. [M]. New York 1998.
    [5] Menz W, Mohr J, Paul O. Microsystem Technology, 2nd ed. [M]. Wiley-VCH, Weinheim, Germany 2001.
    [6] Madou M. Fundamentals of Microfabrication: The Science of Miniaturization. [C]. 2nd ed., CRC Press, Boca Raton, FL 2001.
    [7] The International Technology Roadmap for Semiconductors. [M]. Semiconductor Industry Association, San Jose, CA 2003.
    [8] Gad-El-Hak M. The MEMS handbook, [C]. CRC Press, Boca Raton, FL 2001.
    [9] Fraden I. Handbook of Modern Sensors: Physics, Designs, and Applications. [C]. 3rd ed., Springer Verlag, New York 2004.
    [10] Hoch H C, Jelinski L W, Craighead H G. Nanofabrication and Biosystems: Intergrating Materials Science, Engineering, and Biology Cambridge University Press. [C]. New York 1996.
    [11] Lockhart D J, Winzeler E A. Genomics, gene expression and DNA arrays. [J]. Nature, 2000, 405: 827-836.
    [12] Optical lithography. [J]. a special issue of IBM J. Res. Dev. 1997, 3: 1-2.
    [13] Ito T, Okazaki S. Pushing the limits of lithography. [J]. Nature, 2000, 406: 1027-1031.
    [14] Wong A K-K. Resolution enhancement techniques in optical lithography. [J]. SPIE Optical Engineering Press, Bellingham, WA 2001.
    [15] Reichmanis E, Thompson L F. Polymer materials for microlithography. [J]. Chem. Rev. 1989, 89: 1273-1289.
    [16] Reiser A, Shih H-Y, Yeh T–F, Huang J-P. Novolak-Diazoquinone Resists: The Imaging Systems of the Computer Chip. [J]. Angew. Chem. Int. Ed. Engl. 1996, 35: 2428-2440.
    [17] MacDonald S A, Willson C, Fréchet J M J. Chemical Amplification in High-Resolution Imaging Systems. [J]. Acc. Chem. Res. 1994, 27: 151-158.
    [18] Ito H, Reichmanis E, Nalamasu O, Ueno T. Micro- and nanopatterning polymer American Chemical Society. [C]. Washington, DC 1998.
    [19] Xia Y, Rogers J A, Paul K E, Whitesides G M. Unconventional Methods for Fabricating and Patterning Nanostructures. [J]. Chem. Rev. 1999, 99: 1823-1848.
    [20] Mirkin C A, Rogers J A. Emerging Methods for micro- and nanofabrication, [J]. a special issue of MRS bull. 2001, 26: 506-546.
    [21] Abbott N L, Folkers J P, Whitesides G M. Manipulation of the Wettability of Surfaces on the 0.1- to 1-Micrometer Scale Through Micromachining and Molecular Self-Assembly. [J]. Science 1992, 257: 1380-1382.
    [22] Nyffenegger R M, Penner R M. Nanometer-Scale Surface Modification Using the Scanning Probe Microscope: Progress since 1991. [J]. Chem. Rev. 1997, 97: 1195-1230.
    [23] Liu G-Y, Xu S, Qian Y. Nanofabrication of Self-Assembled Monolayers Using Scanning Probe Lithography. [J]. Acc. Chem. Res. 2000, 33: 457-466.
    [24] Kr?mer S, Fuierer R R, Gorman C B. Scanning Probe Lithography Using Self-Assembled Monolayers. [J]. Chem. Rev. 2003, 103: 4367-4418.
    [25] Binning G, Despont M, Drechsler U, H?berle W, lutwyche M, et al. Ultrahigh-density atomic force microscopy data storage with erase capability. [J]. Appl. Phys. Lett. 1999, 74: 1329-1331.
    [26] Santinacci L, Djenizian T, Schmuki P. Nanoscale patterning of Si (100) surfaces by scratching through the native oxide layer using atomic force microscope. [J]. Appl. Phys. Lett. 2001, 79: 1882-1884.
    [27] Xu S, Miller S, Laibinis P E, Liu G-Y. Fabrication of Nanometer Scale Patterns within Self-Assembled Monolayers by Nanografting. [J]. Langmuir 1999, 15: 7244-7251.
    [28] Resch R, Baur C, Bugacov A, Koel B E, et al. Building and Manipulating Three-Dimensional and Linked Two-Dimensional Structures of Nanoparticles Using Scanning Force Microscopy. [J]. Langmuir 1998, 14: 6613-6616.
    [29] B?uerle D. Laser Processing and Chemistry. [C]. 3rd ed., Springer Verlag, Berlin, Germany 2000.
    [30] Dyer P E. Excimer laser polymer ablation: twenty years on. [J]. Appl. Phys. A 2003, 77: 167-173.
    [31] Lippert T, Hauer M, Phipps C R, wokaun A. Fundamentals and applications of polymers designed for laser ablation. [J]. Appl. Phys. A 2003, 77: 259-264.
    [32] Haefliger D, Cahill B P, Stemmer A. Rapid prototyping of micro-electrodes on glass and polymers by laser-assisted corrosion of aluminum films in water. [J]. Microelectron. Eng. 2003, 67/68: 473-478.
    [33] Hamann H F, Woods S I, Sun S. Direct Thermal Patterning of Self-Assembled Nanoparticles. [J]. Nano Lett. 2003, 3: 1643-1645.
    [34] Heinzelmann H, Pohl D W. Scanning near-field optical microscopy. [J]. Appl. Phys. A 1994, 59: 89-101.
    [35] Krausch G, Wegschneider S, Kirsch A, Bielefeldt H, Meiners J C, Mlynek J. Near field microscopy and lithography with uncoated fiber tips: a comparison. [J]. Opt. Commun. 1995, 119: 283-288.
    [36] Smolyaninov I I, Mazzoni D L, Davis C C. Near-field direct-write ultraviolet lithography and shear force microscopic studies of the lithographic process. [J]. Appl. Phys. Lett. 1995, 67: 3859-3861.
    [37] Wegschneider S, Kirsch A, Mlynek J, Krausch G. Scanning near-field optical lithography. [J]. Thin Solid Films 1995, 264: 264-267.
    [38] Jiang S, Ichihashi J, Monobe H, Fujihara M, Ohtsu M. Highly localized photochemical processes in LB films of photo chromic material by using a photon scanning tunneling microscope. [J]. Opt. Commun. 1994, 106: 173-177.
    [39] Sun S, Chong K S L, Leggett G J. Nanoscale Molecular Patterns Fabricated by Using Scanning Near-Field Optical Lithography. [J]. J. Am. Chem. Soc. 2002, 124: 2414-2415.
    [40] Brewer G R. Electron-Beam Technology in Microelectronic Fabrication. [C]. Academic Press, New York 1980.
    [41] Tseng A A, Chen K, Chen C D, Ma K J. Electron beam lithography in nanoscale fabrication: recent development. [J]. IEEE Trans. Electron. Packag. Manuf. 2003, 26: 141-149.
    [42] Ion-Assisted Processing of Electronic Materials. [C]. a special issue of MRS Bull. 1992, 17, June, 23.
    [43] Frost F, Rauschenbach B. Nanostructuring of solid surfaces by ion-beam erosion. [J]. Appl. Phys. A 2003, 77: 1-9.
    [44] Pool R. Optics' New Focus: Beams of Atoms. [J]. Science 1992, 255: 1513-1515.
    [45] Younkin R, Berggren K K, Johnson K S, Prentiss M, Ralph D C, Whitesides G. M. Nanostructure fabrication in silicon using cesium to pattern a self-assembled monolayer. [J]. Appl. Phys. Lett. 1997, 71: 1261-1263.
    [46] Kuang S W, Franck C W, Yen Lee Y H, et al. Ultrathin poly(methylmethacrylate) resist films for microlithography. [J]. J. Vac. Sci. Technol. B 1989, 7: 1745-1750.
    [47] Muller D A, Tzou Y, Raj R, Silcox J. Mapping sp2 and sp3 states of carbon at sub-nanometre spatial resolution. [J]. Nature 1993, 366: 725-726.
    [48] Fujita J, Watanabe H, Ochiai Y, Manako S, Tsai J S, Matsui S. Sub-10 nm lithography and development properties of inorganic resist by scanning electron beam. [J]. Appl. Phys. Lett. 1995, 66: 3064-3066.
    [49] Lercel M J, Craighead H G, Parikh A N, Seshadri K, Allara D L. Sub-10 nm lithography with self-assembled monolayers. [J]. Appl. Phys. Lett. 1996, 68: 1504-1506.
    [50] Medeiros D R, Aviram A, Guarnieri C R, et al. Recent progress in electron-beam resists for advanced mask-making. [J]. IBM J. Res. Dev. 2001, 45: 639-650.
    [51] Bard A J, Denault G, Lee C, Mandler D, Wipf D O. Scanning electrochemical microscopy-a new technique for the characterization and modification of surfaces. [J]. Acc. Chem. Res. 1990, 23: 357-363.
    [52] Bard A J, Mirkin M V. Scanning Electrochemical Microscopy. [M]. Marcel Dekker, New York 2001.
    [53] Wittstock G, Schumann W. Formation and Imaging of Microscopic Enzymatically Active Spots on an Alkanethiolate-Covered Gold Electrode by Scanning Electrochemical Microscopy. [J]. Anal. Chem. 1997, 69: 5059-5066.
    [54] Shiku H, Uchida I, Matsue T. Microfabrication of Alkylsilanized Glass Substrate by Electrogenerated Hydroxyl Radical Using Scanning Electrochemical Microscopy. [J]. Langmuir 1997, 13: 7239-7244.
    [55] Hsiao G S, Penner R M, Kingsley J. Deposition of metal nanostructures onto Si(111) surfaces by field evaporation in the scanning tunneling microscope. [J]. Appl. Phys. Lett. 1994, 64: 1350-1352.
    [56] Kondo S, Lutwyche M, Wada Y. Nanofabrication of layered materials with the scanning tunneling microscope. [J]. Appl. Surf. Sci. 1994, 75: 39-44.
    [57] Kondo S, Heike S, Lutwyche M, Wada Y. Surface modification mechanism of materials with scanning tunneling microscope. [J]. J. Appl. Phys. 1995, 78: 155-160.
    [58] Eigler D M, Schweizer E K. Positioning single atoms with a scanning tunnelling microscope. [J]. Nature 1990, 344: 524-525.
    [59] Manoharan H C, Lutz C P, eigler D M. Quantum mirages formed by coherent projection of electronic structure. [J]. Nature 2000, 403: 512-514.
    [60] Snow E S, Campbell P M. AFM Fabrication of Sub-10-Nanometer Metal-Oxide Devices with in Situ Control of Electrical Properties. [J]. Science 1995, 270: 1639-1641.
    [61] Avouris P, Hertel T, Martel R. Atomic force microscope tip-induced local oxidation of silicon: kinetics, mechanism, and nanofabrication. [J]. Appl. Phys. Lett. 1997, 71: 285-287.
    [62] Chien F S-S, Hsieh W-F, Gwo S, Vladar A E, Dagata J A. Silicon nanostructures fabricated by scanning probe oxidation and tetra-methyl ammonium hydroxide etching. [J]. J. Appl. Phys. 2002, 91: 10044-10050.
    [63] Cooper E B, Manalis S R, Fang H, Dai H, Matsumoto K, Minne S C, Hunt T, Quate C F. Terabit-per-square-inch data storage with the atomic force microscope. [J]. Appl. Phys. Lett. 1999, 75: 3566-3568.
    [64] Rolandi M, Quate C F, Dai H. A New Scanning Probe Lithography Scheme with a Novel Metal Resist. [J]. Adv. Mater. 2002, 14: 191-194.
    [65] Wilder K, Quate C F, Adderton D, Bernstein R, Elings V. Noncontact nanolithography using the atomic force microscope. [J]. Appl. Phys. Lett. 1998,73: 2527-2529.
    [66] Maoz R, Cohen S R, Sagiv J. Nanoelectrochemical Patterning of Monolayer Surfaces: Toward Spatially Defined Self-Assembly of Nanostructures. [J]. Adv. Mater. 1999, 11: 55-61.
    [67] Gorman C B, Carroll R L, Fuierer R R. Negative Differential Resistance in Patterned Electroactive Self-Assembled Monolayers. [J]. Langmuir 2001, 17: 6923-6930.
    [68] Lee H, Kim S A, Ahn S J, Lee H. Positive and negative patterning on a palmitic acid Langmuir–Blodgett monolayer on Si surface using bias-dependent atomic force microscopy lithography. [J]. Appl. Phys. Lett. 2002, 81: 138-140.
    [69] Kent A D, Shaw T M, von Molnár S, Awschalom D D. Growth of High Aspect Ratio Nanometer-Scale Magnets with Chemical Vapor Deposition and Scanning Tunneling Microscopy. [J]. Science 1993, 262: 1249-1252.
    [70] Awschalom D D, DiVincenzo D P. Complex Dynamics of Mesoscopic Magnets. [J]. Phys. Today 1995, 48: 43-48.
    [71] Ashar K G. Magnetic Disk Drive Technology-Heads, Media, Channel, Interfaces, and Integration. [C]. IEEE Press, Piscataway, NJ 1996.
    [72] Wang S, Taratorin A. Magnetic Information Storage Technology, [C]. Academic Press, San Diego, CA 1999.
    [73] Tape Storage Systems and Technology. [J]. a special issue of IBM J. Res. Dev. 2003, 47, 371.
    [74] Plumer M L, Van Ek I, Weller D. The Physics of Ultra-High-Density Magnetic Recording. [C]. Springer Verlag, Berlin, Germany 2001.
    [75] Dennis C L, Borges R P, Buda L D, Ebels U, et al. The defining length scales of mesomagnetism: a review. [J]. J. Phys. Condens. Matter 2002, 14: R1175-R1262.
    [76] Murray C B, Sun S H, Doyle H, Betley T. Monodisperse 3d Transition-Metal (Co, Ni, Fe) Nanoparticles and Their Assembly into Nanoparticle Superlattices. [J]. MRS Bull. 2001, 26: 985-991.
    [77] Ross C A. Patterned Magnetic Recording Media. [J]. Annu. Rev. Mater. Sci. 2001, 31: 203-235.
    [78] Ehrlich D J, Tsao J Y. Laser Microfabrication-Thin Film Processes and Lithography. [C]. Academic Press, Boston, MA 1989.
    [79] Calvert P. Inkjet Printing for Materials and Devices. [J]. Chem. Mater. 2001, 13: 3299-3305.
    [80] Blanchard A P, Kaiser R J, Hood L E. High-density oligonucleotide arrays. [J]. Biosens. Bioelectron. 1996, 11: 687-690.
    [81] Lemmo A V, Fisher J T, Geysen H M, Rose D J. Characterization of an Inkjet Chemical Microdispenser for Combinatorial Library Synthesis. [J]. Anal. Chem. 1997, 69: 543-551.
    [82] Zaugg F G, Wagner P. Drop-on-Demand Printing of Protein Biochip Arrays. [J]. MRS Bull. 2003, 28: 837-842.
    [83] Ginger D S, Zhang H, Mirkin C A. The Evolution of Dip-Pen Nanolithography. [J]. Angew. Chem. Int. Ed. 2004, 43: 30-45.
    [84] Piner R D, Zhu J, Xu F, Hong S, Mirkin C A. "Dip-Pen" Nanolithography. [J]. Science 1999, 283: 661-663.
    [85] Weinberger D A, Hong S, Mirkin C A. Multiple Ink Nanolithography: Toward a Multiple-Pen Nano-Plotter. [J]. Science 1999, 286: 523-525.
    [86] Zhang H, Chung S-W, Mirkin C A. Fabrication of Sub-50-nm Solid-State Nanostructures on the Basis of Dip-Pen Nanolithography. [J]. Nano Lett. 2003, 3: 43-45.
    [87] Ali M B, Ondarcuhu T, Brust M, Joachim C. Atomic Force Microscope Tip Nanoprinting of Gold Nanoclusters. [J]. Langmuir 2002, 18: 872-876.
    [88] Fu L, Liu X, Zhang Y, Dravid V P, Mirkin C A. Nanopatterning of“Hard”Magnetic Nanostructures via Dip-Pen Nanolithography and a Sol-Based Ink. [J]. Nano Lett. 2003, 3: 757-760.
    [89] Li Y, Maynor B W, Liu J. Electrochemical AFM“Dip-Pen”Nanolithography. [J]. J. Am. Chem. Soc. 2001, 123: 2105-2106.
    [90] Maynor B W, Filocamo S F, Grinstaff M W, Liu J. Direct-Writing of Polymer Nanostructures: Poly(thiophene) Nanowires on Semiconducting and Insulating Surfaces. [J]. J. Am. Chem. Soc. 2002, 124: 522-523.
    [91] Wilson D L, Martin R, Hong S, Cronin-Golomb M, et al. Surface organization and nanopatterning of collagen by dip-pen nanolithography. [J]. Proc. Natl. Acad. Sci. USA 2001, 98: 13660-13664.
    [92] Lee K-B, Park S-J, Mirkin C A, Smith J C, Mrksich M. Protein Nanoarrays Generated By Dip-Pen Nanolithography. [J]. Science 2002, 295: 1702-1705.
    [93] Demers L M, Ginger D S, Park S-J, Li Z, et al. Direct Patterning of Modified Oligonucleotides on Metals and Insulators by Dip-Pen Nanolithography. [J]. Science 2002, 296: 1836-1838.
    [94] Lee K-B, Lim J-H, Mirkin C A. Protein Nanostructures Formed via Direct-Write Dip-Pen Nanolithography. [J]. J. Am. Chem. Soc. 2003, 125: 5588-5589.
    [95] Lehn J-M. Perspectives in Supramolecular Chemistry - From Molecular Recognition towards Molecular Information Processing and Self-Organization. [J]. Angew. Chem. Int. Ed. Engl. 1990, 29: 1304-1319.
    [96] Whitesides G M, Mathias J P, Seto C T. Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures. [J]. Science 1991, 254: 1312-1319.
    [97] Whitesides G M. Self-Assembling Materials. [J]. Sci. Am. 1995, 273: 146-149.
    [98] Whitesides G M, Grzybowski B A. Self-Assembly at All Scales. [J]. Science 2002:295, 2418-2421.
    [99] Isaacs L, Chin D N, Bowden N, Xia Y, Whitesides G M. in Supermolecular Materials and Technologies. [C]. John Wiley & Sons, New York 1999, P.1.
    [100] Creigton T E, Proteins: Structures and Molecular Properties, Freeman. [C]. New York 1983.
    [101] Sanger W. Principles of Nucleic Acid Structures. [C]. Springer-Verlag, New York 1986.
    [102] Lehn J-M. Supramolecular Chemistry - Scope and Perspectives Molecules, Supermolecules, and Molecular Devices (Nobel Lecture). [J]. Angew. Chem. Int. Ed. Engl. 1988, 27: 89-112.
    [103] Lindsey J S. Self-Assembly in Synthetic Routes to Molecular Devices. Biological Principles and Chemical Perspectives: A Review. [J]. New J. Chem. 1991, 15: 153-180.
    [104] Simanek E E, Mathias J P, Seto C T, Chin D, et al. Noncovalent Synthesis: Using Physical-Organic Chemistry To Make Aggregates. [J]. Acc. Chem. Res. 1995, 28: 37-44.
    [105] Philp D, Stoddart J F. Self-Assembly in Natural and Unnatural Systems. [J]. Angew. Chem. Int. Ed. Engl. 1996, 35: 1154-1196.
    [106] Fan H, Yang K, Boye D M, Sigmon T, et al. Self-Assembly of Ordered, Robust, Three-Dimensional Gold Nanocrystal/Silica Arrays. [J]. Science 2004, 304: 567-571.
    [107] Park S, Lim J-H, Chung S-W, Mirkin C A. Self-Assembly of Mesoscopic Metal-Polymer Amphiphiles. [J]. Science 2004, 303: 348-351.
    [108] Bowden N, Terfort A, Carbeck J, Whitesides G M. Self-Assembly of Mesoscale Objects into Ordered Two-Dimensional Arrays. [J]. Science 1997, 276: 233-235.
    [109] Tien J, Breen T L, Whitesides G M. Crystallization of Millimeter-Scale Objects with Use of Capillary Forces. [J]. J. Am. Chem. Soc. 1998, 120: 12670-12671.
    [110] Breen T L, Tien J, Oliver S R J, Hadzic T, Whitesides G M. Design and Self-Assembly of Open, Regular, 3D Mesostructures. [J]. Science 1999, 284: 948-951.
    [111] Bowden N B, Weck M, Choi I S, Whitesides G M. Molecule-Mimetic Chemistry and Mesoscale Self-Assembly. [J]. Acc. Chem. Res. 2001, 34: 231-238.
    [112] Terfort A, Bowden N, Whitesides G M. Three-dimensional self-assembly of millimetre-scale components. [J]. Nature 1997, 386: 162-163.
    [113] Jacobs H O, Tao A R, Schwartz A, Gracias D H, Whitesides G M. Fabrication of a Cylindrical Display by Patterned Assembly. [J]. Science 2002, 296: 323-325.
    [114] Grzybowski B A, Stone H A, Whitesides G M. Dynamics of self assembly of magnetized disks rotating at the liquid–air interface. [J]. Proc. Natl. Acad. Sci. USA 2002, 99: 4147-4151.
    [115] Xia Y, Yin Y, Lu Y, McLellan J. Template-Assisted Self-Assembly of SphericalColloids into Complex and Controllable Structures. [J]. Adv. Funct. Mater. 2003, 13: 907-918.
    [116] F?rster S, Antonietti M. Amphiphilic Block Copolymers in Structure-Controlled Nanomaterial Hybrids. [J]. Adv. Mater. 1998, 10: 195-217.
    [117] Fasolka M J, Mayes A M. Block Copolymer Thin Films: Physics and Applications. [J]. Annu. Rev. Mater. Res. 2001, 31: 323-355.
    [118] Yokoyama H, Mates T E, Kramer E J. Structure of Asymmetric Diblock Copolymers in Thin Films. [J]. Macromolecules 2000, 33: 1888-1898.
    [119] Guarini K W, Black C T, Yeung S H I. Optimization of Diblock Copolymer Thin Film Self Assembly. [J]. Adv. Mater. 2002, 14: 1290-1294.
    [120] Segalman R A, Schaefer K E, Fredrickson G H, Kramer E J, Magonov S. Topographic Templating of Islands and Holes in Highly Asymmetric Block Copolymer Films. [J]. Macromolecules 2003, 36: 4498-4506.
    [121] Park M, Harrison C, Chaikin P M, Register R A, Adamson D H. Block Copolymer Lithography: Periodic Arrays of ~1011 Holes in 1 Square Centimeter. [J]. Science 1997, 276: 1401-1404.
    [122] Mansky P, Harrison C K, Chaikin P M, Register R A, Yao N. Nanolithographic templates from diblock copolymer thin films. [J]. Appl. Phys. Lett. 1996, 68: 2586-2588.
    [123] Li R P, Dapkus P D, Thompson M E, Jeong W G, et al. Dense arrays of ordered GaAs nanostructures by selective area growth on substrates patterned by block copolymer lithography. [J]. Appl. Phys. Lett. 2000, 76: 1689-1691.
    [124] Thurn-Albrecht T, Schotter J, K?stle G A, Emley N, et al. Ultrahigh-Density Nanowire Arrays Grown in Self-Assembled Diblock Copolymer Templates. [J]. Science 2000, 290: 2126-2129.
    [125] Kim H-C, Jia X, Stafford C M, Kim D H, et al. A Route to Nanoscopic SiO2 Posts via Block Copolymer Templates. [J]. Adv. Mater. 2001, 13: 795-797.
    [126] Lopes W A, Jaeger H M. Hierarchical self-assembly of metal nanostructures on diblock copolymer scaffolds. [J]. Nature 2001, 414: 735-737.
    [127] Morkved T L, Lu M, Urbas A M, Ehrichs E E, et al. Local Control of Microdomain Orientation in Diblock Copolymer Thin Films with Electric Fields. [J]. Science 1996, 273: 931-933.
    [128] Kim S O, Solak H H, Stoykovic M P, Ferrier N J, de Pablo J J, Nealey P F. Epitaxial self-assembly of block copolymers on lithographically defined nanopatterned substrates. [J]. Nature 2003, 424: 411-413.
    [129] Francois B, Pitois O, Francois J. Polymer films with a self-organized honeycomb morphology. [J]. Adv. Mater. 1995, 7: 1041-1044.
    [130] Fisher Y C, Zingsheim H P. Submicroscopic pattern replication with visible light. [J]. J. Vac. Sci. Technol. 1981, 19: 881-885.
    [131] Deckman H W, Dunsmuir J H. Natural lithography. [J]. Appl. Phys. Lett. 1982, 41: 377-378.
    [132] Roxlo C B, Deckman H W, Gland J, Cameron S D, Chianelli R R. Edge Surfaces in Lithographically Textured Molybdenum Disulfide. [J]. Science 1987, 235: 1629-1631.
    [133] Fang H, Zeller R, Stiles P J. Fabrication of quasi-zero-dimensional submicron dot array and capacitance spectroscopy in a GaAs/AlGaAs heterostructure. [J]. Appl. Phys. Lett. 1989, 55: 1433-1435.
    [134] Green M, Garcia-Parajo M, Khaleque F. Quantum pillar structures on n+ gallium arsenide fabricated using‘‘natural’’lithography. [J]. Appl. Phys. Lett. 1993, 62: 264-266.
    [135] Boneberg J, Burmeister F, Schafle C, Leiderer P, et al. The Formation of Nano-Dot and Nano-Ring Structures in Colloidal Monolayer Lithography. [J]. Langmuir 1997, 13: 7080-7084.
    [136] Frey W, Woods C K, Chilkoti A. Ultraflat Nanosphere Lithography: A New Method to Fabricate Flat Nanostructures. [J]. Adv. Mater. 2000, 12: 1515-1519.
    [137] Haynes C L, Van Duyne R P. Nanosphere Lithography: A Versatile Nanofabrication Tool for Studies of Size-Dependent Nanoparticle Optics. [J]. J. Phys. Chem. B 2001, 105: 5599-5611.
    [138] Haynes C L, McFarland A D, Smith M T, Hulteen J C, Van Duyne R P. Angle-Resolved Nanosphere Lithography: Manipulation of Nanoparticle Size, Shape, and Interparticle Spacing. [J]. J. Phys. Chem. B 2002, 106: 1898-1902.
    [139] Zhang G, Wang D Y. Fabrication of Heterogeneous Binary Arrays of Nanoparticles via Colloidal Lithography. [J]. J. Am. Chem. Soc. 2008, 130: 5616-5617.
    [140] McLellan J M, Geissler M, Xia Y N. Edge Spreading Lithography and Its Application to the Fabrication of Mesoscopic Gold and Silver Rings. [J]. J. Am. Chem. Soc. 2004, 126: 10830-13831.
    [141] Choi D G, Kim S, Jang S G, et al. Nanopatterned Magnetic Metal via Colloidal Lithography with Reactive Ion Etching. [J]. Chem. Mater. 2004, 16: 4208-4211.
    [142] Tan B J Y, Sow C H, Lim K Y, et al. Fabrication of a Two-Dimensional Periodic Non-Close-Packed Array of Polystyrene Particles. [J]. J. Phys. Chem. B 2004, 108: 18575-18579.
    [143] Tada T, Hamoudi A, Kanayama T, et al. Spontaneous production of 10-nm Si structures by plasma etching using self-formed masks. [J]. Appl. Phys. Lett. 1997, 70: 2538-2540.
    [144] Zhang X M, Zhang J H, Ren Z Y, et al. Morphology and Wettability Control of Silicon Cone Arrays Using Colloidal Lithography. [J]. Langmuir 2009, 25: 7375-7382.
    [145] Li Y F, Zhang J H, Zhu S J, et al. Bioinspired silicon hollow-tip arrays for high performance broadband anti-reflective and water-repellent coatings. [J]. J. Mater. Chem. 2009, 19: 1806-1810.
    [146] Spurr R T, Butlin J G. Breath figures. [J]. Nature 1957, 179: 1187-1187.
    [147] Bunz U H F. Breath Figures as a Dynamic Templating Method for Polymers and Nanomaterials. [J]. Adv. Mater. 2006, 18: 973–989.
    [148] Gómez-Segura J, Kazakova O, Davies J, Josephs-Franks P, et al. Self-organization of Mn12 single-molecule magnets into ring structures induced by breath-figures as templates. [J]. Chem. Commun. 2005, 45: 5615–5617.
    [149] Karthaus O, Maruyama N, Cieren X, Shimomura M, et al. Water-Assisted Formation of Micrometer-Size Honeycomb Patterns of Polymers. [J]. Langmuir 2000, 16: 6071-6076.
    [150] Li J, Peng J, Huang W, Wu Y, Fu J, Cong Y, Xue L, Han Y. Ordered Honeycomb-Structured Gold Nanoparticle Films with Changeable Pore Morphology: From Circle to Ellipse. [J]. Langmuir 2005, 21: 2017-2021.
    [151] Cui L, Han Y. Honeycomb Pattern Formation via Polystyrene/Poly (2-vinylpyridine) Phase Separation. [J]. Langmuir 2005, 21: 11085-11091.
    [152] Zhao X, Cai Q, Shi G, Shi Y, Chen G. Formation of Ordered Microporous Films with Water as Templates from Poly(D,L-lactic-co-glycolic acid) Solution. [J]. J. Appl. Polym. Sci. 2003, 90: 1846-1850.
    [153] Lu G, Li W, Yao J, Zhang G, et al. Fabricating Ordered Two-Dimensional Arrays of Polymer Rings with Submicrometer-Sized Features on Patterned Self-Assembled Monolayers by Dewetting. [J]. Adv. Mater. 2002, 14: 1049-1053.
    [154] Nie Y, Li W, An L, Zhu D, Wang Z, Yang B. Fabricating ordered 2D arrays of magnetic rings on patterned self-assembly monolayers via dewetting and thermal decomposition. [J]. Colloids Surf. A 2006, 278: 229–234.
    [155] Zhang L, Si H, Zhang H. Highly ordered fluorescent rings by‘‘breath figures’’on patterned substrates using polymer-free CdSe quantum dots. [J]. J. Mater. Chem. 2008, 18: 2660–2665.
    [156] Reiter G. Dewetting of thin polymer films. [J]. Phys. Rev. Lett. 1992, 68: 75-78.
    [157] R. A. Segalman, P. F. Green, Dynamics of Rims and the Onset of Spinodal Dewetting at Liquid/Liquid Interfaces. [J]. Macromolecules 1999, 32: 801-807.
    [158] Zhang J, Fredin N J, Lynn D M. Apparent Dewetting of Ultrathin Multilayered Polyelectrolyte Films Incubated in Aqueous Environments. [J]. Langmuir, 2007, 23: 11603-11610.
    [159] Brochard Wyart F, Daillant J. Drying of solids wetted by thin liquid films. [J]. Can. J. Phys. 1990, 68: 1084-1088.
    [160] Karapanagiotis I, Evans D F, Gerberich W W. Dewetting dynamics of thin polystyrene films from sputtered silicon and gold surfaces. [J]. Colloids andsurfaces A: Physicochem. Eng. Aspects 2002, 207: 59-67.
    [161] Higgins A M, Jones R A L. Anisotropic spinodal dewetting as a route to self-assembly of patterned surfaces. [J]. Nature 2000, 404: 476-477.
    [162] Huang J, Kim F, Tao A R, Connor S, Yang, P. Spontaneous formation of nanoparticle stripe patterns through dewetting. [J]. Nat. Mater. 2005, 4: 896-900.
    [163] van Hameren R, Schon P, van Buut A M, Hoogboom J, et al. Macroscopic Hierarchical Surface Patterning of Porphyrin Trimers via Self-Assembly and Dewetting. [J]. Science 2006, 314: 1433-1436.
    [164] Benor A, Hoppe A, Wagner V, Knipp D. Microcontact printing and selective surface dewetting for large area electronic applications. [J]. Thin Solid Films 2007, 515: 7679-7682.
    [165] Kim Y S, Lee H H. Selective Dewetting for General Purpose Patterning. [J]. Adv. Mater. 2003, 15: 332-334.
    [166] Celio H, Barton E, Stevenson K J. Patterned Assembly of Colloidal Particles by Confined Dewetting Lithography. [J]. Langmuir 2006, 22: 11426-11435.
    [167] Zhang X, Xie F, Tsui O K C. Microscopic surface patterning by rubbing induced dewetting. [J]. Polymer 2005, 46: 8416-8421.
    [168] Bao Z. Conducting polymers: Fine printing. [J]. Nat. Mater. 2004, 3: 137-138.
    [169] Lian J, Wang L, Sun X, Yu Q, Ewing R C. Patterning Metallic Nanostructures by Ion-Beam-Induced Dewetting and Rayleigh Instability. [J]. Nano Lett. 2006, 6: 1047-1052.
    [170] Fodor S P A, Read J L, Pirrug M C, Stryer L, Lu A T, Solas D. Light-directed, spatially addressable parallel chemical synthesis. [J]. Science 1991, 251: 767-773.
    [171] Huang J, Hemminger J C. Photooxidation of thiols in self-assembled monolayers on gold. [J]. J. Am. Chem. Soc. 1993, 115: 3342-3343.
    [172] Tarlov M J, Burgess D R F, Gillen Jr G. UV photopatterning of alkanethiolate monolayers self-assembled on gold and silver. [J]. J. Am. Chem. Soc. 1993, 115: 5305-5306.
    [173] Wollman E W, Frisbie C D, Wrighton M S. Scanning electron microscopy for imaging photopatterned self-assembled monolayers on gold. [J]. Langmuir 1993, 9: 1517-1520.
    [174] Hutt D A, Cooper E, Parker L, Leggett G J, Parker T L. Fabrication of Cellular“Wires”on Micropatterned Monolayers of Short-Chain Alkanethiols on Gold. [J]. Langmuir 1996, 12: 5494-5497.
    [175] Friebel S, Aizenberg J, Abad S, Wiltzius P. Ultraviolet lithography of self-assembled monolayers for submicron patterned deposition. [J]. Appl. Phys. Lett. 2000, 77: 2406-2408.
    [176] Xiang X -D, Sun X, Briceno G, Lou Y, et al. A combinatorial approach to materials discovery. [J]. Science 1995, 268: 1738-1740.
    [177] Stamm C, Marty F, Vaterlaus A, Weich V, et al. Two-Dimensional Magnetic Particles. [J]. Science 1998, 282: 449-451.
    [178] Deshmukh M M, Ralph D C, Thomas M, Silcox J. Nanofabrication using a stencil mask. [J]. Appl. Phys. Lett. 1999, 75: 1631-1633.
    [179] Kohler J, Albrecht M, Musil C R, Bucher E. Direct growth of nanostructures by deposition through an Si3N4 shadow mask. [J]. Phys. E 1999, 4: 196-200.
    [180] Brugger J, Berenschot J W, Kuiper S, Nijdam W, Otter B, Elwenspoek M. Resistless patterning of sub-micron structures by evaporation through nanostencils. [J]. Microelectron. Eng. 2000, 53: 403-405.
    [181] Pearson D H, Tonucci R J. Parallel patterning with nanochannel glass replica membranes. [J]. Adv. Mater. 1996, 8: 1031-1034.
    [182] Cheng G, Moskovits M. A Highly Regular Two-Dimensional Array of Au Quantum Dots Deposited in a Periodically Nanoporous GaAs Epitaxial Layer. [J]. Adv. Mater. 2002, 14: 1567-1570.
    [183] Masuda H, Yasui K, Nishio K. Fabrication of Ordered Arrays of Multiple Nanodots Using Anodic Porous Alumina as an Evaporation Mask. [J]. Adv. Mater. 2000, 12: 1031-1033.
    [184] Xia Y, Kim E, Whitesides G M. Micromolding of Polymers in Capillaries: Applications in Microfabrication. [J]. Chem. Mater. 1996, 8: 1558-1567.
    [185] Jackman R J, Duffy D C, Cherniavskaya O, Whitesides G M. Using Elastomeric Membranes as Dry Resists and for Dry Lift-Off. [J]. Langmuir 1999, 15: 2973-2984.
    [186] Tourovskaya A, Barber T, Wickes B T, Hirdes D, et al. Folch, Micropatterns of Chemisorbed Cell Adhesion-Repellent Films Using Oxygen Plasma Etching and Elastomeric Masks. [J]. Langmuir 2003, 19: 4754-4764.
    [187] Kern W, Deckert C A. in Thin Film Processes. [C]. Academic Press, New York 1987, P. 401.
    [188] Petersen K E. Silicon as a mechanical material. [J]. Proc. IEEE 1982, 70: 420-457.
    [189] Xia Y, Whitesides G M. Shadowed sputtering of gold on V -shaped microtrenches etched in silicon and applications in microfabrication. [J]. Adv. Mater. 1996, 8: 765-768.
    [190] Xia Y, Whitesides G M. Soft Lithography. [J]. Angew. Chem. Int. Ed. 1998, 37: 550-575.
    [191] Xia Y, Whitesides G M. Soft Lithography. [J]. Annu. Rev. Mater. Sci. 1998, 28: 153-184.
    [192] Lehmann H W, Widmer R, Ebnoether M, Wokaun A, et al. Fabrication of submicron crossed square wave gratings by dry etching and thermoplasticreplication techniques. [J]. J. Vac. Sci. Technol. B 1983, 1: 1207-1210.
    [193] Emmelius M, Pawlowski G, Vollmann H W. Materials for Optical Data Storage. [J]. Angew. Chem. Int. Ed. Engl. 1989, 28, 1445-1471.
    [194] Chou S Y, Krauss P R, Renstrom P J. Imprint Lithography with 25-Nanometer Resolution. [J]. Science 1996, 272: 85-87.
    [195] Tan H, Gilbertson A, Chou S Y. Roller nanoimprint lithography. [J]. J. Vac. Sci. Technol. B 1998, 16: 3926-3928.
    [196] Chou S Y, Keimel C, Gu J. Ultrafast and direct imprint of nanostructures in silicon. [J]. Nature 2002, 417: 835-836.
    [197] Haverkorn van Rijsewijk H C, Legierse P E J, Thomas G E. Photopolymerizable Coatings for Laservision Video Discs. [J]. Philips Tech. Rev. 1982, 40: 287-297.
    [198] Terris B D, Mamin H J, Best M E, A Logan J, Rugar D. Nanoscale replication for scanning probe data storage. [J]. Appl. Phys. Lett. 1996, 69: 4262-4264.
    [199] Xia Y, Kim E, Zhao X-M, J. Rogers A, Prentiss M, Whitesides G M. Complex Optical Surfaces Formed by Replica Molding Against Elastomeric Masters. [J]. Science 1996, 273: 347-349.
    [200] Gates B D, Whitesides G M. Replication of Vertical Features Smaller than 2 nm by Soft Lithography. [J]. J. Am. Chem. Soc. 2003, 125: 14986-14987.
    [201] Moran P M, Lange F F. Microscale lithography via channel stamping: Relationships between capillarity, channel filling, and debonding. [J]. Appl. Phys. Lett. 1999, 74: 1332-1334.
    [202] Kim E, Xia Y, Zhao X-M, Whitesides G M. Solvent-assisted microcontact molding: A convenient method for fabricating three-dimensional structures on surfaces of polymers. [J]. Adv. Mater. 1997, 9: 651-654.
    [203] Zhang F, Nyberg T, Ingan?s O. Conducting Polymer Nanowires and Nanodots Made with Soft Lithography. [J]. Nano Lett. 2002, 2: 1373-1377.
    [204] Kim E, Xia Y, Whitesides G M. Polymer microstructures formed by moulding in capillaries. [J]. Nature 1995, 376: 581-584.
    [205] Rogers J A, Bao Z, Raju V R. Nonphotolithographic fabrication of organic transistors with micron feature sizes. [J]. Appl. Phys. Lett. 1998, 72: 2716-2718.
    [206] Heule M, Gauckler L J. Gas Sensors Fabricated from Ceramic Suspensions by Micromolding in Capillaries. [J]. Adv. Mater. 2001, 13: 1790-1793.
    [207] Yang P, WirnsBerger G, Huang H C, Cordero S R, et al. Stucky, Mirrorless Lasing from Mesostructured Waveguides Patterned by Soft Lithography. [J]. Science 2000, 287: 465-467.
    [208] Michel B, Bernard A, Bietsch A, Delamarche E, et al. Printing meets lithography: Soft approaches to high-resolution patterning. [J]. IBM J. Res. Dev. 2001, 45: 697-720.
    [209] Kumar A, Whitesides G M. Features of gold having micrometer to centimeterdimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol“ink”followed by chemical etching. [J]. Appl. Phys. Lett. 1993, 63: 2002-2004.
    [210] Larsen N B, Biebuyck H, Delamarche E, Michel B. Order in Microcontact Printed Self-Assembled Monolayers. [J]. J. Am. Chem. Soc. 1997, 119: 3017-3026.
    [211] Libioulle L, Bietsch A, Schmid H, Michel B, Delamarche E. Contact-Inking Stamps for Microcontact Printing of Alkanethiols on Gold. [J]. Langmuir 1999, 15: 300-304.
    [212] Bain C D, Troughton E B, Tao Y-T, Evall J, Whitesides G M, Nuzzo R G. Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold. [J]. J. Am. Chem. Soc. 1989, 111: 321-335.
    [213] Dubois L H, Nuzzo R G. Synthesis, Structure, and Properties of Model Organic Surfaces. [J]. Annu. Rev. Phys. Chem. 1992, 43: 437-463.
    [214] Bishop A R, Nuzzo R G. Self-assembled-monolayers: recent developments and applications. [J]. Curr. Opin. Colloid Interface Sci. 1996, 1: 127-135.
    [215] Delamarche E, Michel B, Biebuyck H A, Gerber C. Golden interfaces: The Surface of Self-Assembled Monolayers. [J]. Adv. Mater. 1996, 8: 719-729.
    [216] Yang X M, Tryk A A, Hasimoto K, Fujishima A. Surface enhanced Raman imaging of a patterned self-assembled monolayer formed by microcontact printing on a silver film. [J]. Appl. Phys. Lett. 1996, 69: 4020-4022.
    [217] Moffat T P, Yang H. Patterned Metal Electrodeposition Using an Alkanethiolate Mask. [J]. J. Electrochem. Soc. 1995, 142: L220-L222.
    [218] Geissler M, Schmid H, Bietsch A, Michel B, Delamarche E. Defect-Tolerant and Directional Wet-Etch Systems for Using Monolayers as Resists. [J]. Langmuir 2002, 18: 2374-2377.
    [219] Carvalho A, Geissler M, Schmid H, Michel B, Delamarchr E. Self-Assembled Monolayers of Eicosanethiol on Palladium and Their Use in Microcontact Printing. [J]. Langmuir 2002, 18: 2406-2412.
    [220] Love J C, Wolfe D B, Chabinyc M L, Paul K E, Whitesides G M. Self-Assembled Monolayers of Alkanethiolates on Palladium Are Good Etch Resists. [J]. J. Am. Chem. Soc. 2002, 124: 1576-1577.
    [221] Park M H, Jang Y J, Sung-Suh H M, Sung M M. Selective Atomic Layer Deposition of Titanium Oxide on Patterned Self-Assembled Monolayers Formed by Microcontact Printing. [J]. Langmuir 2004, 20: 2257-2260.
    [222] Goetting L B, Deng T, Whitesides G M. Microcontact Printing of Alkanephosphonic Acids on Aluminum: Pattern Transfer by Wet Chemical Etching. [J]. Langmuir 1999, 15: 1182-1191.
    [223] Kind H, Bonard J-M, ForróL, Hernadi K, Nilsson L-O, Schlapbach L. PrintingGel-like Catalysts for the Directed Growth of Multiwall Carbon Nanotubes. [J]. Langmuir 2000, 16: 6877-6833.
    [224] Santhanam V, Andres R P. Microcontact Printing of Uniform Nanoparticle Arrays. [J]. Nano Lett. 2004, 4: 41-44.
    [225] Wu X C, Bittner A M, Kern K. Microcontact Printing of CdS/Dendrimer Nanocomposite Patterns on Silicon Wafers. [J]. Adv. Mater. 2004, 16: 413-417.
    [226] Lahiri J, Ostuni E, Whitesides G M. Patterning Ligands on Reactive SAMs by Microcontact Printing. [J]. Langmuir 1999, 15: 2055-2060.
    [227] Park J, Hammond P T. Multilayer Transfer Printing for Polyelectrolyte Multilayer Patterning: Direct Transfer of Layer-by-Layer Assembled Micropatterned Thin Films. [J]. Adv. Mater. 2004, 16: 520-525.
    [228] Hovis J S, Boxer S G. Patterning Barriers to Lateral Diffusion in Supported Lipid Bilayer Membranes by Blotting and Stamping. [J]. Langmuir 2000, 16: 894-897.
    [229] Graber D J, Zieziulewicz T J, Lawrence D A, Shain W, Turner J N. Antigen Binding Specificity of Antibodies Patterned by Microcontact Printing. [J]. Langmuir 2003, 19: 5431-5434.
    [230] Loo Y-L, Willett R L, Baldwin K W, Rogers J A. Interfacial Chemistries for Nanoscale Transfer Printing. [J]. J. Am. Chem. Soc. 2002, 124: 7654-7655.
    [231] Kim C, Shtein M, Forrest S R. Nanolithography based on patterned metal transfer and its application to organic electronic devices. [J]. Appl. Phys. Lett. 2002, 80: 4051-4053.
    [232] Schaper C D. Patterned Transfer of Metallic Thin Film Nanostructures by Water-Soluble Polymer Templates. [J]. Nano Lett. 2003, 3: 1305-1309.
    [233] Jackman R J, Wilbur J L, Whitesides G M. Fabrication of submicrometer features on curved substrates by microcontact printing. [J]. Science 1995, 269: 664-666.
    [234] Geissler M, Bernard A, Bietsch A, Schmid H, et al. Microcontact-Printing Chemical Patterns with Flat Stamps. [J]. J. Am. Chem. Soc. 2000, 122: 6303-6304.
    [235] Jacobs H O, Whitesides G M. Submicrometer Patterning of Charge in Thin-Film Electrets. [J]. Science 2001, 291: 1763-1766.
    [236] Bandic Z Z, Xu H, Albrecht T R. Magnetic lithography using a flexible master: A method for instantaneous magnetic recording on media surfaces with flatness imperfections. [J]. Appl. Phys. Lett. 2003, 82: 145-147.
    [237] Delamarche E, Bernard A, Schmid H, Michel B, Biebuyck H A. Patterned Delivery of Immunoglobulins to Surfaces Using Microfluidic Networks. [J]. Science 1997, 276: 779-781.
    [238] Rogers J A, Paul K E, Jackman R J, Whitesides G M. Using an elastomeric phase mask for sub-100 nm photolithography in the optical near field. [J]. Appl. Phys.Lett. 1997, 70: 2658-2660.
    [239] Paul K E, Breen T L, Aizenberg J, Whitesides G M. Maskless photolithography: Embossed photoresist as its own optical element. Appl. Phys. Lett. 1998, 73: 2893-2895.
    [240] Love J C, Paul K E, Whitesides G M. Fabrication of Nanometer-Scale Features by Controlled Isotropic Wet Chemical Etching. [J]. Adv. Mater. 2001, 13: 604-607.
    [241] Aizenberg J, Black A J, Whitesides G M. Controlling local disorder in self-assembled monolayers by patterning the topography of their metallic supports. [J]. Nature 1998, 394: 868-870.
    [242] Chang Y C, Chang L L, Esaki. A new one-dimensional quantum well structure. [J]. Appl. Phys. Lett. 1985, 47: 1324-1326.
    [1] Douglas T. A Bright Bio-Inspired Future. [J]. Science, 2003, 299: 1192-1193.
    [2] Andrew Taton T. Two-way traffic. [J]. Nat. Mater., 2003, 2: 73-74.
    [3] Lavine M, Vinson V, Coontz R. Design for Living. [J]. Science, 2005, 310: 1131-1134.
    [4] Lee L P, Szema R. Inspirations from Biological Optics for Advanced Photonic Systems. [J]. Science, 2005, 310: 1148-1150.
    [5] Jeong K-H, Kim J, Lee L P, Biologically Inspired Artificial Compound Eyes. [J]. Science, 2006, 312: 557-561.
    [6] Feng L, Li S H, Li Y S, Li H J, Zhang L J, Zhai J, Song Y L, Liu B Q, Jiang L, Zhu D B. Super-hydrophobic surfaces: From natural to artificial. [J]. Adv. Mater., 2002, 14: 1857-1860.
    [7] Zhai L, Berg M C, Cebeci F Cü, Kim Y, et al. Patterned Superhydrophobic Surfaces: Toward a Synthetic Mimic of the Namib Desert Beetle. [J]. Nano Lett., 2006, 6: 1213-1217.
    [8] Li Y, Zhang J, Zhu S, Dong H, et al. Bioinspired silicon hollow-tip arrays for high performance broadband anti-reflective and water-repellent coatings. [J]. J. Mater. Chem., 2009, 19: 1806-1810.
    [9] Kim S-H, Kim S-H, Yang S-M. Patterned Polymeric Domes with 3D and 2D Embedded Colloidal Crystals using Photocurable Emulsion Droplets. [J]. Adv. Mater., 2009, 21: 3771-3775.
    [10] Watson G S, Watson J A. Natural nano-structures on insects—possible functions of ordered arrays characterized by atomic force microscopy. [J]. Appl. Surf. Sci., 2004, 235: 139-144.
    [11] Gau H, Herminghaus S, Lenz P, Lipowsky R, Liquid Morphologies on Structured Surfaces: From Microchannels to Microchips. [J]. Science, 1999, 283: 46-49.
    [12] Morita M, Koga T, Otsuka H, Takahara A. Macroscopic-Wetting Anisotropy on the Line-Patterned Surface of Fluoroalkylsilane Monolayers. [J]. Langmuir, 2005: 21, 911-918.
    [13] Brandon S, Haimovich N, Yeger E, Marmur A. Partial wetting of chemically patterned surfaces: The effect of drop size. [J]. J. Colloid Interface Sci., 2003, 263: 237-243.
    [14] Gleiche M, Chi L F, Fuchs H. Nanoscopic channel lattices with controlled anisotropic wetting. [J]. Nature, 2000, 403: 173-175.
    [15] Higgins A M, Jones R A L. Anisotropic spinodal dewetting as a route to self-assembly of patterned surfaces. [J]. Nature, 2000, 404: 476-478.
    [16] Ionov L, Houbenov N, Sidorenko A, Stamm M, Minko S. Smart MicrofluidicChannels. [J]. Adv. Funct. Mater., 2006, 16: 1153-1160.
    [17] Gao J, Liu Y, Xu H, Wang Z, Zhang X. Mimicking Biological Structured Surfaces by Phase-Separation Micromolding. [J]. Langmuir, 2009, 25: 4365-4369.
    [18] Wang Y, Mo Y, Zhu M, Bai M. Wettability of metal coatings with biomimic micro textures. [J]. Surface & Coatings Technology. 2008, 203: 137-141.
    [19] Zhang Z, Wang Z, Xing R, Han Y. Patterning thin polymer films by surface-directed dewetting and pattern transfer. [J]. Polymer. 2003, 44: 3737-3743.
    [20] Yoon B, Acharya H, Lee G, et al. Nanopatterning of thin polymer films by controlled dewetting on a topographic pre-pattern. [J]. Soft Matter., 2008, 4: 1467-1472.
    [21] Suematsu N J, Nishimura S, Yamaguchi T. Release and Transfer of Polystyrene Dewetting Pattern by Hydration Force. [J]. Langmuir, 2008, 24: 2960-2962.
    [22] Revzin A, Russell R J, Yadavalli V K, Koh W G, Deister C, Hile D D, Mellott M B, Pishko M V. Fabrication of poly(ethylene glycol) hydrogel microstructures using photolithography. [J]. Langmuir, 2001, 17: 5440-5447.
    [23] Herminghaus S, Jacobs K, Mecke K, et al. Spinodal Dewetting in Liquid Crystal and Liquid Metal Films. [J]. science, 1998, 282: 916-919.
    [24] Khanna R, Sharma A. Dewetting of Solid Surface: Analogy with Spinodal Decomposition. [J]. J. Colloid Interface Sci., 1997, 195: 42-50.
    [25] Reiter G, Sharma A, Casoli A, David M, Khanna R, Auroy P. Thin Film Instability Induced by Long-Range Forces. [J]. Langmuir 1999, 15: 2551-2558.
    [26] Sharma A, Mittal J. Instability of Thin Liquid Films by Density Variations: A New Mechanism that Mimics Spinodal Dewetting. [J]. Phys. Rev. Lett., 2002, 89: 186101.
    [27] Takenaga M, Jo S, Graupe M, Lee T R. Effective van der Waals surface energy of self-assembled monolayer films having systematically varying degrees of molecular fluorination. [J]. Journal of Colloid and Interface Science 2008, 320: 264-267.
    [28] Wang J, Tolan M, Seeck O H, Sinha S K, Bahr O, Rafailovich M H, Sokolov J. Surfaces of strongly confined polymer thin films studied by X-ray scattering. [J]. Phys. Rev. Lett., 1999, 83: 564-567.
    [29] Sferrazza M, Xiao C, Jones R A L. Evidence for Capillary Waves at Immiscible PolymeryPolymer Interfaces. [J]. Phys. Rev. Lett., 1997, 78: 3693-3696.
    [30] Zhao W, Rafailovich M H, Sokolov J, Fetters L J, et al. Wetting properties of thin liquid polyethylene propylene films. [J]. Phys. Rev. Lett., 1993, 70: 1453-1456.
    [31] Reiter G, Sharma A. Auto-Optimization of Dewetting Rates by Rim Instabilities in Slipping Polymer Films. [J]. Phys. Rev. Lett., 2001, 87: 166103.
    [32] Masson J-L, Olufokunbi O, Green P F. Flow Instabilities in Entangled Polymer Thin Films. [J]. Macromolecules, 2002, 35: 6992-6996.
    [33] Reiter G. Unstable thin polymer films: rupture and dewetting processes. [J]. Langmuir, 1993, 9: 1344-1351.
    [34] Zhu D, Li X, Zhang G, Li W, et al. A Versatile Approach to Fabricate Ordered Heterogeneous Bull’s-Eye-Like Microstructure Arrays. [J]. Langmuir 2010, 26: 5172-5178.
    [35] Sun T L, Feng L, Gao X F, Jiang L. Bioinspired surfaces with special wettability. [J]. Acc. Chem. Res., 2005, 38: 644-652.
    [1] Geissler M, Xia Y N. Patterning: Principles and Some New Developments. [J]. Adv. Mater. 2004, 16: 1249-1269.
    [2] Woodson M, Liu J. Functional nanostructures from surface chemistry patterning. [J]. Phys. Chem. Chem. Phys. 2007, 9: 207-225.
    [3] Mele E, Benedetto F D, Persano L, et al. Room-Temperature Nanoimprint Lithography for Conjugated Polymer-Based Photonics. [J]. Nano Lett. 2005, 5: 1915-1919.
    [4] Park H, Cheng X. Thermoplastic polymer patterning without residual layer by advanced nanoimprinting schemes. [J]. Nanotechnology 2009, 20: 245308.
    [5] Szili E, Thissen H, Hayes J P, Voelcker N. A biochip platform for cell transfection assays. [J]. Biosens. Bioelectron. 2004, 19: 1395-1400.
    [6] Kurkuri M D, Driever C, Johnson G, et al. Multifunctional Polymer Coatings for Cell Microarray Applications. [J]. Biomacromolecules 2009, 10: 1163-1172.
    [7] Baba A, Knoll W. Electrochemical Growth of Dendritic Conducting Polymer Networks. [J]. Adv. Mater. 2003, 15: 1015-1019.
    [8] Hagleitner C, Hierlemann A, Lange D, et al. Smart single-chip gas sensor microsystem. [J]. Nature 2001, 414: 293-295.
    [9] Adhikari B, Majumdar S. Polymers in sensor applications. [J]. Prog. Polym. Sci. 2004, 29: 699-766.
    [10] Takashima W, Kanamori K, Pandey S S, Kaneto K. Patternable bi-ionic actuator: an example of new functionality of actuation, folding and unfolding of electrochemical spring. [J]. Sens. Actuators B 2005, 110: 120-124.
    [11] Sirringhaus H, Kawase T, Friend R H, et al. High-Resolution Inkjet Printing of All-Polymer Transistor Circuits. [J]. Science 2000, 290: 2123-2126.
    [12] Xia Y N, Whitesides G M. Soft Lithography. [J]. Annu. Rev. Mater. Sci. 1998, 28: 153-184.
    [13] Chou S Y, Krauss P R, Renstrom P J. Imprint Lithography with 25-Nanometer Resolution. [J]. Science 1996, 272: 85-87.
    [14] Kim C, Burrows P E, Forrest S R. Micropatterning of Organic Electronic Devices by Cold-Welding. [J]. Science 2000, 288: 831-833.
    [15] Huang Z, Wang P, et al. Selective Deposition of Conducting Polymers on Hydroxyl-Terminated Surfaces with Printed Monolayers of Alkylsiloxanes as Templates. [J]. Langmuir 1997, 13: 6480-6484.
    [16] Qin D, Xia Y N, Xu B, et al. Fabrication of Ordered Two-Dimensional Arrays of Micro- and Nanoparticles Using Patterned Self-Assembled Monolayers as Templates. [J]. Adv. Mater. 1999, 11: 1433-1437.
    [17] Park M H, Jang Y J, Sung-Suh H M, Sung M M. Selective Atomic Layer Deposition of Titanium Oxide on Patterned Self-Assembled Monolayers Formed by Microcontact Printing. [J]. Langmuir 2004, 20: 2257-2260.
    [18] Luo C X, Xing R B, Han Y C. Ordered pattern formation from dewetting of polymer thin film with surface disturbance by capillary force lithography. [J]. Surf. Sci. 2004, 552: 139-148.
    [19] Gleiche M, Chi L F, Fuchs H. Nanoscopic channel lattices with controlled anisotropic wetting. [J]. Nature 2000, 403: 173-175.
    [20] Braun H G, Meyer E. Thin microstructured polymer films by surface-directed film formation. [J]. Thin Solid Films 1999, 345: 222-228.
    [21] Higgins A M, Jones R A L. Anisotropic spinodal dewetting as a route to self-assembly of patterned surfaces. [J]. Nature 2000, 404: 476-477.
    [22] Khanal B P, Zubarev E R. Rings of Nanorods. [J]. Angew. Chem. Int. Ed. 2007, 46: 2195-2198.
    [23] Kargupta K, Sharma A. Mesopatterning of Thin Liquid Films by Templating on Chemically Patterned Complex Substrates. [J]. Langmuir 2003, 19: 5153-5163.
    [24] Bunz U H F. Breath Figures as a Dynamic Templating Method for Polymers and Nanomaterials. [J]. Adv. Mater. 2006, 18: 973-989.
    [25] Go′mez-Segura J, Kazakova O, Davies J, et al. Self-organization of Mn12 single-molecule magnets into ring structures induced by breath-figures as templates. [J]. Chem. Commun. 2005, 45: 5615-5617.
    [26] Meyer E, Braun H G. Controlled dewetting processes on microstructured surfaces - a new procedure for thin film microstructuring. [J]. Macromol. Mater. Eng. 2000, 276/277: 44-50.
    [27] Lu G, Li W, et al. Fabricating Ordered Two-Dimensional Arrays of Polymer Rings with Submicrometer-Sized Features on Patterned Self-Assembled Monolayers by Dewetting. [J]. Adv. Mater. 2002, 14: 1049-1053.
    [28] Zhang L, Si H Y, Zhang H L. Highly ordered fluorescent rings by“breath figures”on patterned substrates using polymer-free CdSe quantum dots. [J]. J. Mater. Chem. 2008, 18: 2660-2665.
    [29] Poyato R, Calzada M L, Pardo L. (Pb,Ca)TiO3/(Pb,La)TiO3/(Pb,Ca)TiO3 heterostructure characterized as ferroelectric multifunctional material. [J]. J. Appl. Phys. 2005, 97: 034108 (7 pages).
    [30] Nakamura A, Ishihara J, Shigemori S, et al. Zn1-xCdxO/ZnO heterostructures for visible light emitting devices. [J]. J. Appl. Phys. 2005, 44: L4.
    [31] Kalinin S V, Bonnell D A, Alvarez T, et al. Ferroelectric Lithography of Multicomponent Nanostructures. [J]. Adv. Mater. 2004, 16: 795-799.
    [32] Majumder S B, Jain M, Martinez A, et al. Sol–gel derived grain oriented barium strontium titanate thin films for phase shifter applications. [J]. J. Appl. Phys. 2001,90: 896-903.
    [33] Ahn C H, Rabe K M, Triscone J M. Ferroelectricity at the Nanoscale: Local Polarization in Oxide Thin Films and Heterostructures. [J]. Science 2004, 303: 488-491.
    [34] Wu Y, Yan H, Yang P. Semiconductor Nanowire Array: Potential Substrates for Photocatalysis and Photovoltaics. [J]. Top. Catal. 2002, 19: 197-201.
    [35] Ruan W D, Wang C X, Ji N, et al. Surface-Guided Self-Assembly of Silver Nanoparticles on Edges of Heterogeneous Surfaces. [J]. Langmuir 2008, 24: 8417-8420.
    [36] Park M, Harrison C, Chaikin P M, et al. Block Copolymer Lithography: Periodic Arrays of ~1011 Holes in 1 Square Centimeter. [J]. Science 1997, 276: 1401-1404.
    [37] Pan Z, Donthu S, Wu N, Li S, Dravid V. Directed Fabrication of Radially Stacked Multifunctional Oxide Heterostructures Using Soft Electron-Beam Lithography. [J]. Small 2006, 2: 274-280.
    [38] Jacobs H O, Tao A R, Schwartz A, et al. Fabrication of a Cylindrical Display by Patterned Assembly. [J]. Science 2002, 296: 323-325.
    [39] Divliansky I, Mayer T S, Holliday K S, Crespi V H. Fabrication of three-dimensional polymer photonic crystal structures using single diffraction element interference lithography. [J]. Appl. Phys. Lett. 2003, 82: 1667-1669.
    [40] Jeon S, Menard E, Park J U, et al. Three-Dimensional Nanofabrication with Rubber Stamps and Conformable Photomasks. [J]. Adv. Mater. 2004, 16: 1369-1373.
    [41] Smay J E, Cesarano J, Lewis J A. Colloidal Inks for Directed Assembly of 3-D Periodic Structures. [J]. Langmuir 2002, 18: 5429-5437.
    [42] Lee J, Isobe T, Senna N. Preparation of ultrafine Fe3O4 particles by precipitation in the presence of PVA at high pH. [J]. J. Colloid Interface Sci. 1996, 177: 490-494.
    [43] Kumar A, Biebuyck H A, Whitesides G M. Patterning Self-Assembled Monolayers: Applications in Materials Science. [J]. Langmuir 1994, 10: 1498-1511.
    [44] López G P, Biebuyck H A, Whitesides G M. Scanning Electron Microscopy Can Form Images of Patterns in Self-Assembled Monolayers. [J]. Langmuir 1993, 9: 1513-1516.
    [45] Darhuber A A, Troian S M, Davis J M, Scott M M, Wagner S. Selective dip-coating of chemically micropatterned surfaces. [J]. J. Appl. Phys. 2000, 88: 5119-5126.
    [46] Herminghaus S, Jacobs K, Mecke K, et al. Spinodal Dewetting in Liquid Crystal and Liquid Metal Films. [J]. Science 1998, 282: 916-919.
    [47] Mitlin V S. Dewetting of solid surface: Analogy with spinodal decomposition. [J].J. Colloid Interface Sci. 1993, 156: 491-497.
    [48] Sch?er, E.; Thurn-Albrecht, T.; Russell, T. P.; Steiner, U. Electrically induced structure formation and pattern transfer. [J]. Nature 2000, 403, 874-877.
    [49] Scholberg H M, Guenthner R A. Surface Chemistry of Fluorocarbons and their Derivatives. [J]. J. Phys. Chem. 1953, 57: 923-925.
    [50] An L, Li W, Nie Y, Xie B, Li Z, Zhang J, Yang B. Patterned magnetic rings fabricated by dewetting of polymer-coated magnetite nanoparticles solution. [J]. J. Colloid Interface Sci. 2005, 288: 503-507.
    [51] Matsuno R, Yamamoto K, Otsuka H, Takahara A. Polystyrene-Grafted Magnetite Nanoparticles Prepared through Surface-Initiated Nitroxyl-Mediated Radical Polymerization. [J]. Chem. Mater. 2003, 15: 3-5.
    [1] Joannopoulos J D, Villeneuve P R, Fan S H. Photonic crystals: putting a new twist on light. [J]. Nature 1997, 386: 143-149.
    [2] Joannopoulos J D, Meade R D, Winn J N. Photonic Crystals: Modeling the Flow of Light. [C]. Princeton University Press: Princeton, NJ, 1995.
    [3] Jacobs H O, Whitesides G M. Submicrometer Patterning of Charge in Thin-Film Electrets. [J]. Science 2001, 291: 1763-1766.
    [4] Thurn-Albrecht T, Schotter J, Kastle C A, Emley N, et al. Ultrahigh-Density Nanowire Arrays Grown in Self-Assembled Diblock Copolymer Templates. [J]. Science 2000, 290: 2126-2129.
    [5] Haes A J, Van Duyne R P A. Nanoscale Optical Biosensor: Sensitivity and Selectivity of an Approach Based on the Localized Surface Plasmon Resonance Spectroscopy of Triangular Silver Nanoparticles. [J]. J. Am. Chem. Soc. 2002, 124: 10596-10604.
    [6] Ostuni E, Chen C S, Ingber D, Whitesides G M. Selective Deposition of Proteins and Cells in Arrays of Microwells. [J]. Langmuir 2001, 17: 2828-2834.
    [7] Lee K-B, Park S-J, Mirkin C A, Smith J C, Mrksich M. Protein Nanoarrays Generated By Dip-Pen Nanolithography. [J]. Science 2002, 295: 1702-1705.
    [8] Kohli P, Harrell C C, Cao Z, Gasparac R, Tan W, Martin C R. DNA-Functionalized Nanotube Membranes with Single-Base Mismatch Selectivity. [J]. Science 2004, 305: 984-986.
    [9] Chan W C W, Nie S. Quantum Dot Bioconjugates for Ultrasensitive Nonisotopic Detection. [J]. Science 1998, 281: 2016-2018.
    [10] Han M, Gao X, Su J Z, Nie S. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. [J]. Nat. Biotechnol. 2001, 19: 631-635.
    [11] Moreau W M. Semiconductor Lithography. [C]. Plenum: New York, 1989, Chapter 8.
    [12] Sze S M. VLSI Technology. [C]. McGraw-Hill: Singapore, 1988; Chapter 4.3.
    [13] D?ndliker R, Gray S, Clube F, Herzig H P, V?kel R. Non-conventional techniques for optical lithography. [J]. Microelectron. Eng. 1995, 27: 205-211.
    [14] Gale M T, Rossi M, Pedersen J, Schutz H. Fabrication of continuous-relief micro-optical elements by direct laser writing in photoresists. [J]. Opt. Eng. 1994, 33: 3556-3566.
    [15] Martin C R. Nanomaterials: A Membrane-Based Synthetic Approach. [J]. Science 1994, 266: 1961-1966.
    [16] Piner R D, Zhu J, Xu F, Hong S, Mirkin C A. "Dip-Pen" Nanolithography. [J]. Science 1999, 283: 661-663.
    [17] Wu M-H, Whitesides G M. Fabrication of arrays of two-dimensional micropatterns using microspheres as lenses for projection photolithography. [J]. Appl. Phys. Lett. 2001, 78: 2273-2275.
    [18] Wu M-H, Paul K E, Whitesides G M. Patterning Flood Illumination with Microlens Arrays. [J]. Appl. Opt. 2002, 41: 2575-2585.
    [19] Hulteen J C, Van Duyne R P. Nanosphere lithography: A materials general fabrication process for periodic particle array surfaces. [J]. J. Vac. Sci. Technol. A 1995, 13:1553-1558.
    [20] Guo Q, Teng X, Yang H. Overpressure Contact Printing. [J]. Nano Lett. 2004, 4: 1657-1662.
    [21] McLellan J M, Geissler M, Xia Y. Edge Spreading Lithography and Its Application to the Fabrication of Mesoscopic Gold and Silver Rings. [J]. J. Am. Chem. Soc. 2004, 126: 10830-10831.
    [22] Haynes C L, Van Duyne R P. Nanosphere Lithography: A Versatile Nanofabrication Tool for Studies of Size-Dependent Nanoparticle Optics. [J]. J. Phys. Chem. B 2001, 105: 5599–5611.
    [23] Burmeister F, Sch?fle C, Matthes T, B?hmisch M, Boneberg J, Leiderer P. Colloid Monolayers as Versatile Lithographic Masks. [J]. Langmuir 1997, 13: 2983–2987.
    [24] Tormen M, Businaro L, Altissimo M, Romanato F, et al. 3D patterning by means of nanoimprinting, X-ray and two-photon lithography. [J]. Microelectron. Eng. 2004, 73/74: 535–541.
    [25] Li L P, Lu Y F, Doerr D W, Alexander D R, Shi J, Li J. C. Fabrication of hemispherical cavity arrays on silicon substrates using laser-assisted nanoimprinting of self-assembled particles. [J]. Nanotechnology 2004, 15: 333–336.
    [26] Zhu F Q, Fan D L, Zhu X C, Zhu J G, Cammarata R C, Chien C L. Ultrahigh-Density Arrays of Ferromagnetic Nanorings on Macroscopic Areas. [J]. Adv. Mater. 2004, 16: 2155–2159.
    [27] Rybczynski J, Ebels U, Giersig M. Large-scale, 2D arrays of magnetic nanoparticles. [J]. Colloid Surf. A: Physicochem. Eng. Aspects 2003, 219: 1–6.
    [28] Bartlett P N, Ghanem M A, El Hallag I S, Groot P D, Zhukov A. Electrochemical deposition of macroporous magnetic networks using colloidal templates. [J]. J. Mater. Chem. 2003, 13: 2596–2602.
    [29] Kempa K, Kimball B, Rybczynski J, Huang Z P, et al. Photonic Crystals Based on Periodic Arrays of Aligned Carbon Nanotubes. [J]. Nano Lett. 2003, 3: 13–18.
    [30] Ji T, Lirtsman V G, Avny Y, Davidov D. Preparation, Characterization, and Application of Au-Shell/Polystyrene Beads and Au-Shell/Magnetic Beads. [J]. Adv. Mater. 2001, 13: 1253–1256.
    [31] Yin Y, Lu Y, Xia Y. A Self-Assembly Approach to the Formation of AsymmetricDimers from Monodispersed Spherical Colloids. [J]. J. Am. Chem. Soc. 2001, 123: 771–772.
    [32] Choi D G, Yu H K, Jang S G, Yang S M. Colloidal Lithographic Nanopatterning via Reactive Ion Etching. [J]. J. Am. Chem. Soc. 2004, 126: 7019–7025.
    [33] Xia Y, Gates B, Yin Y, Lu Y. Monodispersed Colloidal Spheres: Old Materials with New Applications. [J]. Adv. Mater. 2000, 12: 693–713.
    [34] Huang L, Yu Y, Shen X F, Li J W, Shi B. Study on the Microtribological Properties of Star-shaped C60-Styrene Copolymer and C60 -end-Capped Polystyrene Thin Films. [J]. Acta Polym. Sin. 2001, 4: 523–527.
    [35] Jiang P, Prasad T, McFarland M J, Colvin V L. Two-dimensional nonclose-packed colloidal crystals formed by spincoating. [J]. Appl. Phys. Lett. 2006, 89: 011908.
    [36] Zong Q, Xie X M, Wang X F. Solvent Effect on the Surface Morphology of Polymer Blend Thin Film During Spin-coating Process. [J]. Chem. J. Chin. Univ. Chin. 2004, 25: 2363–2365.
    [37] Almeida R M, Goncalves M C, Portal S. Sol–gel photonic bandgap materials and structures. [J]. J. Non Cryst. Solids 2004, 345/346: 562–569.
    [38] Ye Y H, LeBlanc F, HachéA, Truong V V. Self-assembling three-dimensional colloidal photonic crystal structure with high crystalline quality. [J]. Appl. Phys. Lett. 2001, 78: 52–54.
    [39] Ye Y H, Badilescu S, Truong V V, Rochon P A, Natansohn A. Self-assembly of colloidal spheres on patterned substrates. [J]. Appl. Phys. Lett. 2001, 79: 872–874.
    [40] Manoharan V N, Elsesser M T, Pine D J. Dense Packing and Symmetry in Small Clusters of Microspheres. [J]. Science 2003, 301: 483-487.
    [41] Jiang P, Bertone J F, Colvin V L. A Lost-Wax Approach to Monodisperse Colloids and Their Crystals. [J]. Science 2001, 291: 453-457.
    [42] Velikov K P, van Dillen T, Polman A, van Blaaderen A. Photonic crystals of shape-anisotropic colloidal particles. [J]. Appl. Phys. Lett. 2002, 81: 838-840.
    [43] Matveev K A, Larkin A I, Glazman L I. Persistent Current in Superconducting Nanorings. [J]. Phys. Rev. Lett. 2002, 89: 096802 (3pp).
    [44] Rabaud W, Saminadayar L, Mailly D, Hasselbach K, Benoit A, Etienne B. Persistent Currents in Mesoscopic Connected Rings. [J]. Phys. Rev. Lett. 2001, 86: 3124-3127.
    [45] Levy L P, Dolan G, Dunsmuir J, Bouchiat H. Magnetization of mesoscopic copper rings: Evidence for persistent currents. [J]. Phys. Rev. Lett. 1990, 64: 2074-2077.
    [46] Smith D R, Padills W J, Vier D C, Nemat-Nasser S C, Schultz S. Composite Medium with Simultaneously Negative Permeability and Permittivity. [J]. Phys. Rev. Lett. 2000, 84: 4184-4187.
    [47] Aizpurua J, Hanarp P, Sutherland D S, K?ll M, Bryant G W, Garcia de Abajo F G. Optical Properties of Gold Nanorings. [J]. Phys. Rev. Lett. 2003, 90: 057401(4pp).
    [48] Li S, Peyrade D, Natali M, et al. Flux closure structures in cobalt rings. [J]. Phys. Rev. Lett., 2001, 86: 1102-1105.
    [49] Nielsch K, Hertel R, Wehrspohn R B, et al. Switching behavior of single nanowires inside dense nickel nanowire arrays. [J]. IEEE Trans. Magnet., 2002, 38: 2571-2573.
    [50] Zhu J, Zheng Y, Prinz G. Ultrahigh density vertical magnetoresistive random acess memory. [J]. J. Appl. Phys., 2000, 87: 6668-6673.
    [51] Li X, Wang T, Zhang J, Yan X, Zhang X, Zhu D, et al. Modulating Two-Dimensional Non-Close-Packed Colloidal Crystal Arrays by Deformable Soft Lithography. [J]. Langmuir 2010, 26: 2930-2936.
    [52] Micheletto R, Fukuda H, Ohtsu M. A Simple Method for the Production of a Two-Dimensional Ordered Array of Small Latex Particles. [J]. Langmuir 1995, 11: 3333-3336.
    [53] Yan X, Yao J M, Lu G, et al. Fabrication of non-close-packed arrays of colloidal spheres by soft lithography. [J]. J. Am. Chem. Soc., 2005, 127: 7688-7689.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700